
Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 1

VHDL Coding Style Guidelines

From Effective Coding with VHDL - Principles and Best Practice

Ricardo Jasinski, MIT Press, 2016

Version 1.1, August 2017

This document contains selected guidelines and recommendations about coding style from the book Effective Coding

with VHDL – Principles and Best Practice. It can be used as a coding standard for new projects or by design teams that

do not have yet such conventions.

Each recommendation is accompanied by a rationale and references to sections in the book where the topic is

explained in more detail. The book also presents a detailed discussion of the fundamental design principles related to

writing source code, such as modularity, abstraction, and hierarchy, and explains how they can be used to improve

desirable qualities of the code such as readability, maintainability, testability, and reuse.

This work is constantly evolving, and feedback about it is always welcome. To reach the author, please access the

Effective VHDL Coding blog at effectivecodingwithvhdl.wordpress.com.

Contents

1. Code Formatting and Layout .. 2

Indentation ... 2

Whitespace ... 3

Alignment ... 5

Line Wrapping ... 5

Letter Case .. 6

2. Commenting ... 7

3. Declarations, Expressions, and Statements .. 11

Declarations .. 11

Expressions ... 12

Processes .. 13

Conditionals .. 13

Loops ... 14

4. Design Units .. 15

5. Routines .. 16

6. Names ... 16

Length ... 16

General Naming Guidelines .. 17

Naming Data Objects .. 18

Naming Routines .. 19

Naming other VHDL constructs .. 20

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 2

1. Code Formatting and Layout

The way we lay out statements and other constructs on the screen can make our code much easier to work with. A
good layout helps us see scopes, emphasizes the relatioship between statements, and highlights the differences and
similarities between lines of code. The guidelines presented here help write code that is easier to read, understand,
and maintain.

Indentation

Indentation is the addition of blank space before each line of code to convey information about scopes, nesting, and
subordination between statements. For a detailed discussion of indentation and an example of the basic indentation
algorithm, see section 18.3 on page 471.

#R1# Always indent by multiples of a standard amount.

Rationale To ensure that the code layout accurately matches its structure, the amount of leading whitespace should
always be a multiple of the standard indentation mount. If two regions in the code are indented with the same distance
from the left margin, we should be able to trust that they are at the same depth in the logical structure of the code.

The recommended indentation amount in this coding standard is four spaces. This means that each line of code should
be preceded by an integer multiple of four whitespaces – 0, 4, 8, 12, and so on. An indentation amount of four spaces
is enough to clearly show the code structure, and it still leaves enough room in the line for statements and declarations.

#R2# Always indent the code using space characters, not tabs.

Rationale This guarantees that the code will look the same in every editor or tool. The width of a whitespace character
is always the same, whereas the width of a horizontal tab is configuration-dependent. To save some typing, configure
your editor to output the right number of white spaces when you press the tab key. This configuration is usually named
“indent using spaces” or “use soft tabs.”

#R3# Do not use any indentation scheme that depends on the length of identifiers (names).

Rationale A somewhat popular style is to indent the continuation line at the same level of the first argument in the
previous line:

 paddle <= update_sprite(paddle, paddle_position.x,
 paddle_position.y, vga_raster_x,
 vga_raster_y, true);

This kind of hanging indent is an example of a style in which aesthetics conflicts with more objective layout goals. It
may be aesthetically pleasing, but it is a maintenance headache. It has the following problems:

• It is hard to maintain. If we rename paddle or update_sprite, we will break the indentation of all subsequent lines,
which will have to be manually realigned. These names might be used in several files, so we should hunt for all the
occurrences and fix the indentation around them. Because renaming objects and routines is highly recommended
to improve the code readability, any layout technique that hinders this practice should be avoided.

• It undermines the strength and consistency of the indentation scheme and its appearance. Instead of always being
indented by the standard amount, the names of functions and objects also determine the distance from the left
margin, reducing the regularity of the indentation outline.

• It is antieconomic. This kind of layout wastes a lot of space (all the area underneath the signal name and the
function name, in the example) and leaves less room for actual code in each line.

In practice, this kind of layout is less helpful than it seems. If you feel tempted to use it (or any form of layout that is
offset from the middle of a line), then try instead the technique of emulating pure blocks described in section 18.2.2.

18.3 p 471

18.3 p 475

18.3 p 473

18.5.1 p 482

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 3

#R4# When in doubt, follow the indentation templates provided here as example.

Rationale The indentation templates from Figures 18.7 and 18.8 (reproduced below) follow the recommendations
from this style guide and comply with the basic indentation principles and algorithm.

process (sensitivity_list)
 declaration_1;
 declaration_2;
begin
 statement_1;
 statement_2;
end process;

process (sensitivity_list) begin
 statement_1;
 statement_2;
end process;

case expression is
 when choice_1 =>
 statement_1;
 statement_2;
 ...
 when choice_2 =>
 statement_3;
 statement_4;
 ...
 when others =>
 ...
end case;

case expression is
when choice_1 =>
 statement_1;
 statement_2;
 ...
when choice_2 =>
 statement_3;
 statement_4;
 ...
when others =>
 ...
end case;

if condition_1 then
 statement_1;
 statement_2;
 ...
elsif condition_2 then
 statement_3;
 statement_4;
 ...
else
 ...
end if;

(a) if-then-elsif-else (c) case-when
 (compact version)

(b) case-when
 (2-level version)

(d) Process with declarative part (e) Process without declarative part

signal_name <=
 value_1 when condition_1,
 value_2 when condition_2,
 value_3 when others;

with expression select signal_name <=
 value_1 when choice_1,
 value_2 when choice_2,
 value_3 when others;

(f) Conditional signal assignment (g) Selected signal assignment

function function_name(arg_1: type_1; arg_2: type_2) return type is
 declaration_1;
 declaration_2;
begin
 statement_1;
 statement_2;
end;

architecture arch_name of ent_name is
 declaration_1;
 declaration_2;
begin
 statement_1;
 statement_2;
end;

(b) Architecture body.

(c) Subprogram with parameter list in a single line.

entity ent_name is
 generic (
 generic_declaration_1;
 generic_declaration_2
);
 port (
 port_declaration_1;
 port_declaration_2
);
end;

(a) Entity declaration.

function function_name(
 arg_1: type_1;
 arg_2: type_2
) return type is
 declaration_1;
 declaration_2;
begin
 statement_1;
 statement_2;
end;

(d) Subprogram with one parameter
per line (function).

procedure procedure_name(
 class_1 arg_1: mode_1 type_1;
 class_2 arg_2: mode_2 type_2
) is
 declaration_1;
 declaration_2;
begin
 statement_1;
 statement_2;
end;

(e) Subprogram with one parameter
per line (procedure).

Figure 18.7
Indentation templates for VHDL statements.

Figure 18.8
Indentation templates for VHDL entities, architectures, and subprograms.

Whitespace

#R5# Organize your code into paragraphs containing a set of logically related statements or
declarations. Always leave a blank line between paragraphs.

