
1 The Scandal of the
Irrational

The story begins with a secret and a scandal. About 2,500
years ago, in Greece, a philosopher named Pythagoras and
his followers adopted the motto “All is number.” The
Pythagorean brotherhooddiscoveredmany importantmath-
ematical truths and explored the ways they were manifest in
theworld. But theyalsowrapped themselves inmystery, con-
sidering themselves guardians of the secrets of mathematics
from the profane world. Because of their secrecy, many de-
tails of their work are lost, and even the degree to which they
were indebted topriordiscoveriesmade inMesopotamiaand
Egypt remains obscure.
Those who followed looked back on the Pythagoreans as

the source of mathematics. Euclid’s masterful compilation,
The Elements, written several hundred years later, includes
Pythagorean discoveries along with later work, culminating
in the construction of the five “Platonic solids,” the only solid
figures that are regular (having identical equal-sided faces):
the tetrahedron, the cube, the octahedron, the dodecahedron,
and the icosahedron (figure 1.1). The major contribution of
the Pythagoreans, though, was the concept of mathematical
proof, the idea that one could construct irrefutable demon-
strations of theoretical propositions that would admit of no
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Figure 1.1
The five regular Platonic solids, as illustrated after Leonardo da Vinci
in Luca Pacioli, On the Divine Proportion (1509). a. tetrahedron, b. cube,
c. octahedron, d. dodecahedron, e. icosahedron.
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exception. Here theywent beyond the Babylonians, who, de-
spite their many accomplishments, seem not to have been in-
terested in proving propositions. The Pythagoreans and their
followers created “mathematics” in the sense we still know
it, a word whose meaning is “the things that are learned,”
implying certain and secure knowledge.
Themyths surrounding thePythagoreanbrotherhoodhide

exactly who made their discoveries and how. Pythagoras
himself was said to have recognized the proportions of sim-
ple whole-number ratios in the musical intervals he heard
resounding from the anvils of a blacksmith shop: the octave
(corresponding to the ratio 2:1), the fifth (3:2), the fourth (4:3),
as ratios of theweights of the blacksmith’s hammers. This re-
vealed to him that music was number made audible. (This
is a good point to note an important distinction: the modern
fraction 3

2
denotes a breaking of the unit into parts, whereas

the ancient Greeks used the ratio 3:2 to denote a relation
between unbroken wholes.) Another story tells how he sac-
rificed a hundred oxen after discovering what we now call
the Pythagorean Theorem. These stories describe events that
were felt to beof suchprimal importance that theydemanded
mythic retelling.
There is a third Pythagorean myth that tells of an unfore-

seen catastrophe. Despite their motto that “all is number,”
the Pythagoreans discovered the existence of magnitudes
that are radically different from ordinary numbers. For in-
stance, consider a square with unit side. Its diagonal cannot
be expressed as any integral multiple of its side, nor as any
whole-number ratio based on it. That is, they are incommen-
surable. Box 1.1 describes the simple argument recounted
by Aristotle to prove this. This argument is an example of
a reductio ad absurdum: We begin by assuming hypothetically
that such a ratio exists and then show that this assumption
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Box 1.1
The diagonal of a square is incommensurable with its side

S

1

1

Let the square have unit side and a diagonal length s. Then
suppose that s can be expressed as a ratio of two whole
numbers, s = m:n. We can assume further that m and n are
expressed in lowest terms, that is, they have no common
factors. Now note that s2 = m2:n2 = 2:1, since the square on
the hypotenuse s is double the square on the side, by the
Pythagorean theorem. Thereforem2 is even (being two times
an integer), and so too ism (since the square of an even num-
ber is even). But then n must be odd, since otherwise one
could divide m and n by a factor of 2 and simplify them
further. If m is even, we can let m = 2p, where p is some
number. Then m2 = 4p2 = 2n2, and n2 = 2p2. But this means
that n2 is even, and so too is n. Since a whole number cannot
be both even and odd, our original assumption that s = m:n
must be wrong. Therefore the diagonal of a square cannot be
expressed as a ratio of two whole numbers.

