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This is an excerpt from the book Fundamentals of Machine Learning for Predictive Data
Analytics: Algorithms, Worked Examples, and Case Studies by John D. Kelleher, Brian Mac

Namee, and Aoife D’ Arcy published by The MIT Press in 2015.

Machine learning is often used to build predictive models by extracting patterns from large
datasets. These models are used in predictive data analytics applications including price prediction,
risk assessment, predicting customer behavior, and document classification. This introductory text-
book offers a detailed and focused treatment of the most important machine learning approaches
used in predictive data analytics, covering both theoretical concepts and practical applications.
Technical and mathematical material is augmented with explanatory worked examples, and case

studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches
to machine learning: information-based learning, similarity-based learning, probability-based
learning, and error-based learning. Each of these approaches is introduced by a nontechnical expla-
nation of the underlying concept, followed by mathematical models and algorithms illustrated by
detailed worked examples. Finally, the book considers techniques for evaluating prediction mod-
els and offers two case studies that describe specific data analytics projects through each phase
of development, from formulating the business problem to implementation of the analytics solu-
tion. The book, informed by the authors many years of teaching machine learning, and working
on predictive data analytics projects, is suitable for use by undergraduates in computer science,
engineering, mathematics, or statistics; by graduate students in disciplines with applications for

predictive data analytics; and as a reference for professionals.
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1 O Case Study: Galaxy Classification

The history of astronomy is a history of receding horizons.
—Edwin Powell Hubble

Astronomy has gone through a revolution in recent years as the reducing costs
of digital imaging has made it possible to collect orders of magnitude more
data than ever before. Large-scale sky scanning projects are being used to map
the whole of the night sky in intricate detail. This offers huge potential for new
science based on this massive data collection effort. This progress comes at a
cost, however, as all this data must be labeled, tagged, and cataloged. The old
approach of doing all this manually has become obsolete because the volume
of data involved is just too large.

The Sloan Digital Sky Survey (SDSS) is a landmark project that is cat-
aloging the night sky in intricate detail and is facing exactly the problem
described above.! The SDSS telescopes collect over 175GB of data every
night, and for the data collected to be fully exploited for science, each night
sky object captured must be identified and cataloged within this data in almost
real time. Although the SDSS has been able to put in place algorithmic solu-
tions to identifying certain objects within the images collected, there have been
a number of difficulties. In particular, it has not been possible for the SDSS to
develop a solution to automatically categorize galaxies into the different mor-
phological groups—for example, spiral galaxies or elliptical galaxies.

This case study2 describes the work undertaken when, in 2011, the SDSS
hired Jocelyn, an analytics professional, to build a galaxy morphology classifi-
cation model to include in their data processing pipeline. The remainder of this
chapter describes the work undertaken by Jocelyn on this project within each
phase of the CRISP-DM process.

10.1 Business Understanding

When Jocelyn first arrived at SDSS, she was pleased to find that the business
problem she was being asked to help with was already pretty well defined in
predictive analytics terms. The SDSS pipeline takes the data captured by the

1 Full details of the SDSS project, which is fascinating, are available at www . sdss.org.

2 Although this case study is based on real data downloaded from the SDSS, the case study itself
is entirely fictitious and developed only for the purposes of this book. Very similar work to that
described in this section has, however, actually been undertaken, and details of representative
examples are given in Section 10.6?7).
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SDSS instruments and processes it, before storing the results of this process-
ing in a centrally accessible database. At the time Jocelyn arrived, the SDSS
pipeline included rule-based systems that could classify night sky objects into
broad categories—for example, stars and galaxies. SDSS scientists, however,
were struggling to build rule-based systems that could accurately perform
more fine-grained classifications. In particular, the SDSS scientists wanted a
system that could reliably classify galaxies into the important morphological
(i.e., shape) types: elliptical galaxies and spiral galaxies. Classifying galaxies
according to galaxy morphology is standard practice in astronomy,> and mor-
phological categories have been shown to be strongly correlated with other
important galaxy features. So, grouping galaxies by morphological type is a
fundamentally important step in analyzing the characteristics of galaxies.