Rationale This gives the reader a cue when a new step is reached, a subtask is completed, or the main subject changes.
It is usually a good idea to precede each paragraph with a summary comment:

-- Get character bitmap from font ROM
ascii_code := character'pos(display_char);
char_bitmap := FONT_ROM(ascii_code);

-- Get pixel value from character bitmap
x_offset := pixel_x mod FONT_WIDTH;
y_offset := pixel_y mod FONT_HEIGHT;
pixel := char_bitmap(x_offset)(y_offset);

#R6# For punctuation symbols that are also used in English, use the same spacing as you would in
regular prose. Specifically, never add a space before a comma, colon, or semicolon, and always add a
space after these symbols.

Rationale Many of the delimiter characters (commas, semicolons, parentheses, etc.) are familiar as normal
punctuation marks, so it is distracting to see them in code used differently from normal text. This rule is simple to
follow, easy to remember, economic, and consistent. Moreover, leaving unnecessary spaces around these delimiters
calls too much attention to symbols that do not have any relevant meaning and exist only to satisfy the language syntax:

function add (addend : signed ; augend : signed) return signed ; -- Too much extraneous whitespace; not recommended

The following example uses only the necessary amount of whitespace to provide visual separation between the
important elements. The punctuation looks more familiar because it is used as in regular prose:

function add(addend: signed; augend: signed) return signed; -- Spacing as in regular prose; recommended

18.6 p 483

18.4 p 478

18.3 p 475

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 4

#R7# For parentheses, use the same spacing as you would in regular prose, with two exceptions:

• Never add a space between a routine name and the parentheses around its parameter list;

• Never add a space between the name of an array and the parentheses used for accessing its elements.

rising_edge(clk) to_slv(bv) -- OK, no space after function name
y(i) <= a(i) + b(i); -- OK, no space after array name

These are established conventions in virtually any programming language. However, keep in mind that language
keywords are not function names, so there should always be a space between a keyword and an opening parenthesis:

if (cond) process (cond) port map (...) -- OK, space used after keywords
if(cond) process(cond) port map(...) -- NOT OK, missing space after keywords

#R8# For the remaining delimiters, use the following rules:

Leave no whitespace around
these delimiters

. (dot) ' (apostrophe)

Leave one whitespace on either
side of these delimiters

+ - * / ** & | := => = /= > >= < <=
?? ?= ?/= ?< ?<= ?> ?>= << >> <>

Rationale The dot and apostrophe are not used in VHDL as punctuation symbols. The dot is used in selected names to
join the parts of a hierarchical name, and the apostrophe is used in attribute names to join a prefix and an attribute
designator. In both cases, it makes more sense to keep the two sides close together than to set them apart.

The remaining delimiters are mostly operators used in expressions, where leaving whitespace on either side generally
improves the readability.

Exception For mathematical operators, it may be OK to remove the whitespace around a delimiter as a way of
indicating that it has a stronger precedence than the others used in an expression. However, parentheses are still the
recommended choice to make the precedence of operators more evident.

#R9# Use vertical whitespace to separate sections of the code.

Rationale Just like we can use blank lines to group statements into paragraphs of code, we can use them to separate
larger sections of code in a source file. As a rule, leave a blank line before and after every process, function, and design
unit in a file.

Vertical whitespace is a cleaner and preferable alternative to comment banners and separators made with dashes,
asterisks, or other flashy characters. If you routinely feel a need for such headings, first check that you are not trying
to put too much information into a single file, then try using other alternatives to navigate the source code. Modern
editors can show a summary or outline of all declarations in a file. They also allow us to add bookmarks to frequently
visited parts of the code.

Exceptions Do not add a blank line between a comment header and the code it describes; this reinforces the
connection between the two. Also, when there is a change in the indentation level, it is not necessary to add a blank
line before the next construct because the different indent level already provides visual separation.

18.6 p 483

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 5

Alignment

#R10# Do not column-align parts of statements or declarations across different lines of code.

Rationale Column-aligned source code might look like this:

architecture example of column_layout is
 signal pc: std_ulogic_vector(31 downto 0) := x"0000_0000";
 signal next_pc: std_ulogic_vector(31 downto 0) := x"0000_0000";
 constant INTERRUPT_VECTOR_ADDRESS: std_ulogic_vector(31 downto 0) := x"FFFF_FF80";
 signal read: std_ulogic := '0';
 ...
begin
 read <= mem_read or io_read;
 pc <= next_pc;
 interrupt_address <= INTERRUPT_VECTOR_ADDRESS or interrupt;
 ...
end;

Although this is a somewhat popular style, it has many drawbacks and hinders several attributes of high-quality code:

• It is hard to write. Think about all the effort required to position each name, type and value in its own column.

• It is hard to maintain. If we rename interrupt_address or INTERRUPT_VECTOR_ADDRESS, we will break the
indentation of all subsequent lines, and they will have to be manually realigned. If the names are used in other
source files, we will have to search for all the occurrences and fix them.

• It is antieconomic. This kind of layout wastes a lot of space and leaves little room for actual code in each line. This
increases the pressure for using names that are abbreviated or too short to tell everything about an object.

• It is not necessarily easier to read. In the declarations shown in the example, the object names and initial values
are set very far apart from each other. In the signal assignments, the signal names and the corresponding value
expressions are unnecessarily distant from each other.

In practice, this kind of layout is much less helpful than it seems. If you like the visual separation that it provides
between object classes, names, types and values, a good alternative is to use the syntax and semantic highlighting
features of modern source code editors. They allow us to specify different colors and font styles for each kind of
construct in VHDL.

Line Wrapping

#R11# Limit the length of a line of code to 80 characters.

Rationale Although the main reasons for this specific number are historical, it is still a good idea to use a limit that is
much narrower than what current monitors can show. For instance, it allows to see two or more source files side by
side, which is useful to compare different versions of a file. It allows us to read the code without horizontal scrolling.
On an IDE, it allows us to use the edges of the screen for other useful information, such as a tree view of the project
files on the left and a design hierarchy or source code outline on the right.

#R12# If a line is longer than the specified limit, then break it at an appropriate place and continue
in the next line after increasing the indentation by one level.

Rationale Indenting the continuation of a line makes it clear that it is the continuation of a statement or declaration,
and not the beginning of a new one.

When choosing where to break the line, use the following rules1:

• Break the line at a point that clearly shows it is incomplete For instance, after a comma, a binary operator,
or an opening parenthesis.

1 This list is based on the work of Steve McConnell in Code Complete 2nd Ed., one of the most successful and influential books on
software development. It contains hundreds of pages filled with the nitty-gritty details about the practice of writing software.

18.5 p 479

18.2.2 p 470

18.5.1 p 480

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 6

• Keep related pieces together This allows the reader to finish a complete thought before moving to the next
line. In the example below, the lines were wrapped after each function call:

bounding_box := rectangle'(
 minimum(rectangle_1.top, rectangle_2.top),
 minimum(rectangle_1.left, rectangle_2.left),
 maximum(rectangle_1.bottom, rectangle_2. bottom),
 maximum(rectangle_1.right, rectangle_2. right)
);

• Consider breaking down a list to one item per line This makes it easier to see the number of items and the
position of each one in the list. It also makes it easier to move the items vertically if necessary:

paddle <= update_sprite(
 sprite => paddle,
 sprite_x => paddle_position.x + paddle_increment.x,
 sprite_y => paddle_position.y + paddle_increment.y,
 sprite_enabled => true
);

• Consider leaving the closing delimiter in a line of its own In the previous examples, the closing parenthesis
and semicolon were placed on their own line and vertically aligned with the corresponding statement, making
it clear that the inner elements are enclosed between the delimiters.