leads to an absurdity, namely that one and the same num-
ber must be both even and odd. Thus the hypothesis must
have been wrong: no ratio can represent the relation of di-
agonal to side, which is therefore irrational, to use a modern
term.
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The original Greek term is more pungent. The word for
ratio is logos, whichmeans “word, reckoning, account,” from
a root meaning “picking up or gathering.” The new magni-
tudes are called alogon, meaning “inexpressible, unsayable.”
Irrational magnitudes are logical consequences of geometry,
but they are inexpressible in terms of ordinary numbers, and
the Greeks were careful to use entirely different words to
denote a number (in Greek, arithmos) as opposed to a magni-
tude (megethos). This distinction later became blurred, but for
now it is crucial to insist on it. The word arithmos denotes the
counting numbers beginningwith two, for “the unit” or “the
One” (the Greeks called it the “monad”) was not a number in
their judgment. The Greeks did not know the Hindu-Arabic
zero and surely would not have recognized it as an arithmos;
even now, we do not hear people counting objects as “zero,
one, two, three, . . . .” Thus, the expression “there are no ap-
ples here” means “there aren’t any apples here” more than
“there are zero apples here.”
It was only in the seventeenth century that the word

“number” was extended to include not only the counting
numbers from two on, but also irrational quantities. Ancient
mathematicians emphasized the distinctions between differ-
ent sorts ofmathematical quantities. Theword arithmosprob-
ably goes back to the Indo-European root (a)rı̄, recognizable
in such English words as rite and rhythm. In Vedic India, r. ta
meant the cosmic order, the regular course of days and sea-
sons, whose opposite (anr. ta) stood for untruth and sin. Thus,
the Greek word for “counting number” goes back to a con-
cept of cosmic order, mirrored in proper ritual: certain things
must come first, others second, and so on. Here, due order is
important; it is not possible to stick in upstart quantities like
“one-half” or (worse still) “the square root of 2” between the
integers, a word whose Latin root means unbroken or whole.
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The integers are paragons of integrity; they should not be
confused with magnitudes, which are divisible.
At first, the Pythagoreans supposed that all things were

made of counting numbers. In the beginning, the primal
One overflowed into the Two, then the Three, then the Four.
The Pythagoreans considered these numbers holy, for
1 + 2 + 3 + 4 = 10, a complete decade. They also observed
that the musical consonances have ratios involving only the
numbers up to four, which they called the “holy Tetractys.”
Out of such simple ratios, they conjectured, all the world
was made. The discovery of magnitudes that cannot be
expressed as whole-number ratios was therefore deeply dis-
turbing, for it threatened the entire project of explaining na-
ture in termsof number alone. This discoverywas thedarkest
secret of the Pythagoreans, its disclosure their greatest scan-
dal. The identity of the discoverer is lost, as is that of the one
who disclosed it to the profane world. Some suspect them
to have been one and the same person, perhaps Hippias of
Mesopontum, somewhere around the end of the fifth century
B.C., but probably not Pythagoras himself or his early fol-
lowers. Where Pythagoras had called for animal sacrifice to
celebrate his theorem, legend has it that the irrational called
for a human sacrifice: the betrayer of the secret drowned at
sea. Centuries later, the Alexandrian mathematician Pappus
speculated that

they intended by this, by way of a parable, first that everything
in the world that is surd, or irrational, or inconceivable be veiled.
Second, any soul who by error or heedlessness discovers or reveals
anything of this nature in it or in this world wanders on the sea of
nonidentity, immersed in the flow of becoming, in which there is no
standard of regularity.