This was the challenge that the SDSS had hired Jocelyn to address. The
scientists at SDSS wanted Jocelyn to build a machine learning model that could
examine sky objects that their current rule-based system had flagged as being
galaxies and categorize them as belonging to the appropriate morphological
group. Although there remained some details left to agree on, the fact that the
SDSS had defined their problem in terms of analytics meant that Jocelyn very
easily completed the important step of converting a business problem into an
analytics solution. Edwin was assigned to Jocelyn as her key scientific contact
from SDSS and was eager to answer any questions Jocelyn had as he saw real
value in the model she was developing.

The first detail that Jocelyn needed to agree on with Edwin was the set of
categories into which sky objects should be categorized. The scientists at SDSS
listed two key galaxy morphologies of interest: elliptical and spiral. The spiral
category further divided into clockwise spiral and anti-clockwise spiral sub-
categories. Figure 10.1"'" shows illustrations of these different galaxy types.
Jocelyn suggested that she would first work on the coarse classification of
galaxies into elliptical and spiral categories, and then, depending on how this
model performed, look at classifying spirals into the more fine-grained cate-
gories. Jocelyn also suggested that a third other category be included to take
into account the fact that all the sky objects labeled as galaxies in the previ-
ous step in the SDSS may not actually be galaxies. Edwin agreed with both of
these suggestions.

The second detail that Jocelyn needed to agree on with Edwin was the tar-
get accuracy that would be required by the system she would build in order

3 This practice was first systematically applied by Edwin Hubble in 1936 (Hubble, 1936).
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(a) Elliptical (b) Clockwise spiral (c) Anti-clockwise spiral

Figure 10.1

Examples of the different galaxy morphology categories into which SDSS scientists categorize
galaxy objects. Credits for these images belong to the Sloan Digital Sky Survey, www.sdss3.
org.

for it to be of use to scientists at SDSS. It is extremely important that analyt-
ics professionals manage the expectations of their clients during the business
understanding process, and agreeing on expected levels of model performance
is one of the easiest ways in which to do this. This avoids disappointment and
difficulties at later stages in a project. After lengthy discussion, both Jocelyn
and Edwin agreed that in order for the system to be useful, a classification
accuracy of approximately 80% would be required. Jocelyn stressed that until
she had looked at the data and performed experiments, she could not make any
predictions as to what classification accuracy would be possible. She did, how-
ever, explain to Edwin that because the categorization of galaxy morphologies
is a somewhat subjective task (even human experts don’t always fully agree
on the category that a night sky object should belong to), it was unlikely that
classification accuracies beyond 90% would be achievable.

Finally, Edwin and Jocelyn discussed how fast the model built would need
to be to allow its inclusion in the existing SDSS pipeline. Fully processed data
from the SDSS pipeline is available to scientists approximately one week after
images of night sky objects are captured by the SDSS telescopes.* The system
that Jocelyn built would be added to the end of this pipeline because it would
require outputs from existing data processing steps. It was important that the

4 In an interesting example of the persistence of good solutions using older technology, the data
captured by the telescopes at the SDSS site in New Mexico is recorded onto magnetic tapes that
are then couriered to the Feynman Computing Center at Fermilab in Illinois, over 1,000 miles
away. This is the most effective way to transport the massive volumes of data involved!


www.sdss3.org
www.sdss3.org
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model Jocelyn deployed not add a large delay to data becoming available to
scientists. Based on the expected volumes of images that would be produced by
the SDSS pipeline, Jocelyn and Edwin agreed that the model developed should
be capable of performing approximately 1,000 classifications per second on a
dedicated server of modest specification.