If you want to make a distinction between lines that were wrapped (called continuation lines) and lines that were
indented because of the logical structure of the code, consider adding twice the standard indentation amount before
a continuation line. This complies with the rule that all indentation must be by multiples of the standard amount.

#R13# Start each statement on a new line. In other words, there must be no more than one simple
statement per line, and compound statements must always be broken over multiple lines.

Rationale This makes the code easier to read because we can follow the left margin and read one statement at a time;
there is no need to scan the code from left to right as well. It is also easier to add, modify, reorder, delete or comment-
out individual statements. When debugging, it is easier to single-step through individual comments. Finally, it makes
compile errors easier to locate because each line number corresponds to only one statement.

Letter Case

#R14# Choose a letter case convention for each kind of name in the code.

Rationale Besides giving the code a more consistent look, we can use the appearance of a name to convey additional
information about the entity it represents. Three possible capitalization conventions are:

• CamelCase: consecutive words are joined without a separating character, and the beginning of each word is
written in uppercase. Depending on the convention, the first letter may be in upper or lower case.

• snake_case or lowercase_with_underscores: use only lowercase letters; separate adjacent words with
underscores.

• ALL_CAPS or SCREAMING_SNAKE_CASE: use only uppercase letters; separate adjacent words with underscores.

In this style guide, we use the following conventions:

• All constants and generics are named in ALL_CAPS;

• All other identifiers are written in lowercase_with_underscores.

#R15# When using an acronym as part of a name, treat it as any regular word.

Rationale This prevents inconsistencies and avoids conflicts when a convention requires the first letter to be in
lowercase. For instance, what should we do if our standard requires us to write variable names in lowercase but the
first word is an acronym? The best way to solve this is to drop the problem altogether by treating all acronyms as

18.7 p 486

18.7 p 486

7.4 p 143

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 7

regular words. Thus, instead of UDPHdrFromIPPacket, we should write UdpHdrFromIpPacket (in CamelCase) or
udp_hdr_from_ip_packet (in snake_case).

#R16# Write all VHDL reserved words (keywords) in lowercase letters.

Rationale Text written in ALL_CAPS is too attention-grabbing, looks rough on the eyes, and is less convenient to type.
It makes sense to avoid using all caps for names that appear frequently in the code, such as VHDL keywords.

2. Commenting

Comments are annotations intended to make the code easier to understand and maintain. Done right, they can save a
lot of developer time and improve our productivity. Done wrong, they may duplicate information and confuse our
readers. Moreover, excessive commenting is a sign that the code is too messy or hard to understand. For a detailed
explanation of the basic commenting principles, a classification of the kinds of comments, and many source code
examples, see chapter 17.

#R17# Do not explain bad code; rewrite it!

Rationale Many comments start off on the wrong foot, when a programmer realizes that the code is becoming hard
to understand. To make it “clearer,” the developer adds a comment to explain the convoluted logic behind the code.
Instead of using comments to explain tricky code, concentrate your effort on making it clearer and self-explanatory.

#R18# Express yourself in code, not in comments.

Rationale Never settle for a comment when you can express yourself in the code proper. Among other advantages,
code is always up-to-date with system behavior, whereas comments get outdated easily. Code can be debugged and
verified, whereas comments cannot be tested and can hardly be trusted. Finally, comments are often duplicate
information.

In the following declaration, a comment was needed only because the generic was poorly named:

-- Set to 1 if you want to use a hardware multiplier, 0 otherwise
generic MULTIPLIER_CONFIG: integer := 0;

If we choose a better name, then we can get rid of the comment:

 USE_HARDWARE_MULTIPLIER: boolean := false;

In the following condition, a comment is used to explain the author’s intent:

-- When phase(PHASE_WIDTH-2) is 0, the current quadrant is even
if phase(PHASE_WIDTH-2) = '0' then ...

If we compute the condition in a variable and give it a good name, then the comment becomes unnecessary:

quadrant_is_even := (phase(PHASE_WIDTH-2) = '0');
if quadrant_is_even then ...

Always keep an eye out for opportunities to move information from comments to the code proper.

#R19# Keep comments at the level of intent.

Rationale A comment written at the level of intent records the author’s intention and explains the purpose of a section
of code, without duplicating information. Another way to say it is that comments should tell us why rather than how;
comments that tell us how are often redundant with the code and likely to get outdated if we change the
implementation.

17.2 p 430

17.2 p 431

17.2 p 430

18.7 p 486

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 8

#R20# Keep comments close to the code they describe.

Rationale This reduces the chance of a comment getting outdated; the chance that a developer will edit the code and
forget to update a comment increases with the distance between them.

#R21# Avoid superfluous or redundant comments.

Rationale Comments that only repeat what the code already says just add clutter to the code. The following comment
seems to add important information because it makes it easier to understand what the statement does:

-- increment column counter
clctr <= clctr + 1;

However, the only reason why it seems useful is because the signal name was not meaningful enough. If we give the
signal a good name, then the comment becomes irrelevant:

column_counter <= column_counter + 1;

#R22# Use comments to document the reason behind a design decision.

Rationale Comments that document a design decision are an example of comments at the level of intent. In some
cases, you may want to tell why you chose a particular solution from all the choices available, or why a special case is
handled differently from the others. Such comments are less likely to get outdated when the code changes. They are
also helpful in maintenance: another developer can compare what the code does with what it was supposed to do,
making it easier to detect errors.

#R23# Use comments to summarize a section or paragraph of code.

Rationale This helps with maintenance and increases developer productivity because it reduces the need for reading
individual lines of code to grasp their overall intent.

#R24# Write a documentary comment when a good name is not enough to convey all the information
a reader of the code will need.

Rationale Sometimes the names we choose for our design units, routines, or data objects cannot convey all the
necessary information. In those cases, it is useful to add a documentary comment close to their declarations. Most
significant entities such as routines, packages, and other design units should be preceded by a documentary comment.

However, do not feel pressed to add such comments when they are not necessary. In many cases, a comment is
unnecessary if the entity is properly named. Documentary comments should be used only when it is impossible or too
cumbersome to embed all the required information in the name alone.

#R25# Minimize the use of comments as separators or markers in the code.

Rationale Although sometimes useful, this kind of comment is usually an attempt to mitigate the real problem: the
code is getting too long or complicated. Moreover, it only works if used sparingly. If the code is full of banners, each of
them becomes less effective. If the markers do not add any useful information, as in the example below, they are best
left out:

--
-- Entity declaration
--
entity synchronous_ram is
 --
 -- Generic declarations
 --
 generic (
 ...