Those who immerse themselves in the irrational drown
not by divine vengeance or by the hand of an outraged
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brotherhood but in the dark ocean of nameless magnitudes.
Ironically, this is a consequence of geometry and the
Pythagorean Theorem itself. When Pythagoras realized that
the square on the hypotenuse was equal to the sum of the
squares on the other two sides, he was very close to the
further realization that, though the squares might be com-
mensurable, the sides are not. Indeed, the argument given in
box 1.1 depends crucially on the Pythagorean Theorem. That
argument suggests that, had Pythagoras tried to express the
ratio of the diagonal of a square to its side, he would have
realized its impossibility immediately. He probably did not
take this step, but his successors did.
The discovery of the irrational had profound implications.

From it, Pappus drew a distinction between such “contin-
uous quantities” and integers, which “progressing by de-
grees, advance by addition from that which is a minimum,
and proceed indefinitely, whereas the continuous quantities
begin with a definite whole and are divisible indefinitely.”
That is, if we start with an irreducible ratio such as 2:3,
we can build a series of similar ratios in a straightforward
manner: 2:3 = 4:6 = 6:9 = · · ·. But if there is no smallest
ratio in a series, there can be no ratio expressing the whole.
Pappus’s words suggest that it was this argument that may
have opened the eyes of the Pythagoreans. Consider again
the diagonal and side of a square. The attempt to express
both of them as multiples of a common unit requires an in-
finite regress (box 1.2). However small we take the unit, the
argument requires it to be smaller still. Again we see that no
such unit can exist.
The challenge of Greek mathematics was to cope with two

incommensurable mathematical worlds, arithmetic and ge-
ometry, each a perfect realm of intelligible orderwithin itself,
butwith a certain tensionbetween them. InPlato’s dialogues,
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Box 1.2
A geometric proof of the incommensurability of the diagonal
of a square to its side, using an infinite regress:

A BGE

F

H

D C

In the squareABCD, use a compass to lay offDF = DA along
the diagonal BD. At F, erect the perpendicular EF. Then
the ratio of BE to BF (hypotenuse to side) will be the same
as the ratio ofDB toDA, since the triangles BAD and EFB are
similar. Suppose thatAB and BDwere commensurable. Then
there would be a segment I such that both AB and BD were
integral multiples of I. SinceDF = DA, then BF = BD−DF is
also a multiple of I. Note also that BF = EF, because the sides
of triangle EFB correspond to the equal sides of triangle BAD.
Further,EF = AEbecause (connectingDandE) trianglesEAD
andEFD are congruent. Thus,AE = BF is amultiple of I. Then
BE = BA − AE is also a multiple of I. Therefore, both the side
(BF) and hypotenuse (BE) are multiples of I, which therefore
is a commonmeasure for the diagonal and side of the square
of side BF. The process can now be repeated: on EB lay off
EG = EF and construct GH perpendicular to BG. The ratio of
hypotenuse to side will still be the same as it was before and
hence the side of the square on BG and its diagonal also share
I as a common measure. Because we can keep repeating this
process, we will eventually reach a square whose side is less
than I, contradicting our initial assumption. Therefore, there
is no such common measure I.
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this challenge elicits deep responses, reachingout frommath-
ematics to touch emotional and political life. A pivotal mo-
ment occurs in the dialogue between Socrates and Meno, a
visiting Thessalian magnate who was a friend and ally of
the Persian king. Meno was notoriously amoral, a greedy
and cynical opportunist. Strangely, on his last day in Athens
he asks Socrates over and over again whether virtue can be
taught or comes naturally. Their conversation turns on the
difference between true knowledge and opinion.
At the heart of their discussion, Socrates calls for a slave