10.1.1 Situational Fluency

The notion of situational fluency’ is especially important when dealing with
scientific scenarios. It is important that analytics professionals have a basic
grasp of the work their scientific partners are undertaking so that they can
converse fluently with them. The real skill in developing situational fluency
is determining how much knowledge about the application domain the ana-
Iytics professional requires in order to complete the project successfully. It
was not reasonable, nor necessary, to expect that Jocelyn would become fully
familiar with the intricacies of the SDSS and the astronomy that it performs.
Instead, she needed enough information to understand the key pieces of equip-
ment involved, the important aspects of the night sky objects that she would be
classifying, and the key terminology involved.

While complex scientific scenarios can make this process more difficult than
is the case for more typical business applications, there is also the advantage
that scientific projects typically produce publications clearly explaining their
work. These kinds of publications are an invaluable resource for an analytics
professional trying to come to grips with a new topic. Jocelyn read a num-
ber of publications by the SDSS team® before spending several sessions with
Edwin discussing the work that he and his colleagues did. The following short
summary of the important things she learned illustrates the level of situational
fluency required for this kind of scenario.

The SDSS project captures two distinct kinds of data—images of night-sky
objects and spectrographs of night sky objects—using two distinct types of
instrument, an imaging camera and a spectrograph.

5 See Chapter ?22?1**.

6 Stoughton et al. (2002) provides an in-depth discussion of the data collected by the SDSS.
A shorter overview is provided at skyserver.sdss3.org/dr9/en/sdss/data/data.
asp.


skyserver.sdss3.org/dr9/en/sdss/data/data.asp
skyserver.sdss3.org/dr9/en/sdss/data/data.asp
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The SSDS imaging camera captures images in five distinct photometric
bands:’ ultra-violet (), green (g), red (r), far-red (i), and near infra-red (z).
The raw imaging data captured from the SDSS telescopes is passed through
a processing pipeline that identifies individual night sky objects and extracts a
number of properties for each object. For galaxy classification, the most impor-
tant properties extracted from the images are brightness, color, and shape. The
measure of brightness used in the SDSS pipeline is referred to as magnitude.
Flux is another measure that attempts to standardize measures of brightness,
taking into account how far away different objects are from the telescope. Mea-
sures of flux and magnitude are made in each of the five photometric bands
used by the SDSS imaging system. To measure the color of night sky objects,
the flux measured in different photometric bands is compared. The image-
based measures of overall galaxy shape are extracted from the images using
morphological and moment image processing operations. These measures
capture how well objects match template shapes—although none is accurate
enough to actually perform the galaxy morphology prediction itself.

A spectrograph is a device that disperses the light emitted by an object
into different wavelengths and measures the intensity of the emission of each
wavelength—this set of measures is referred to as a spectrogram. The SDSS
spectrographs perform this task for manually identified night sky objects and
produce spectrograms across wavelengths from visible blue light to near-
infrared light. Spectrography data may be useful in galaxy classification
because different galaxy types are likely to emit different amounts of differ-
ent light wavelengths, so spectrograms might be a good indicator for galaxy
type. Spectrography also allows measurement of redshift, which is used to
determine the distance of night sky objects from the viewer.

Once Jocelyn felt that she was suitably fluent with the SDSS situation, she
proceeded to the Data Understanding phase of the CRISP-DM process so as to
better understand the data available.

7 Most consumer digital cameras capture full color images by capturing separate images on red,
green, and blue imaging sensors and combining these. The colors red, green, and blue are known
as photometric bands. The photometric bands captured by the SDSS imaging camera are the
same as these bands; they are just defined on different parts of the spectrum.
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Figure 10.2

The first draft of the domain concepts diagram developed by Jocelyn for the galaxy classification
task.

10.2 Data Understanding

Jocelyn’s first step in fully understanding the data available to her was to define
the prediction subject. In this case the task was to categorize galaxies accord-
ing to morphology, and therefore galaxy made sense as the prediction subject.
The structure of the dataset required for this task would contain one row per
galaxy, and each row would include a set of descriptive features describing the
characteristics of that galaxy object and a target feature indicating the morpho-
logical category of the galaxy object.

