
 This book is intended to provide the reader with a rigorous introduction to the theory 
and application of estimation and association techniques. Skills taught in this book 
will prepare the student for solving practical problems in this technical area. 

 Estimation and association involves the extraction of information from noisy mea-
surements. Example applications include signal processing, tracking, navigation, and 
so on [1, 2, 3]. The extraction of parameter values from signals in order to estimate 
such attributes as time-of-arrival and sensor pointing angle is called parameter estima-
tion. A sensor signal may have come from a moving object. Determining the kinemat-
ics of a moving object is called state estimation. Associating measurements with state 
estimates in a multiple object environment is a joint estimation and association 
problem that is known as tracking [2–5]. Example applications include sensor surveil-
lance systems for air traffic control, guiding space vehicles toward a planet, extracting 
information regarding a moving object with multiple-degree-of-freedom motions, 
and so on. 

 The authors of this book, together with their colleagues, have been applying the 
theory and techniques of estimation and association to real-world problems for the 
past 40 years. They have taught classes to Lincoln Laboratory staff members who are 
involved in applying these skills as well as solving problems of their own. The content 
of this book represents their collective experience in applying estimation and associa-
tion techniques. The technical level of this book is equivalent to a first year graduate 
course in a control or system engineering curriculum. The students are required to be 
familiar with the state-variable representation of systems, and basic probability theory 
including random variables and stochastic processes. This book can also be used for 
self-study by practitioners in the area of state estimation and association. 

 Theory and techniques developed in this book are for discrete time systems. 
Although all physical systems are continuous in time, the measurements are taken in 
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discrete time and the computational system that exploits the measurements operates 
in discrete time. Furthermore, unique discrete time equivalence to continuous time 
systems can be easily derived and implemented. The use of discrete time models 
enables us to solve the problem without resorting to more abstract mathematics such 
as measure theory and Ito calculus [6]. Homework problems are included at the end 
of each chapter. The purpose is two-fold: (a) to develop students confidence in their 
derivation skills so that they are able to apply them to new problems, and (b) to build 
computer models so that they will have a useful set of tools for problem solving. 

 The theory and application of estimation has been a rich field of research for 
decades. The landmark papers by Kalman [4], and Kalman and Bucy [5] gave the 
optimal solution for state estimation of linear systems having Gaussian system and 
measurement noise processes. The Kalman filter (KF) algorithm using state space 
modeling makes it suitable for implementation with digital computers. Kalman’s 
paper also laid the foundation for the concept of observability of a linear system, and 
its relationship with the Fisher information matrix and the Cramer–Rao bound (CRB) 
[1] for all unbiased state estimators. For this reason, it has gained enormous interest 
from practicing engineers. However, most of the real-world application problems are 
nonlinear. After Kalman’s publication, considerable effort was devoted to finding the 
optimal filter for nonlinear systems (the counterpart of the KF for linear systems) [6]. 
All these studies came to the same conclusion: the solution of the optimal filter 
requires an infinite dimensional representation that cannot be practically constructed. 
Consequently, follow-on efforts focused on searching for suboptimal but practical 
solutions. 

 The approach used in this book has two features: (a) it formulates the estimation 
problem as an optimization problem using measurement data and a priori knowledge 
of the system, and (b) it develops CRB solutions for each estimation problem 
addressed. The first feature stresses that the solution to the estimation problem pro-
vides a best fit to the measurement data, the system model, and the a priori knowl-
edge. It will be shown that solution algorithms for most of the estimation problems 
can be obtained this way. The CRB has been well known in signal processing for esti-
mating parameters embedded in the signal [1]. It has been applied to a wide range of 
state estimation problems at Lincoln Laboratory [7]. In keeping with the second 
feature, the CRB models for parameter and state estimation are derived for the exam-
ples considered or are included as part of the homework problem assignments. 