boy, with whom he converses about how to double the area
of a square of a given size. Unlike Meno, the boy is inno-
cent and frank; he confidently expresses his opinion that if
you double the side of a square, you double its area. Their
conversation is a perfect example of Socrates’ practice of phi-
losophy through dialogue. As they talk, the boy realizes that
a square of double side has four times the area, which leaves
him surprised and perplexed. The Greek word for his situa-
tion is aporia, whichmeans an impasse, an internal contradic-
tion. Just before this conversation, Socrates’ questioning had
revealed contradictions in Meno’s confident opinions about
virtue, and Meno had lashed out angrily. Socrates, he said,
was like an ugly stingray that harms his victims and renders
themhelpless. Socrates’ answer is to showhowwell the slave
boycould takebeing“stung.”Theboy is amazedandcurious,
not angry.He readily follows Socrates’ lead in drawing a new
picture (box 1.3). In a few strokes, the real doubled square
emerges by drawing the diagonals within the boy’s fourfold
square. Responding freely to Socrates’ suggestions, the boy
grasps thishimself.Meno is forced toadmit that the “sting”of
realizing his ignorance did not harm the boy, who replaced
his false opinion with a true one. The dialogue ends with
Meno smoldering, foreshadowing the angry Athenians who
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Box 1.3
Socrates’ construction of the doubled square in theMeno
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Let the original square be AEBO. The slave boy thought that
the square on the doubled side HE would have twice the
area, but realized that in fact that HEFG has four times
the area of AEBO. At Socrates’ prompting, he then draws the
diagonals AB, BC, CD, DA within the square HEFG. Each
triangle AOB = BOC = COD = DOA is exactly half the area
of the original square, so all four of these together give the
true doubled square ABCD.

later voted to execute thephilosopher. Their outragepoints to
thepowerof thenewmathematical insights. ThoughSocrates
hadnot referred to the irrationality of thediagonal, itwas cru-
cial. The process of doubling a square (an eminently rational
enterprise) required recourse to the irrational, a fact that was
not lost on Plato or his hearers.
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Though a consequence of logical mathematics, clearly the
word “irrational” alreadyhad acquired the emotional conno-
tations it still retains. In Plato’s Republic, Socrates jokes that
young people “are as irrational as lines” and hence not yet
suited to “rule in the city and be the sovereigns of the great-
est things.” Appropriately and yet ironically, Socrates pre-
scribes mathematics, along with music and gymnastics, for
these young irrationals to tame what is most disorderly and
incommensurate in their souls. His joke points to a widely
held sense that irrationality in mathematics was a troubling
sign of confusion and disorder in theworld, a danger as fear-
ful as drowning. Certainly the Pythagoreans took this dire
view, but Plato’s dialogues open a larger perspective. What
is irrational, in the soul or in mathematics, may be harmo-
nized with the rational; to use an unforgettable image from
another dialogue, the black horse of passion may be yoked
to the white horse of reason.
Plato’s great dialogue on the nature of knowledge rests on

this mathematical crux. It is named after Theaetetus, a math-
ematician who is introduced to us as he is being carried back
to Athens, dying from battlefield wounds and dysentery. In
a flashback to Theaetetus’ youth, we learn that he made pro-
found discoveries about the irrationals and the five regu-
lar solids, and he conversed with Socrates shortly before the
philosopher’s trial anddeath. Socrateswasdeeply impressed
with this youth, who seemed destined to do great things and
who also resembled Socrates physically, down to the snub
nose and bulging eyes. Also present during their conversa-
tionwasTheaetetus’ teacherTheodorus, anoldermathemati-
cian who had proved the irrationality of

√
3,

√
5,

√
7, . . ., all

the way to
√
17, where for some reason he stopped.