Based on her understanding of the SDSS process , Jocelyn sketched out
the first draft of the domain concepts diagram for the galaxy classification
problem shown in Figure 10.2. Jocelyn felt that the important domain con-
cepts were likely to be the target (galaxy type), galaxy appearance measures
(e.g., color), spectrography information (e.g., red shift), and position informa-
tion (the position of each object in the night sky was also available from the
SDSS pipeline). Data with which to implement features based on these domain
concepts would likely come from the raw camera imaging and spectrograph
images themselves, or from the results of the SDSS processing pipeline.

Jocelyn took this first domain concept draft along to a meeting with Ted,
the SDSS chief data architect, to discuss the data resources that would be
available for model building. Ted quickly made two observations. First, the
spectrograph data collected by the SDSS telescopes was not nearly as exten-
sive as the camera imaging data collected—while there was imaging data for
millions of galaxies, there were spectrograms for only hundreds of thousands.
Collecting spectrographic information involves a much more complicated pro-
cess than capturing imaging data, so it is done for a much smaller portion of
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the sky. This was likely to continue to be the case, so any solution that relied
on spectrographic data as well as imaging data to classify galaxy types would
work for only a fraction of the observations made by the SDSS telescopes.

Ted’s second observation was that, although there was a huge amount of
data available on past observations of night sky objects, only a tiny fraction of
these contained manual labels indicating the morphological category to which
they belonged. This meant that the data available at the SDSS did not contain
a suitable target feature that Jocelyn could use to train prediction models. This
is a very common scenario and a real thorn in the side of the predictive model
builder—although there is often an almost endless amount of data available for
training, little or none of it is labeled with the relevant target feature, making it
effectively useless.

Jocelyn’s options at this stage were (1) to embark on a large-scale manual
data labeling project for which she would hire experts to manually label a suit-
ably large set of historical night sky object observations, or (2) to find some
other data source that she could add to the SDSS data to use as a target fea-
ture. While the first option is often used, Jocelyn was lucky that another data
source became available. Through conversations with Edwin, Jocelyn became
aware of a parallel project to the SDSS that offered an intriguing solution to
her problem. Galaxy Zoo® is a crowdsourced, citizen science effort in which
people can log onto a website and categorize images of galaxies—taken from
the SDSS—into different groups. The Galaxy Zoo project started in 2007 and
since then has collected millions of classifications of hundreds of thousands of
galaxies.

The galaxy types that Galaxy Zoo citizen scientists could choose from were
elliptical, clockwise spiral, anti-clockwise spiral, edge-on disk, merger, and
don’t know. The first three types are self-explanatory and match directly with
the categories of interest to the SDSS project. An edge-on disk is a spiral galaxy
viewed from the edge, which makes the direction of the spiral arms unclear. A
merger is a sky object in which multiple galaxies appear grouped together.
Examples were labeled as don’t know when a Galaxy Zoo participant could
not place the object in question into one of the other categories.

8 Full details of the Galaxy Zoo project and the data released by it are described in Lintott et al.
(2011, 2008). The Galaxy Zoo (www.galaxyzoo.org) project referred to in this example is
Galaxy Zoo L.


www.galaxyzoo.org
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Table 10.1

The structure of the SDSS and Galaxy Zoo combined dataset.

Name Type Description

OBJID Continuous Unique SDSS object identifier

P_EL Continuous Fraction of votes for elliptical galaxy category

P_CW Continuous Fraction of votes for clockwise spiral galaxy category
P_ACW Continuous Fraction of votes for anti-clockwise spiral galaxy category
P_EDGE Continuous Fraction of votes for edge-on disk galaxy category

P_MG Continuous Fraction of votes for merger category

P_DK Continuous Fraction of votes for don’t know category

The data from the Galaxy Zoo project was publicly available and therefore
easily accessible to Jocelyn. Galaxy Zoo labels were available for approxi-
mately 600,000 SDSS galaxies, which Jocelyn felt would be more than enough
to use to train and test a galaxy morphology classification model. Conveniently,
this also determined the subset of the SDSS dataset (those galaxies used in the
Galaxy Zoo project) that Jocelyn would use for this project. With the knowl-
edge that the Galaxy Zoo labels would provide her with a target feature, Joce-
lyn returned to speak with Ted again about getting access to the SDSS data.