 In many engineering applications, noisy measurements are obtained on some 
unknown variables. Variables of interest can collectively be represented as a vector. 
Measurements can be arranged as a measurement vector or a set of measurement 
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vectors. In the case where the vector of interest is constant or random, it is referred to 
as a parameter vector. In the case where the vector of interest is time-varying and 
follows a set of differential equations for a continuous-time system, or difference equa-
tions for a discrete-time system, it is termed a state vector. A parameter vector is a 
special case of the state vector. The concept of a state vector is identical to the state 
vector used in the state space representation of control systems [8]. A state vector can 
be deterministic or random, depending on whether the system is deterministic or 
driven by a random process. 

 The estimation problem is to find a solution to the unknown vector using measure-
ments and knowledge about the vector of interest. The measurements used in an 
estimator are assumed to have come from a single object or dynamic system. This 
assumption may not be true when multiple objects are closely spaced in sensor mea-
surements. The problem of state association is to determine whether a measurement 
or a set of measurements comes from the same object. 

 This book has 10 chapters. Chapters 1 to 6 focus on solving the problem of estima-
tion with a single sensor observing a single object. Chapter 7 expands consideration 
from a single sensor observer to multiple sensors. Chapters 8 through 10 address the 
problem of association by expanding the problem to multiple objects and multiple 
sensors. Concluding remarks and three appendices are offered at the end. They are 
introduced individually below. 

 Chapter 1: Parameter Estimation 

 In this text, a parameter vector can be a constant vector or a random vector with 
known distribution, but is never a random process. The foundation of estimation can 
be understood most easily by solving the problem of parameter estimation. The esti-
mate of an unknown vector is obtained by selecting the vector that optimizes a perfor-
mance criterion or a cost function given the noisy measurements. Six performance 
criteria are introduced in this chapter, namely, least squares, weighted least squares, 
maximum likelihood, maximum a posteriori probability, conditional mean, and linear 
least squares expressed as functions of the measurements [1, 4]. Explicit estimator 
solutions for linear measurements with Gaussian measurement noise are developed 
and the equivalence of all six estimators is discussed. It is shown that the a posteriori 
density function of the parameter vector conditioned on measurements contains all 
the information for estimating this parameter vector, regardless of whether the mea-
surement relationship is linear or nonlinear, and the conditional mean is the mini-
mum norm solution in the parameter space. For the linear measurement relationship, 
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the closed form solution can be found. For nonlinear measurements, a numerical solu-
tion to the weighted least squares estimator is derived. The Cramer–Rao bounds for 
all cases are derived. The relationship between weighted least squares estimator, mini-
mum variance estimator, and the conditional mean estimator is shown in the 
appendix. 

 Chapter 2: State Estimation for Linear Systems 

 A state vector is the solution of a first order vector differential equation for a continu-
ous system, or difference equation for a discrete system [8]. When the initial condition 
is a random variable and/or when the system is driven by a random system noise pro-
cess, the state vector represents a random process. For linear systems with Gaussian 
system and measurement noise, the a posteriori density of the state conditioned on 
measurements remains Gaussian, and the state estimate can therefore be completely 
characterized by the conditional mean and covariance. This result is known as the Kal-
man filter [4]. The techniques used in Chapter 1 to derive the parameter estimator are 
extended in this chapter to derive the KF solution for linear systems. These include the 
conditional mean, weighted least squares, and Bayesian recursive evolution of the a 
posteriori density function. The concept of smoothing is introduced, and the chapter 
ends with derivations for the CRB for all cases of interest. 

 Chapter 3: State Estimation for Nonlinear Systems 

 Many physical systems and measurement devices are nonlinear. As mentioned before, 
the conditional mean is the minimum norm estimate, and the a posteriori density 
function of a state conditioned on measurements contains all the information neces-
sary for estimation. For linear systems with Gaussian noise, the a posteriori density 
remains Gaussian. This property is, however, no longer true for nonlinear systems 
even when the input and measurement noise processes are Gaussian. The recursive 
Bayesian relationship governing the time evolution of the a posteriori density for arbi-
trary nonlinear systems was published within a few years of Kalman filter [9, 10], but 
its exact solution for estimation remains open. For this reason, only approximated 
solutions for the nonlinear estimation problems have found applications. The approx-
imated solutions include the use of the first order Taylor series expansion (the extended 
Kalman filter) and the addition of the second order term in the Taylor series expansion 
(the second order filter) [11]. Both filters are aimed at providing approximated condi-
tional means and covariance solutions for the state estimator. Additional nonlinear 
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estimation techniques presented in this chapter include the extension of the numerical 
solution for estimating a random parameter vector with nonlinear measurements of 
Chapter 1 to the problems of Chapter 3 to yield a single-stage iterative solution for 
computing state updates in extended Kalman filter (EKF). A special case for nonlinear 
estimation occurs when the system is deterministic. An iterative weighted least squares 
estimator for a deterministic nonlinear system using all the measurements is derived 
[12]. The numerical examples in [12] shows that the covariance of this algorithm 
achieves the CRB. 