Socrates’ characteristic irony is not in evidence as he ques-
tions Theaetetus, who explains his discovery that there are
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degrees of irrationality. Though such magnitudes as the
square roots of 3 or of 17 are irrational, they are still “com-
mensurable in square,” since their squares have a common
measure (that is, since

(√
3
)2 = 3 and (√

17
)2 = 17 are both in-

tegers). Socrates is struck with the truth and beauty of these
insights and uses them as examples that lead to a broader
conversation about the nature of knowledge. He reminds
Theaetetus and Theodorus that he has a reputation as one
who “stings” by inducing perplexity and jokingly asks
Theaetetus not to denounce himas an evilwizard, explaining
that he is really a midwife who helps people deliver them-
selves of their conceptions.
Anticipating his indictment on the very next day, Socrates

justifies himself not to his angry accusers but to this gentle
and gifted youngman, somuch like himself. Far from feeling
antagonistic, Theaetetus is ready to enter a searching inquiry
that begins with mathematics as a touchstone of true knowl-
edge, testing whether other knowledge comes through the
senses or more mysteriously from within the soul. Though
hedepicts himself as sterile, barrenofwisdom, Socrates helps
Theaetetus bring his conception to birth and tests its health.
Socrates had often made fun of his own ugly features, but he
describes Theaetetus as beautiful. Theaetetus’ mathematical
insight is commensuratewith the bravery thatwill allowhim
to fight for his city and die with exceptional honor. Such is
the courage of one who could wrestle with the irrational.
During their conversation, Socrates encourages his guests

to “put themselves to torture,” by which he means that they
should struggle fearlessly to test and refine their opinions
together. In Greek, the word for “torture” can also mean
the “touchstone,” a mineral that is able to distinguish gold
from base metal by the mark each makes on it. This extreme
metaphor has overtones of the judicial torture used to coerce
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truth from slaves, but Socrates uses it to signify a search for
truth that defies even intense pain and humiliation. Like sol-
diers or athletes, Socrates and Theaetetus see in suffering the
path to the superlative pleasure of ultimate truth. This they
have learned from mathematics, whose study often seems
painful to thosewho do not know the pleasure of insight. It is
nowonder that Plato placed over the door to his academy the
admonition: “Let no one ignorant of geometry enter here.”
The discoveries of Theaetetus and the test of mathemati-

cal proofwere enshrined in Euclid’s Elements, which remains
even today a living fountainhead ofmathematics, invaluable
for beginners as well as experienced mathematicians. Be-
yond presenting his own results, Euclid set the discoveries of
others in order as a touchstone of mathematical lucidity and
logical force. In the case of the irrational, Euclid drew on
a compromise introduced by Eudoxus, who kept numbers
and irrational magnitudes strictly apart, but yet in propor-
tion. For instance, Euclid considers two numbers in a certain
ratio (say 2:3) and shows how this proportion could be equal
to that between two irrational magnitudes (as 2

√
2:3

√
2 is

equal to 2:3). Nevertheless, he would never mix the two dis-
tinct types so as to allow a ratio between a number and a
magnitude. This was not simplymathematical apartheid but
a decision to consider numbers and magnitudes as entirely
distinct genera, whose mixing might lead to incalculable
confusion.
Euclid’s contribution went far beyond this separation of

realms. In Book V, he introduces a far-reaching definition
of equality or inequality that extends to ratios of irrational
magnitudes. FollowingEudoxus, heproposes that ifwewant
to check whether two ratios are equal, we should multiply
the terms by various integers to check whether these mul-
tiples are respectively greater, equal, or less (box 1.4). This
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Box 1.4
Euclid’s definition of equal ratio, which is applicable to any
magnitude (Book V, Definition 5)

The ratio a :b is said to be equal to the ratio c:d if, for any
whole numbers m and n, when ma is compared with nb and
mc is compared with nd, the following holds: if ma > nb,
thenmc > nd; ifma = nb, thenmc = nd; and ifma < nb, then
mc < nd .

definition of equality still depends on testing multiples of
magnitudes, even though the magnitudes themselves may
have no common measure. It also uses any multiples what-
ever, as if to examine all possible multiples in order to de-
termine whether the multiplied ratios could ever be equal.
Thus, it is really a test, a trial by multiplication, a way to nav-
igate the irrational sea. Euclid puts it in strong contrast with
the way he treats whole numbers in Books VI and VII, for
integers are commensurable because they have a common
unit.
Euclid’s most daring inquiry into the irrational occurs in