17.3.1 p 433

17.2 p 431

17.3.1 p 432

17.3.3 p 439

17.3.2 p 433

17.3.2 p 435

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 9

Depending on your intention, there may be other ways to achieve the same goal without littering the code. To separate
sections of code, try using one or two blank lines. If you want to be able to locate quickly certain sections of a file when
skimming through the code, modern source code editors and IDEs can provide an instant outline of the source and
highlight relevant places in the code hierarchy. If you want to navigate quickly to frequently visited regions of the code,
many editors allow you to bookmark arbitrary points in the source files.

#R26# Do not use comments to maintain version control information.

Rationale There are much better tools for this job. Revision control tools such as SVN, Git, and Mercurial keep a
complete history of the codebase, allowing you to restore any version and undo any small change if you want. The tools
can tell which files and lines were modified in each revision, with complete records of date, time, and authorship. In
contrast, comments telling about changes in the source code are incomplete and inaccurate, and they grow irrelevant
over time. Who knows what else was changed besides what the author decided to report in a few comments?

#R27# Document the present, not the past.

Rationale Do not keep comments that say how things used to be done in the past. The purpose of comments is to
explain why the code works now. Leave the changes history for your revision control tool.

#R28# Always place the comments immediately before the code they describe.

Rationale Comments should prepare the reader for what is to follow. Because code is usually read from top to bottom,
it makes sense to place the comments immediately before the code they describe. This also helps the reader to decide
whether the next section of code is relevant before reading it.

#R29# Avoid endline comments. Use them only sparingly.

Rationale Endline comments appear at the end of lines of code:

-- This is a full-line comment. The line consists of a comment only and no code.
/* This is also a full-line comment. */
variable minimum_value: integer; -- This is an endline comment.
variable maximum_value: integer; /* This is another endline comment.

This kind of comment has several problems:

• They are harder to write. When they span more than one line, you will probably want to align them vertically
so that the comments do not look ragged. This requires manual alignment using tabs or spaces.

• When they span more than a line, they are wasteful of space. All lines except the first one will be mostly blank.
Because there is less space left on the line, the comment will also use up more vertical space.

• They are harder to maintain. If you modify the code on the left, you will probably have to realign all the endline
comments in adjacent lines.

• They leave less space for the comment text. This means that you will be hard pressed to make the comments
as short as possible, instead of as clear as possible.

One of the few places where endline comments do not have as many drawbacks is to make short annotations in data
declarations. In most other cases, they are best avoided.

#R30# Always indent full-line comments at the same level as the code that follows.

Rationale This makes it clear that the comments refer to the correct level of the code. Moreover, indenting the
statements and failing to do the same with comments would ruin the outline of the code, making the control structures
harder to identify.

17.3.3 p 441

17.2 p 431

17.5.3 p 449

17.4.2 p 443

17.4.2 p 444

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 10

#R31# Choose a low-maintenance commenting style.

Rationale One problem with comments is that they tend to get outdated. We can make the maintenance job easier
by using comment styles that withstand modifications. This is an example that has several problems:

--
-- Entity seven_segment_display_driver --
-- =================================== --
-- --
-- Output some text on the seven-segment displays depending on the FSM state. --
-- --
-- Inputs Function | Outputs Function --
-- ====== ======== | ======= ======== --
-- fsm_state The state of the FSM | displays Array with 5 SSD displays --
--
entity seven_segment_display_driver is
 port (
 fsm_state: in state_type;
 displays: out slv_array(0 to 4)(6 downto 0)
);
end;

First, it takes a lot of time to create a block comment like that. It is nicely formatted, but the same information could
be communicated with a much simpler style. It is also harder to maintain. The column of dashes on the right margin
needs to be realigned whenever the text changes. The comment also repeats names found in the code, making it harder
to keep up-to-date. The underlining beneath the entity name will also need to be updated if the entity is renamed.

Here’s a more sensible version of the same comment without any duplicate information:

-- Output some text on the seven-segment displays depending on the FSM state.
entity seven_segment_display_driver is
 port (
 -- The state of the FSM
 fsm_state: in state_type;
 -- Array with 5 SSD displays
 displays: out slv_array(0 to 4)(6 downto 0)
);
end;

Besides being a breeze to maintain, now the comments are much closer to the code they describe.

#R32# Leave a blank line before a comment header, a block comment, or a summary comment. Do
not leave a blank line after these kinds of comments.

Rationale Comments usually indicate a new step in a train of thought, so it makes sense to separate them from the
preceding code with a blank line. A blank line after the comment is unnecessary, as it would weaken the connection
with the code that follows.

Exception When there is a change in indentation between the regions of code before and after the comment, a blank
line is not strictly necessary because the different indent level already provides enough visual separation.

#R33# Leave one whitespace between a delimiter symbol (--, /*, or */) and the comment text.

Rationale This makes the beginning of the comment text more clearly identifiable, especially in block comments
spanning multiple lines.

#R34# Write comments that are clear, correct, and concise.

Rationale What is the point of adding a comment if it is harder to read than the code? You do not need to write
complete and grammatically correct sentences in every comment, but they need to be accurate and readable. Try not
to be cryptic, and avoid unnecessary abbreviations.

17.5.1 p 446

17.5.1 p 446

17.5.2 p 446

17.5.1 p 445

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 11

#R35# Do not use comments to make up for bad names.

Rationale Some comments only seem useful because the name of an object or routine was poorly chosen:

signal wr: boolean; -- true when a write has been requested

If we move the relevant information into the code, then the comment becomes unnecessary:

variable write_requested: boolean;

In cases like the this, the correct approach is not to write a comment, but to choose a more descriptive name.

#R36# Document any surprises, workarounds, or limitations.

Rationale Sometimes we need to write code that is suboptimal or do things in an unusual way to circumvent a problem
with a compiler or another tool. At other times, the behavior of a piece of code may be surprising at first glance. In
those cases, we can save the reader some time by using a comment. It can also prevent other developers from
“optimizing” or “fixing” the unusual code.

#R37# Document each source code file with a header comment at the top.

Rationale Having a header comment in each file is good advice, provided that you follow two basic principles. First,
minimize the amount of duplicate information between the code and header. Second, put in the header only
information pertaining to the file as a whole. Also, do not repeat information that is better kept in the code (such as a
list of all the dependencies) or in a separate file (such as the full text of a software license). Finally, do not add
information that should be in a version control tool, such as the full list of authors and a history of changes. Because a
file header is in a very prominent place, any noise or disinformation here is highly visible.

#R38# Document each design entity, package, and routine with a header comment, unless its purpose
and usage are self-evident.

Rationale To use an abstraction effectively, a developer must be able to treat it as a black box without peeking at its
implementation. For examples of these headers, see listings 17.9 through 17.13 (pages 453-458).

#R39# Avoid commenting individual statements.

Rationale Comments at this level of granularity should rarely be necessary. This kind of comment is usually redundant
or a shallow explanation of the code. In any case, if you really need to comment an individual statement, remember to
keep the information at the level of intent.

3. Declarations, Expressions, and Statements

Declarations

#R40# Put each declaration on a separate line.

Rationale This makes the code easier to scan because we can follow the left margin of the code and read the
declarations only from top to bottom, without needing to scan the code from left to right as well. It is also easier to
add, delete, comment-out, or move a declaration without affecting the others. Finally, it makes compile errors easier
to locate because each line number corresponds to only one declaration.