 The EKF has gained considerable attention from practitioners due to its simplicity 
and direct relationship with KF: the KF algorithm becomes an EKF algorithm when 
the system and measurement matrices of a linear system are replaced by Jacobian 
matrices of the nonlinear system. The EKF does not solve all nonlinear estimation 
problems, nor does it provide the best answer even when it does work. Its similarity in 
functional form with the KF makes much of the KF analysis extendable to the EKF. 
For this reason, linear systems are used for discussion throughout this book. Excep-
tions will be noted. To conclude this chapter the CRB for nonlinear state estimation 
is developed. 

 Chapter 4: Practical Considerations in Kalman Filter Design 

 The previous three chapters provide the basic tools for estimation: problem definition, 
solution derivation, and solution algorithms. In this chapter, practical issues in filter 
design are discussed. Filter construction is based upon a mathematical representation 
of the physical process of interest. For most engineering problems, mathematical 
models do not exactly represent the actual physical process resulting in a less than 
optimal filter performance. Model differences can occur in the system equation, mea-
surement equation, system input, measurement noise, and so on [13]. This chapter 
starts with a discussion about tools for estimator performance monitoring that includes 
the CRB, the measure of statistical behavior of the filter residual process, and the 
measure of filter consistency in terms of actual and computed covariance. The rest of 
the chapter provides detailed discussions for addressing the system model mismatch 
problem, measurement error uncertainty, and systems with uncertain inputs. For each 
subject, filter compensation methods are suggested. The issue of systems with uncer-
tain inputs is related to tracking objects having unknown or unexpected maneuvers. A 
maximum likelihood estimator with its associated generalized likelihood ratio (GLR) 
detection algorithm is developed for systems with sudden input changes [14]. A dis-
cussion on the advantages and limitations of this approach is provided. An extension 
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to this approach is considered by assuming that the state may be generated by one of 
several models (e.g., maneuvering and nonmaneuvering), and that leads into the next 
chapter, multiple model estimation algorithms. 

 Chapter 5: Multiple Model Estimation Algorithms 

 When the underlying true system could be one of several different models, the estima-
tion solution is a bank of KFs with each matched to a specific model within the set of 
models. 1  The probability (termed the hypothesis probability) that a given filter repre-
sents the true system can be computed for each filter using the filter residual. The filter 
with the highest hypothesis probability is deemed to represent the truth (e.g., a target 
is maneuvering or not maneuvering). It can be shown that the conditional mean esti-
mate is the weighted sum of the output of all estimators (for both state and covari-
ance) with the hypothesis probabilities as weighting factors. This solution is optimal 
for linear systems when the truth stays the same as one of the models used in the filter 
bank [15], referred to as the constant model case. In practical problems, the true sys-
tem may be changing among models. For example, a target may switch back and forth 
between maneuvering and nonmaneuvering at multiple instances of time. This is 
referred to as a switching model case. The solution to the switching model case is 
unbounded, that is, the true system could switch to a different model in multiple 
instances of time making the number of possibilities grow exponentially [16]. Approx-
imate solutions are derived for the case when the model switching history has finite 
memory, for example, for a Markov process. Solutions for this problem include gen-
eralized pseudo-Bayesian (GBP) algorithm and interacting multiple model (IMM) 
algorithm [16, 17]. The IMM is an approximation of GBP but is simpler in imple-
mentation. In several applications, the trade-off of these two algorithms is in favor of 
IMM because the performance gain of GBP over IMM is small. The derivations of all 
these cases are included in this chapter along with a set of numerical examples. 