Accessing the results of the SDSS processing pipeline turned out to be rea-
sonably straightforward as it was already collected into a single large table in
the SDSS data repository. Ted organized a full download of the SDSS photo
imaging data repository for all the objects for which Galaxy Zoo labels existed.
This dataset contained 600,000 rows and 547 columns,® with one row for each
galaxy observation, containing identifiers, position information, and measures
describing the characteristics of the galaxy.

Jocelyn decided to begin her data exploration work by focusing on the target
feature. The structure of the data available from the Galaxy Zoo project is
shown in Table 10.1®. The category of each galaxy is voted on by multiple
Galaxy Zoo participants, and the data includes the fraction of these votes for
each of the categories.

9 The fact that the SDSS and Galaxy Zoo make all their data available for free online is a
massive contribution to global science. The data used in this case study can be accessed by
performing a simple SQL query at skyserver.sdss3.org/dr9/en/tools/search/
sgl.asp. The query to select all the camera imaging data from the SDSS data release for
each of the objects covered by the Galaxy Zoo project along with the Galaxy Zoo classifica-
tionsis SELECT  FROM PhotoObj AS p JOIN ZooSpec AS zs ON zs.objid =
p.objid ORDER BY p.objid.Full details of all the data tables available from the SDSS are
available at skyserver.sdss3.org/dr9/en/help/docs/tabledesc.asp.


skyserver.sdss3.org/dr9/en/tools/search/sql.asp
skyserver.sdss3.org/dr9/en/tools/search/sql.asp
skyserver.sdss3.org/dr9/en/help/docs/tabledesc.asp
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Figure 10.3

Bar plots of the different galaxy types present in the full SDSS dataset for the 3-level and 5-level
target features.

The raw data did not contain a single column that could be used as a target
feature, so Jocelyn had to design one from the data sources that were present.
She generated two possible target features from the data provided. In both
cases, the target feature level was set to the galaxy category that received the
majority of the votes. In the first target feature, just three levels were used:
elliptical (P_EL majority), spiral (P_CW, P_ACW, or P_LEDGE majority), and
other (P_MG or P_DK majority). The second target feature allowed three levels
for spiral galaxies: spiral_cw (P_CW majority), spiral_acw (P_ACW majority),
and spiral_edge (P_EDGE majority). Figure 10.3™ shows bar plots of the fre-
quencies of the 3-level and the 5-level target features. The main observation
that Jocelyn made from these is that galaxies in the dataset were not evenly
distributed across the different morphology types. Instead, the elliptical level
was much more heavily represented than the others in both cases. Using the
3-level target feature as her initial focus, Jocelyn began to look at the differ-
ent descriptive features in the data downloaded from the SDSS repository that
might be useful in building a model to predict galaxy morphology.

The SDSS download that Jocelyn had access to was a big dataset—over
600,000 rows. Although modern predictive analytics and machine learning
tools can handle data of this size, a large dataset can be cumbersome when
performing data exploration operations—calculating summary statistics, gen-
erating visualizations, and performing correlation tests can just take too long.



FreeChapter'CaseStudy GalaxyClassification 2015/6/14 20:45 Page 10 #12

10 Chapter 10 Case Study: Galaxy Classification

Table 10.2
Analysis of a subset of the features in the SDSS dataset.