#R41# Put each declaration in the tightest scope possible.

Rationale It is good coding practice to limit the visibility of an object to only where it is used. This makes the code
safer because the object cannot be changed except in the small region where it is intended to be used. Also, if the code

17.5.4 p 450

17.5.4 p 453

7.4 p 142

17.5.3 p 447

17.5.3 p 449

17.5.4 p 458

7.4 p 143

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 12

does not work as expected, the region of code that needs to be debugged is smaller. Finally, it puts the declaration
closer to where the object is used and avoids cluttering higher-level declarative regions in the code hierarchy.

#R42# Use a consistent bit order for multibit values.

When choosing the range direction (to vs. downto) for a vector or array, follow these rules:

• If the vector represents a multibit bus, use a descending range (downto);

• If the vector is a collection of items or objects, use an ascending range (to);

• If the array is a multidimensional memory, use an ascending range for its first dimension. (i.e., the address
range). For example: type memory_type is array (0 to 1023) of std_logic_vector(31 downto 0);

Rationale When working with bus values, we are used to seeing the most significant digit on the left, so the
recommended range is (N downto 0). For other kinds of collections, it is more natural to use the ascending order (0 to
N).

#R43# Replace “magic numbers” with named constants.

Rationale “Magic numbers” are literal values that appear in the code without a clear explanation, such as:

status <= status xor "10010001";
if count = 96 then ...

Using magic numbers in the code is terrible programming practice. They make the code more enigmatic and force the
readers to look for comments or figure out the meaning by themselves. They make the code harder to change because
the same value may be duplicated many times in the code. This makes the changes more difficult and less reliable.

Luckily, magic numbers are easy to fix: just declare a named constant and use it in every place you use the value with
the same meaning. Doing this by habit will have a tremendous impact on the quality of your source code.

Expressions

#R44# Break down complicated expressions into simpler chunks.

Rationale If an expression is long, has many factors, or uses many operators, then separate it into simpler expressions
and assign them to intermediate objects with meaningful names. This makes the logic of an expression easier to follow
and simplifies the test when the expression is used in a condition.

#R45# In expressions, use more parentheses than strictly necessary when it improves
readability.

Rationale A reader should not have to remember all the precedence rules to understand an expression. By adding
extra parentheses, we can make an expression more accessible to the average reader.

#R46# Avoid explicit comparisons with true or false.

Rationale If the object in an equality or inequality test is of type boolean, then there is no need to explicitly write the
values true or false in the expression. The resulting code will be cleaner and will read better in English if the values are
omitted:

if pll_locked = true then ... -- Bad, unnecessary comparison with 'true'
if pll_locked then ... -- Good, boolean value used directly

7.4 p 144

18.6 p 484 7.4 p 144

8.4 p 181

14.1.2 p 347

13.5 p 343

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 13

Processes

#R47# Each process should have a clear goal in the design.

Rationale Do not group unrelated functionality into a process—it is better to have several processes that are easy to
understand than a single process that no one can make sense of. Also, think about what kind of logic the process is
supposed to model—combinational or sequential. The kind of logic defines several characteristics of a process, such as
what should go in the sensitivity list and whether the process is allowed to keep an internal state.

#R48# Each process should have a manageable size.

Rationale Short processes are easier to understand, debug, and maintain. As a rule of thumb, if your processes are
too long to fit in one screen, then they are probably on the long side. Look for ways to make them shorter, such as
moving parts of the code to separate routines.

#R49# In a process, use variables whenever possible to keep local state and to calculate values that
are only relevant inside the process.

Rationale If a task can be done completely inside the process without accessing other elements from the architecture,
then do it locally.

#R50# If a declaration is used only in the process, then make it local to the process.

Rationale The process declarative part may contain several kinds of declarations, such as constants, variables, aliases,
types, subtypes, and subprograms. If one of these items is used only within a process, then there is no need to declare
it in the architecture, where it would be visible to all other concurrent statements. This will keep the architecture
uncluttered and each declaration closer to where it is used, improving readability.

Conditionals

#R51# Avoid deeply nested structures.

Rationale Understanding deeply nested code is highly taxing on our brains. The code is also harder to read and write
because of the long line lengths and excessive indentation. In general, deep nesting is a sign of poor coding practice.
To reduce nesting, reimplement the code using simpler control logic or extract part of the code to separate routines.

#R52# Replace complicated tests with one or more boolean variables.

Rationale A long condition expression is usually composed of two or more subconditions. A good way to make it more
readable is to find pieces with a particular meaning and move them to explaining variables.

#R53# Replace complicated tests with a boolean function.

Rationale If the condition in an if statement performs a meaningful test on one or more data objects, then we can
extract it to a dedicated function. In this way, the test becomes simpler and much more readable.

#R54# Convert nested ifs to a chain of if-elsif statements.

Rationale To reduce nesting, consider converting a nested sequence of if statements into a flat chain of if-elsif
statements. Strictly speaking, the if-elsif chain is still a nested control structure. However, it reads as a series of
conditions at the same depth because we can read the conditions sequentially until one of them is met.

9.2.4 p 201

9.2.4 p 201

9.2.4 p 202

9.2.4 p 202

10.1.1 p 224

10.2.1 p 226

10.2.1 p 227

10.2.1 p 229

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 14

#R55# Be careful with incomplete conditionals.

Rationale If an object is not assigned a value during a run of the process, then it keeps its previous state. In clocked
processes, this implies edge-sensitive storage or registers. In nonclocked processes, this implies latches, which are
generally undesirable. For details, see “Unintentional Storage Elements (Latches or Registers)” in section 19.4.2.

#R56# Try to cover all the conditions in a case statement without resorting to a default clause.

Rationale Whenever possible, try to cover all the choices explicitly without a when others clause. The fact that all
values were covered means that the designer had to ponder about every condition. Moreover, if the case expression
is of an enumerated type, the code will not compile if you add a value to the enumeration and forget to update the
case statement. Had you used a when others clause, then the new choice would be silently absorbed—you might have
introduced a bug without any warning from the compiler.

#R57# Do not use the default clause to handle a normal choice value.

Rationale The default clause is the right place to detect errors and handle unexpected conditions, or to specify a
generic course of action. However, it is not a good idea to use a when others clause for actions that could be associated
with explicit choice values. This weakens the self-documenting nature of the case statement, and we lose the compiler
checks for uncovered choices. In the cases where you are forced by the compiler to include a when others clause,
consider using a null statement inside it.

Loops

#R58# Always label nested loops if auxiliary loop control statements are used.

Rationale In nested loops, the next and exit statements refer to the immediately enclosing loop by default. If this is
not the intended behavior, then we can label the loops and specify their identifiers after the next or exit keyword.
However, because nested loops and auxiliary control statements tend to be confusing, it is a good practice to always
label the loops and refer to each of them explicitly in the next and exit statements.

#R59# When choosing the kind of a loop, use a for loop whenever possible.

Rationale A for loop controls its iteration automatically, minimizing the chance of coding mistakes. Also, it puts all the
control logic in one place—at the top. This makes the loop easier to read because we do not have to look inside its
body to understand the iteration logic. Use it whenever the number of iterations is known in advance.