Book X, which asks: Do the irrational magnitudes have some
intelligible order? Can one classify them into clear categories
by genus and species?He begins by showing that anymagni-
tude can be indefinitely divided. Though implicit in geome-
try, hebrings intoprominencewhat later came tobe called the
continuum, meaning a continuously and endlessly divisible
magnitude, as opposed to the indivisible One, whose inte-
gral multiples constitute all the counting numbers. To show
this indefinite divisibility, Euclid demonstrates how we can
successively subtract from any magnitude half or more of
that magnitude, and then keep repeating this process until
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Box 1.5
Euclid’s statement of the indefinite divisibility of anymagni-
tude (Book X, Proposition 1)

Take half (or more) of the given magnitude, and then the
same proportion of what remains, and the same proportion
yet again of what remains, continuing the process as far as
necessary so that the remainder can be made less than any
given line.

finallywehave left amagnitude that is smaller thananygiven
amount (box 1.5). Thus, there is no smallest magnitude, no
geometrical “atom” or least possible magnitude making up
all others, for if there were, all magnitudes would share that
smallest magnitude as their common measure. Here again,
Euclid sets in play a process indefinitely repeated, not pic-
turable in a single figure but intelligible and logically com-
pelling, nonetheless.
Then Euclid sets out to classify different kinds of irra-

tionals, naming them and showing their interrelations. As
Theaetetus had shown, irrationality is a relative term. The
diagonal of a square is irrational compared to the side, but
it can be commensurable with another line, which might be
the side or diagonal of another square. What is speakable
depends above all on the relation between figures. Euclid’s
classification of irrationals is intricate, though it does not go
beyond what we would call the square root of the sum or
difference of two square roots. He identifies such quantities
in the division of a geometrical line, but we can also divide
a string to make it sound different intervals. This means we
can formulate a musical version of the mathematical crisis
of the irrational. If we try to divide an octave (whose ratio
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Box 1.6
The sound of square roots

Take two strings, one sounding an octave higher than the
other, so that their lengths are in the ratio 2:1. Then find the
geometric ratio (also called the mean proportional) between
these strings, the length x at which 2:x is the same proportion
as x:1. This means that 2:x = x:1; cross-multiplying this gives
x2 = 2. Thus, the “ratio” needed is √

2:1 ≈ 1.414, in modern
decimals. This is close to the dissonant interval called the
tritone, which later was called the “devil in music,” namely
the interval composed of three equalwhole steps each of ratio
9:8. The tritone is thus 9:8 × 9:8 × 9:8 = 93:83 = 729:512 ≈
1.424.

is 2:1) exactly at the point of the geometric mean, we get
the mongrel “ratio”

√
2:1 (box 1.6). This is very close to the

highly dissonant interval later called the “devil in music,”
the tritone. If the whole universe is based on number, such
harmonic problems are critical.
Euclid presents his classification of irrationals through a

hundred careful propositions. After this tour de force, he
says something amazing in the final proposition of the book:
From the lines already drawn, one can go on to define still
other irrational lines that are “infinite in number, and none
of them is the same as any of the preceding.” Although his
tone is impassive, this is a portentous statement. The realm
of the irrational is infinite not just because there are an un-
limited number of irrational magnitudes of each type but
evenmore because there is an infinite variety of kinds of such
magnitudes, each a different species with infinitelymany ex-
amples. The discovery of the irrational disclosed an infinitely
branching path.
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Euclid’s impassive tone does not disclose what he thought
of this situation. By this final proposition, Euclid could have
meant to indicate adisturbingglance into the irrational abyss,
as if to say: Here lies an unfathomable, trackless sea of end-
lessly different magnitudes, from which one should turn
away in horror. But there is another possible reading of his si-
lence. He might have meant: Here lies an inexhaustible store
of treasures, infinite in number though each is finite in mag-
nitude. Behold, and wonder.