% 1 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean  Median Qrt. Max. Dev.
RUN 10,000  0.00 380 109.00 2,821.00 3,703.45 3,841.00 4,646.00 8,095.00 1,378.82
RA.1 10,000  0.00 9,964 0.03 151.38 185.26 185.02 220.56 359.99 59.12
DEC.1 10,000  0.00 9,928 -11.23 9.71 24.87 23.41 39.11 69.83 18.92
ROWC_U 10,000  0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC_G 10,000  0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC_R 10,000  0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC_I 10,000  0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC_Z 10,000  0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SKYIVAR.U 10,000 0.00 9,986 -9,999.00  459.81 78.89 798.27 1,083.65 2,197.09 450.26
SKYIVAR.G 10,000 0.00 9,989 -9,999.00 439.55 965.88 2,957.92 6,005.71 9,913.59  2,766.70
SKYIVAR.R 10,000 0.00 9,988 -9,999.00 123.31 20191 1,091.78 3,347.77 4,623.07 1,514.50
SKYIVARLI 10,000  0.00 9,986 -9,999.00 46.02 174.79 43448 1,825.93 2,527.57 851.42
SKYIVAR.Z 10,000 0.00 9,986 -9,999.00 13.60 -234.23 49.57 75.39 205.07 44.51
PSFMAG_U 10,000  0.00 9,768 7.47 20.60 21.08 21.13 21.598 26.19 0.85
PSFMAG_G 10,000  0.00 9,743 8.30 19.06 19.48 19.54 19.967 26.17 0.78
PSFMAG_R 10,000  0.00 9,744 7.45 18.23 18.65 18.68 19.113 26.49 0.76
PSFMAG_I 10,000  0.00 9,744 7.33 17.83 18.27 18.26 18.722 25.46 0.80
PSFMAG_Z 10,000  0.00 9,747 7.40 17.47 17.93 17.90 18.381 23.92 0.82
DEVFLUX_.U 10,000 0.00 9,990 -3.68 11.64 43.05 23.07 44.31 28,616.04 194.73
DEVFLUX.G 10,000 0.00 9,987 -1,278.28 48.79 143.71 77.06 133.46 614,662.80 2,401.59
DEVFLUXR 10,000 0.00 9,983 -4.37 111.04 267.74 152.75 250.65 137,413.00 993.65
DEVFLUX.I 10,000 0.00 9,980 -4.06 160.42 390.98 216.57 351.21 608,862.80 3,041.20
DEVFLUX_Z 10,000 0.00 9,983 -14.72 204.72 528.69 276.99 44745 2,264,700.00 9,073.95

For this reason, Jocelyn extracted a small sample of 10,000 rows from the full
dataset for exploratory analysis using stratified sampling.
Given that (1) the SDSS data that Jocelyn downloaded was already in a

single table; (2) the data was already at the right prediction subject level (one
row per galaxy); and (3) many of the columns in this dataset would most likely
be used directly as features in the ABT that she was building, Jocelyn decided
to produce a data quality report on this dataset. Table 10.2"" shows an extract
from this data quality report. At this point Jocelyn was primarily interested in
understanding the amount of data available, any issues that might arise from
missing values, and the types of each column in the dataset.

Jocelyn was surprised that none of the columns had any missing values.
Although this is not unheard of (particularly in cases like the SDSS project
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Figure 10.4

The revised domain concepts diagram for the galaxy classification task.
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in which data is generated in a fully automated process) it is very unusual.
The minimum values of —9,999 for the SKYIVAR_U/G/R/1/Z columns (and
some others not shown in Table 10.2""), which were so different from the
means for those columns, suggested that maybe there were missing values after
all.1% There were also a number of columns, such as ROWC_U/G/R/1/Z, that
had cardinality of 1 (and standard deviations of zero) indicating that every row
had the same. These features contained no actual information, so should be

removed from the dataset.