#R60# Avoid literal numbers in the loop limits. Use object attributes or a type or subtype definition
whenever possible.

Rationale Loops that use literal values to specify ranges are hard to maintain. For instance, if we change the size of an
array, then we must remember to update all loops that iterate over that array. Using a named constant solves this part
of the problem, but if the number of iterations is determined by the size of an object, then it is best to use attributes
such as 'range and 'length to define the loop limits.

#R61# Choose meaningful parameter names in long or nested loops.

Rationale In short loops, it is customary (and even recommended) to use short parameter names, such as i, j, and k.
However, if the loop is more than several lines long, or if it has more than a couple of levels of nesting, then try to give
the loop parameters meaningful names.

10.2.1 p 230

10.4.4 p 244

10.3.1 p 233

10.3.1 p 234

10.4.2 p 238

10.4.4 p 242

10.4.4 p 245

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 15

4. Design Units

#R62# Divide a system into as many entities and packages as needed.

Rationale A system should have as many modules as necessary, and each module should be small enough for you to
reason about its entire operation at once. A good rule of thumb is to create a module for each recognizable piece of
functionality that can be developed and tested separately.

Above all, do not jump through hoops to keep the entire design within a single file. Small, well-factored files are easier
to understand, test, and change. They also have fewer places for bugs to hide.

#R63# Give each entity or package a single, well-defined purpose.

Rationale The most important consideration when creating a module is to give it a single, well-defined responsibility.
For an entity, all inputs, outputs, and behavior should support a central function. For a package, all declarations and
operations should support a central purpose. If you can identify smaller, independent purposes, then move them to a
separate module.

#R64# Avoid grouping unrelated constants or routines in a package

Rationale Packages with incohesive functionality are difficult to reuse; you either end up cutting and pasting chunks
of code or dragging a lot of undesired baggage. If a package starts to gather unrelated pieces of information, break it
down into smaller chunks with well-defined purposes.

#R65# Prefer using generics rather than constants in a package to parameterize a design entity.

Rationale Generics are the standard language feature to allow for variations in the structure of a model. With generics,
we can configure two or more instances of the same entity differently. Moreover, generics are a visible part of the
entity interface, making it clear that the unit is configurable. Finally, with generics, the entity can be reused in different
designs without needing to copy the constant declarations.

#R66# Do not use library work, except when meaning “the same library where the current unit is being
analyzed.”

Rationale The logical library name work is not permanently associated with any library in the host system. Rather, it
acts as a pointer or an alias. During the analysis of each design unit, it gets temporarily associated with the library where
the results of the current analysis will be placed. This target library is called the working library.

Now suppose you inadvertently create a library and give it the name work. How would entities in other libraries refer
to it? They can’t because when they use the name work in the code, it will point to the current working library, not to
the one you have created and named work.

To prevent any confusion, do not give the logical name work to any library you create. For more on this, See the
discussion on design libraries and libraries units in section 6.2, pages 121-123.

#R67# Always use named association in the port map of a component instantiation.

Rationale Named association is naturally self-documenting, making the code less prone to mistakes. It is also more
robust; the code that instantiates the component will not break if we change the order of the ports in the component
declaration.

6.3 p 124

14.1.2 p 349

6.3 p 127

6.2 p 122

6.3 p 125

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 16

5. Routines

#R68# Remove code duplication by moving similar sections of code into a routine.

Rationale A project that has similar code in two or more places is harder to maintain. For each modification, we must
remember to update all the similar places in the code. If we forget to update one of them, we may introduce bugs that
are hard to detect. Duplication also makes the code longer and harder to understand; besides having to read similar
chunks of code multiple times, we must pay close attention to detect any small differences.

#R69# Every routine should have a single, well-defined purpose.

Rationale Routines that do only one thing are small, easy to understand, trivial to test, and less likely to change.

#R70# Write routines that take few parameters.

Rationale If a routine takes more than a few parameters, it is more likely to have a complicated logic and to be doing
more than one thing. It is also harder to remember or figure out the role of each argument in the routine call.

#R71# Consider using named association to clarify subprogram calls.

Rationale When a routine has more than a few parameters, or when it has an unclear interface that we are not allowed
to change (e.g., when it is part of an external library), it may be a good idea to use named association instead of
positional association to make the client code more readable.

#R72# Put parameters in input-modify-output order.

Rationale To provide consistency to the readers and programmers who use your routines, establish a convention of
ordering the parameters by their mode. The order input-modify-output is easy to remember because it follows the
order of operations inside a routine: reading data, changing it, and outputting the results.

#R73# Used unconstrained arrays as formal parameters whenever possible.

Rationale If a formal parameter is an unconstrained array (an array without a fixed range), then the subprogram will
take the size and direction from the actual parameter. This means that you can write subprograms that are entirely
generic with respect to the shape of the input arrays – for instance, using the array attributes 'range and 'length.

6. Names

Understanding a large piece of code is never easy, but good naming can make a big difference. If we choose names that
are clear, accurate, and descriptive, then the pieces will fit together logically. If we choose names that are too cryptic,
meaningless, or ambiguous, we will create systems that are nearly impossible to reason about.

Length

#R74# Make a name as long as necessary.

Rationale It is a poor tradeoff to make a name shorter by removing meaningful information from it or by making it
harder to read. In most cases, you should not worry about a name being too long. A long name that communicates all
the important information about an entity is better than a short but cryptic one. A long name that fully describes an
object is better than a short name that needs a comment to be understood.

15.2 p 373

15.5.4 p 391

15.4 p 380

15.5.4 p 390

15.5.4 p 394

15.5.4 p 397

16.1 p 402

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 17

#R75# Favor clarity over brevity.

Rationale A name is clearer if it uses natural language words and describes all the important information about an
object or a routine. A name is less clear if it needs to be deciphered, is unpronounceable, or uses nonstandard
abbreviations. When you must choose between a clear name and one that is short, always choose clear.

#R76# Use abbreviations judiciously.

Rationale Clear, unabbreviated, and pronounceable names should always be your first choice. Abbreviations make a
name less pronounceable, more ambiguous, and harder to spell correctly. They are one more thing to be deciphered
and remembered. Avoid abbreviating a name unless this would bring a clear and significant gain.

For the cases where an abbreviation is justifiable, here are some guidelines:

• Prefer standard abbreviations, such as the ones that can be found in a dictionary.

• Use standard or well-established abbreviations and acronyms from the hardware field, such as clk, rst, and req.
However, make sure they cannot be mistaken for anything else. What does a name with a suffix _int mean? Is
this an internal signal, an integer value, or an interrupt? The few characters saved are not worth the loss in
clarity and the confusion inflicted on our readers.

• Avoid abbreviations that save only one or two letters of typing. Abbreviating key as ky and result as rslt does
not justify the loss in readability.

• Use abbreviations only for names that appear frequently in the code. If a name appears occasionally, then the
savings in space do not justify the loss in readability.

• Use the abbreviations consistently. Do not abbreviate the same word differently in several parts of the code.
Avoid abbreviating a word in one name and then using it unabbreviated somewhere else.