 Chapter 6: Sampling Techniques for State Estimation 

 In Chapter 3, several solutions to the nonlinear estimation problem were presented in 
the form of an approximated conditional mean and covariance computation. As stated 
before, the a posteriori density function of state conditioned on measurements con-
tains all the information for estimation. In this chapter, several numerical methods for 

1 The same concept as the bank of Doppler fi lters for radar signal processing.
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computing the a posteriori density function are presented [18–20]. Two deterministic 
sampling techniques are introduced. The grid-based point-mass filter was introduced 
in 1969 [18], which is intuitive but computationally expensive. The second method 
used the unscented transformation for Gaussian noise known as the unscented Kal-
man filter (UKF) [19]. UKF is computationally more efficient and has gained consid-
erable popularity since the late 1990s. Random sampling techniques by means of 
Monte Carlo sampling collectively known as particle filter methods [20] are intro-
duced in this chapter. The goal is to find a numerical approximation to the a posteriori 
density function and hence, the conditional mean can be computed with a Monte 
Carlo integral. The concept of sequential Monte Carlo (SMC) sampling is based on 
point mass (or particle) approximation of the probability density functions involved 
in the estimation problem. Although the concept of this technique was first developed 
in the 1950s, it gained popularity in 1990s due to the availability of high-speed com-
puters that makes its realization more feasible. Still, due to the large computational 
requirement, the SMC has not been used in conventional tracking/filtering problems, 
but is used for problems with smaller dimension and for nonconventional problems 
such as when the motion of the object of interest is less analytical (e.g., tracking hand 
motion, tracking an object moving in a maze, etc.) or the measurement equation is 
nonlinear and nonanalytical (e.g., hard limiting, hysteresis, etc.). Several Monte Carlo 
sampling techniques can be applied to these problems, such as rejection sampling, 
importance sampling, and Markov chain Monte Carlo (MCMC) method, among 
others. In this chapter, discussions are focused on techniques involving importance 
sampling. SMC is a current area of research and some approaches are mentioned in 
this chapter [21, 22]. 

 Chapter 7: State Estimation with Multiple Sensor Systems 

 Problems addressed in Chapters 1 through 6 consider a single sensor observing a sin-
gle object. Expansion to multiple sensors and then to multiple objects are the focus of 
the remainder of this book. Chapter 7 introduces the problem of estimation using 
multiple sensors. There are many advantages to using multiple sensors. For example, 
sensors distributed over a wide geographical area can provide a diversity of viewing 
geometry in which differences in look angle result in improved estimation accuracy. 
One example of a multisensor system is the air traffic control system that employs a 
number of radars of integrated together with a communication system. Data in a 
multisensor system must be fused in order to achieve the potential benefits. An exam-
ple of multiple sensor architecture is to send all sensor measurements to a centralized 
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processor for processing [23]. This is called measurement fusion. The state estimate 
obtained this way is considered to be global because it contains all available data on 
the object. Another possible architecture is to have each individual sensor process its 
own data to obtain its local estimate of object state. It is called a local estimate because 
it only uses the sensor data available locally. All local estimates are then sent to a cen-
tralized processor to obtain a joint estimate. This is termed state fusion [24]. When 
the transmission of local estimates does not have to be done frequently, state fusion 
architecture could result in a smaller communication requirement. All these algo-
rithms are presented and discussed in this chapter. Proof that the joint estimate is less 
accurate than the global estimate is presented in the appendix. 