General Naming Guidelines

#R77# Choose meaningful names.

Rationale The name of an object or routine should contain all the important information about it. Names such as a, x,
l, and iv are meaningless and force us to look somewhere else in the code. In contrast, names such as tcp_header_length
and interrupt_vector_address convey all the information to communicate what the object represents. Be wary of words
that only seem to have some meaning, such as data, value, or info; in almost every case, it is possible to find a more
descriptive word.

#R78# Take your time creating good names; they are too important to be chosen casually.

Rationale Good names make a huge difference in readability, which is one of the best proxies for the quality of the
source code. Moreover, code is read much more often than it is written. Choosing good names takes some time, but it
pays off many times over in the long run.

#R79# Use clear, natural language words.

Rationale Code that reads well is easier to understand. Using natural language words helps the code read more fluently
because there is no need to translate each name into something else. Read the following statements, and try to feel
how the names make the code looks obvious.

next_count <= (current_count + 1) when count_enabled else current_count;

...

if current_position = LAST_POSITION then
 next_state <= done;
end if;

16.2 p 405

16.2 p 405

16.2 p 406

16.1 p 402

16.1 p 403

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 18

#R80# Choose names that do not require a comment.

Rationale In most cases, the name of an object or a routine should be enough for someone else to use it with
confidence. If after writing a declaration you feel it needs an explanatory comment, try choosing a more communicative
name. Do not impose on the reader the burden of memorizing the actual meaning of a name.

Naming Data Objects

#R81# Choose names that fully and accurately describe the entity that the object represents.

Rationale Every data object represents a piece of information in the code – the position of a switch, the state of an
FSM, etc. The most important rule when naming a data object is to fully and accurately describe the entity it represents.
The name should be unambiguous and immune to misinterpretation.

#R82# Name things what you call them.

Rationale When choosing a name, a good way to start is to write down the same words that you would use to describe
the object to someone – for example, status_leds, distance_estimate_in_meters, or fifo_element_count. These
words will be natural, unabbreviated, and chosen to communicate meaning, which are all good attributes for a name.

#R83# When naming a data object (variable, signal, constant, generic), make sure the name tells what
the object holds.

Rationale Take the name INPUT_BITS, for instance. For the author, it may look perfectly clear that it contains the
number of bits in an input port. However, this is not what the name says. According to the name, this object holds
“bits.” To prevent any confusion, always be explicit: if the object counts a number of elements, then make sure that
NUMBER, NUM, or COUNT appears in the name. If it specifies a dimension, then make sure the name includes SIZE,
LENGTH, or LEN.

#R84# When naming data objects, use a noun or noun phrase.

Rationale Data objects represent entities manipulated in the code. Just like objects in the real world, they should be
named with a noun or noun phrase. For scalar objects (objects that can hold only one instance of a value), use singular
names. For array objects, use a plural name or a name that implies a collection. A plural name is usually enough to
indicate that an object holds a collection of elements; most of the time, suffixes such as _vector or _array are redundant
and unnecessary.

#R85# Do not repeat an object’s type in its name.

Rationale When you declare an object, you must provide an object class, a type, and a name. Repeating the class or
type in the object’s name is redundant. It makes the name longer without adding meaningful information. It also makes
the name less pronounceable. And it is not really necessary: VHDL is a strongly type language, so the compiler will not
let us mix up objects of different types inadvertently.

Exception When two objects represent the same entity or value and differ only in type, it may be helpful to use a
suffix or prefix to differentiate between them. However, this should be done only when necessary and never by default.

#R86# Avoid nondescriptive names such as temp, aux, value, or flag.

Rationale Indistinct names such as temp, aux, value, or num do not reveal anything about the entity that the object
represents; it is always possible to find a more descriptive name. Other names that appear to have some meaning on
the surface but need to be viewed with suspicion include input, output, data, and flag.

16.2 p 408

16.3 p 410

16.3 p 410

16.3 p 410

16.3 p 411

16.3 p 409

16.5 p 425

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 19

#R87# Use prefixes and suffixes judiciously.

Rationale Like abbreviations, prefixes and suffixes can be detrimental to a name. They make a name less
pronounceable; they need to be deciphered; they are one more convention that needs to be learned and documented;
finally, they clutter the code, reducing the visibility of the most important part of a name—the words that convey its
meaning. And, in many cases, they are just redundant information.

Some conventions prescribe a number of prefixes and suffixes on the grounds of making a name more readable, but in
truth they tend to produce abominations such as s_i_cnt_o_r_l. If we spend more characters on redundant prefixes
and suffixes than on the meaningful part of a name, then there is something wrong with our naming conventions.

How can we tell the good prefixes and suffixes from the bad ones? Good suffixes have semantic meaning and provide
information that could not be inferred from the object type or class alone. Bad suffixes are redundant and just restate
information that is readily visible in the object declaration. This includes the object type, the object class, or a port
mode. Examples of good, semantic suffixes that do not add redundant information are:

• _n, to indicate that a signal is active low;

• _z, to indicate that a signal is part of a tri-state bus;

• _reg, to indicate that a signal is the output of a register;

• _async, to indicate that a signal has not been synchronized.

#R88# Name a boolean object as an assertion or the condition of an if statement

Rationale An assertion is a sentence claiming that something is true, which is a good match for the nature of a boolean
object. For example, pixel_is_transparent, fifo_is_full, or output_is_ready. Another alternative is to name boolean
objects thinking about how they read as the condition of an if statement. According to this approach, end_of_file,
fifo_full, or input_available are good naming examples.

#R89# Prefer positive names for boolean objects.

Rationale Negative names make the code harder to read, especially when they need to be negated in a condition:

if not fifo_not_full then ...

Naming Routines

#R90# Name a routine from the viewpoint of its user.

Rationale A developer must be allowed to call a routine trusting it to perform a task and ignoring any implementation
details. Therefore, it should not be named after its implementation, but rather describe its higher-level goal. When
naming a routine, always think about how it will read in the calling code.

#R91# If a routine’s main purpose is to return a boolean, then name it after an assertion or a question.

Rationale Functions that encapsulate a test and return true or false are called predicate functions. A common
technique is to name this kind of function after an assertion—a statement claiming that something is true:

function pixel_is_transparent(pixel: pixel_type) return boolean;
function possible_to_increment(digit: bcd_digit_type) return boolean;

A possible variation is to name the function after a question rather than an assertion:

if is_pixel_transparent(x, y) then ...
if can_be_incremented(hours_digit) then ...

16.3 p 413

16.4 p 416

16.3 p 414

16.3 p 415

16.4 p 415

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 20

#R92# If a routine’s main purpose is to return an object, then name it after the return value.

Rationale The distinctive feature of a function is that it returns a value that can be used in expressions. Naming a
function after its return value feels natural to the client programmer and reads well in the middle of expressions.

function cosine(operand: real) return real;
function bounding_box(rect_1, rect_2: rectangle_type) return rectangle_type;
function transpose(matrix: matrix_type) return matrix_type;

#R93# If a routine’s main purpose is to perform an action, then name it after everything it does.

Rationale Some routines are called for their effects on the system state: they may change objects passed as
parameters or the environment in which they are executed. For such routines, choose a name that describes at a higher
level of abstraction everything the routine does.