 Chapter 8: Estimation and Association with Uncertain Measurement 
Origin 

 Fundamental theories and algorithms for the problem of estimation were developed 
in Chapters 1 through 7. In all cases, an estimator was used to process a set of mea-
surement vectors with the assumption that all measurements came from the same 
object. In the case where multiple individual objects are closely spaced, the assignment 
of measurements to a state may become ambiguous. Multiple approaches to this prob-
lem have been discussed in the literature, ranging from using a single scan to multiple 
scans of data, treating each track individually or jointly, making decision for pairing 
measurements with tracks as an assignment problem or combining all measurements 
probabilistically for track update, and so on. One approach to solving this problem is 
to exhaustively enumerate all possible solutions (including accounting for the possibil-
ity of missed and false detections) at each measurement time. This approach is known 
as the multiple hypothesis tracker (MHT), and is the subject of Chapter 9. The focus 
of Chapter 8 is to present a menu of approaches other than MHT. Mathematical rep-
resentation in assigning measurements to tracks over multiple scans is developed. 
A practical solution starting with multiframe track initiation followed by track 
continuation is presented [25, 26]. An algorithm for solving the assignment 
problem for a single frame decision (referred to as immediate resolution) is given, and 
a solution for the multiple frame decision (referred to as delayed resolution) is 
described. Comparison of results in using single and multiple frame decisions are 
illustrated in a numerical example. The appendix gives a track initiation algorithm 
using equations in dish radar coordinates with the state vector expressed in radar cen-
tered Cartesian coordinates. 
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 Chapter 9: Multiple Hypothesis Tracking Algorithm 

 In this chapter, the MHT for a multiple target tracking problem is described [27–29]. 
In the MHT formulation, when assigning a new measurement with tracks, the follow-
ing possibilities are always considered: (a) the new measurement is the continuation of 
an existing track, (b) the measurement is the start of a new track, and (c) the measure-
ment is a false alarm. Give these considerations the case that a track continues without 
being updated with a measurement is always one of the tracks. A track is a time 
sequence of measurements obtained over multiple scans. A measurement from a given 
scan is allowed to be used by multiple tracks. This is because a measurement may be 
considered as the continuation of an existing track as well as the start of a new track at 
the same time since the new measurement could originate from multiple objects and 
be unresolved due to the limited resolution of the measurement sensor. A hypothesis 
in MHT consists of a set of tracks that use a measurement only for one track within 
that hypothesis. The number of tracks can grow combinatorially in MHT. Pruning is 
necessary in MHT in order to limit the growth of tracks and hypotheses. A method 
for scoring tracks and hypotheses is developed for pruning purposes, and a numerical 
example for track and hypothesis scoring is discussed. 

 Chapter 10: Multiple Sensor Correlation and Fusion with Biased 
Measurements 

 Two fusion architectures for multiple sensor systems were introduced in Chapter 7, 
namely, measurement fusion and state fusion. The ability to realize benefits of a mul-
tiple sensor system is dependent on (a) the capability to handle track ambiguities, and 
(b) the capability to handle sensor biases. The purpose of this chapter is to present 
approaches to correlation and estimation for multiple sensors with biased measure-
ments. The first half of this chapter is focused on illustrating approaches for bias 
estimation by means of state augmentation in the measurement fusion architecture. 
The results are illustrated using a space object track example [30]. In this example, the 
association problem is assumed solved. The approach to jointly solving the state to 
state correlation problem and the bias estimation problem in the state fusion architec-
ture is the subject of the second half of the chapter [31, 32]. It is first formulated as a 
joint mathematical optimization problem followed by several suggested solution 
algorithms. 
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 Concluding Remarks 

 Throughout discussions in this book, it is made evident that there are areas of unsolved 
problems in estimation and association. Some of these are discussed in this final 
chapter. 

 Three Appendices: Matrix Inversion Lemma (MIL), a List of Notation 
and Variables, and Terminologies Used in Tracking 

 Appendix A: MIL provides a well-known identity for matrix inversion of a specific 
form. It is used repeatedly in estimator derivations. It is included in this appendix with 
derivation for easy reference. 
 Appendix B: Throughout the book there are scalars, vectors, matrices, probability 
density functions, conditional probability density functions, statistical expectation in 
terms of means and covariances, hypotheses, hypothesis probabilities, indices for mul-
tiple sensors and targets, and so on. A list of symbols and notation is provided as a 
quick reference for readers. 
 Appendix C: Terminology often used in the tracking community is defined. It is 
included in this appendix for the purpose of cross-referencing.  
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