Start with a strong verb (e.g., initialize, disable, or add). Avoid meaningless or weak verbs such as do, perform, or
process. Use the imperative form of the verb, and write as if you were giving a command to the routine. When the verb
does not provide enough detail about what the routine does, add a noun to make the meaning perfectly clear.

Naming other VHDL constructs

#R94# Name design entities using nouns or noun phrases.

Rationale Design entities are the primary hardware abstraction in VHDL. They provide the building blocks of a design,
much like physical components used to build a hardware system. Therefore, it makes sense to name entities like we
name things in the real world: using nouns or noun phrases. As always, avoid using names that are cryptic, are
meaningless, or do not provide enough detail. Names such as e, ent, circuit, design, or protocol are totally
meaningless.

#R95# Name architectures using an adjective or adjectival phrase.

Rationale An architecture characterizes and describes the implementation of an entity; therefore, it makes sense to
name it with an adjective or adjectival phrase. A common practice is to use the level of abstraction at which the
architecture is implemented (e.g., behavioral, rtl, dataflow, structural, or gate_level). Another approach is to use a
description or distinguishing feature of the implementation (e.g., two_stage_pipeline, recursive, combinational, or
area_optimized).

#R96# Name a design file after the design unit it contains.

Rationale To keep a design organized, each file must contain a single conceptual unit. Using the same (or a derived)
name for both makes it easier to locate the file in which a given design unit is located. For an example of a file naming
convention complying with this rule, see Table 16.3 on page 421.

#R97# Consider naming processes with a label.

Rationale A process label documents the process intent and can provide useful debug information. However,
processes exist at a lower level and in higher granularity than entities and architectures, so it may be hard to give them
a good, descriptive name, especially in the form of label. Therefore, only add a label if you have something meaningful
to say. Undescriptive or meaningless names are worse than no name at all.

When naming a process, use one of the following approaches:

• Name it as you would name a procedure, using the imperative form of a verb or verb phrase (e.g., increment_pc,
generate_outpus, count_events).

• Name it as you would name an entity, using a noun or noun phrase (e.g., next_state_logic, event_counter,
input_sorter).

16.4 p 418

16.4 p 416

16.4 p 419

16.4 p 419

16.4 p 420

16.4 p 422

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 21

Whatever the case, avoid meaningless suffixes such as _proc, _process, or _label. They do not add any meaningful
information and only clutter the code.

#R98# When naming a type, use a name that describes the category of objects it represents.

Rationale A type is a general category from which we create object instances. Therefore, it makes sense to use a name
that describes the defining trait of the type. Following this advice, a good name for a type that represents the
instructions in a CPU could be instruction, cpu_instruction, or cpu_instruction_type. Choose a name in the singular
form; this is in line with the names of predefined types such as integer, real, or bit.

#R99# Use a standard suffix to identify user-defined types.

Rationale In the previous example, although cpu_instruction seems like a good name for a type, it would have an
undesirable consequence: the name cpu_instruction would not be available for naming signals or variables because it
would be taken by the type. To prevent this problem, use a standard prefix or suffix when naming user-defined types.

A good approach is to add the suffix _type at the end of the name. Other common approaches include adding the suffix
t or the prefix t to the base name. In any case, do not abbreviate the word type by removing only the last letter, as
in the suffix _typ. You get all the disadvantages of an abbreviation for the meager space savings of a single letter.

#R100# When naming a type, use names that are problem-oriented rather than language- or
implementation-oriented.

Rationale Instead of trying to describe a type based on its underlying representation (e.g., number of bits), choose a
name that relates to the abstract kind of entity it represents. For example, for a CPU register, create a
cpu_register_type rather than an unsigned_32bit_type. Also, avoid encoding the type limits or size into the name.
Instead of integer_0_to_15 or word_32_bit, find out the meaning of those types in the application. Repeating the type
or size information is redundant and creates an unnecessary dependency between the type’s structure and its name.

#R101# Name enumeration types in the singular form.

Rationale An enumerated type is not different from other scalar types such as integer or real. Therefore, like any
other type, choose a name in the singular form. Note that the VHDL standard libraries use the singular form in
enumerations types, such as boolean or character. Names in the singular form also read better when declaring objects
of the type; the current state of an FSM is a “state”, and not a “states”.

#R102# Name enumeration values in lowercase (snake_case).

Rationale Enumeration values are values, not named constants. Naming them in lowercase highlights this distinction.

#R103# Use meaningful names for the sates of an FSM.

Rationale This saves our readers the trouble of memorizing the connection between arbitrarily chosen names and
what they really represent. Avoid meaningless names such as S1, S2, and S3. For example, in a garage door, we could
use opened, closing, closed, and opening. In a CPU, we could use fetch, decode, and execute, and so on.

16.5 p 422

16.5 p 423

16.5 p 424

16.5 p 422

16.5 p 423

16.5 p 424

Effective Coding with VHDL – Ricardo Jasinski, MIT Press, 2016 - ISBN 9780262034227 22

#R104# When applicable, use suffixes with semantic meaning for naming signals. However, avoid
suffixes that only repeat information provided with the signal declaration.

Rationale In some cases, it may be useful to use a signal’s name to provide additional information about its role in a
design. This can be done by attaching a semantic suffix to the signal name. Some examples include:

• _n to indicate that the signal is active low;

• _z to indicate that the signal is part of a tri-state bus;

• _reg to indicate that the signal is the output of a register;

• _async to indicate that the signal has not been synchronized.

These kinds of suffixes are important because they register our intent and add information that is not present
elsewhere in the code. In contrast, prefixes and suffixes that merely repeat information provided at the signal
declaration (such as its type) are redundant and should be avoided.

#R105# Document all the suffixes and abbreviations used in the design in a project-wide file.

Rationale This documents our intent and prevents developers from using different suffixes or abbreviations with the
same meaning. Place these files under version control together with the source code, and always keep them up to date.

#R106# When naming ports, use meaningful and communicative names that provide most of the
information needed to instantiate and use it correctly.

Rationale The more effort we put into choosing descriptive port names, the easier the entity will be to use. It also
minimizes the amount of guesswork required from the reader. If we use meaningless names such as a, b, c, x, and y,
we leave our readers without a clue and they must figure out the code on their own.

#R107# For simple loops spanning few lines of code, it is all right to use the customary single-letter
names i, j, and k for the loop parameter.

Rationale Although these names are not communicative, they are in line with the practice of choosing the length of a
name in proportion to its scope. If the loops are short, then the loop header is always within view, and it is unlikely
that the loop index could be mistaken for something else. Also, loop parameters are commonly used as array indices
and in other expressions, often several times in a single line of code. This increases the need for shorter names. Finally,
these identifiers have been used for loop indices since Fortran, so they are an established convention. Most developers
will readily identify the names i, j, and k as loop indices. However, they should be avoided if the loop is longer than a
few lines of code, if it is nested, or if its logic is complex. In such cases, consider using names that refer to what the loop
is iterating over, such as horizontal_offset or row_number.

16.5 p 426

16.5 p 427

16.5 p 428

16.1 p 403