Having performed this initial analysis, Jocelyn met again with Edwin and
Ted to discuss the data quality issues and, more generally, to review the domain
concepts outlined in Figure 10.2 so as to begin designing the actual descrip-
tive features that would populate the ABT. Edwin was broadly in agreement
with the set of domain concepts that Jocelyn had developed and was very
positive about the use of Galaxy Zoo classifications as a source for generat-
ing the target feature. He did explain, however, that Jocelyn’s suggestion of
using position information was very unlikely to be useful, so that was removed
from the set of domain concepts. Edwin also agreed that Ted was correct
about the unavailability of spectrograph data for most objects, so this was also
removed. The final domain concept diagram is shown in Figure 10.4"". Edwin
helped Jocelyn align the columns in the raw SDSS dataset with the different
domain concepts, which generated a good set of descriptive features within

each domain concept.

Both Edwin and Ted were surprised to see missing values in the data as it
was produced through a fully automated process. Simply through eye-balling

10 Many systems use values like —9,999 to indicate that values are actually missing.
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the data, Jocelyn uncovered the fact that, in almost all cases, when one sus-
pect —9,999 value was present in a row in the dataset, that row contained a
number of suspect —9,999 values (this was the case for 2% of the rows in the
dataset). Although neither Edwin nor Ted could understand exactly how this
had happened, they agreed that something had obviously gone wrong in the
processing pipeline in those cases and that the —9,999 values must refer to
missing values.!! Complete case analysis was used to entirely remove any
rows containing two or more —9,999, or missing, values. Before performing
this operation, however, Jocelyn first checked that the percentage of missing
values was approximately 2% in each of the 3 levels (and in each of the levels
in the 5-level model) to ensure that there was no relationship between miss-
ing values and galaxy type. There was no obvious relationship, so Jocelyn was
confident that removing rows containing missing values would not affect one
target level more than the others.

One of the advantages of working in scientific scenarios is that there is a
body of literature that discusses how other scientists have addressed similar
problems. Working with Edwin, Jocelyn reviewed the relevant literature and
discovered a number of very informative articles discussing descriptive fea-
tures that were likely to be useful in classifying galaxy morphologies.'? In
particular, a number of interesting features that could be derived from the flux
and magnitude measurements already in the SDSS dataset were described in
the literature. Jocelyn implemented these derived features for inclusion in the
final ABT.

In many instances the SDSS dataset contained the same measurement for a
night sky object measured separately for each of the five photometric bands
covered by the SDSS telescope. Because of this, Jocelyn suspected that there
would be a large amount of redundancy in the data as the measurements in the
different bands were likely to be highly correlated. To investigate this idea, she
generated SPLOM charts for different photometric band versions of a selection
of columns from the dataset (see Figure 10.5""), and these showed significant
relationships, which confirmed her suspicion. Jocelyn showed these charts to

11 The co-occurrence of multiple missing values in a row is something that it is hard to find
through summary analysis of the data and one of the reasons analytics practitioners should always
eye-ball extracts from a dataset during the data exploration process.

12 Interested readers might find Tempel et al. (2011), Ball et al. (2004) and Banerji et al. (2010)
good references on this topic.
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Edwin. Edwin agreed that it was likely that correlations existed between mea-
surements in the different photometric bands but stressed, however, that differ-
ences across these bands would exist and might be quite important in predict-
ing galaxy morphology. The existence of a high level of correlation between
measurements indicated to Jocelyn that feature selection would be important
later during the modeling phase as it had the potential to massively reduce the
dimensionality of the dataset.
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Figure 10.5

SPLOM diagrams of (a) the EXPRAD and (b) DEVRAD measurements from the raw SDSS dataset.
Each SPLOM shows the measure across the five different photometric bands captured by the SDSS
telescope (u, g, r, i, and z).

At this point the design of the ABT had fallen into place. For the most part,
Jocelyn would use descriptive features directly from the raw SDSS data. These
would be augmented with a small number of derived features that the litera-
ture review undertaken with Edwin had identified. Jocelyn was now ready to
move into the Data Preparation phase, during which she would populate the
ABT, analyze its contents in detail, and perform any transformations that were
required to handle data quality issues.

10.3 Data Preparation

After removing a large number of the columns from the raw SDSS dataset,
introducing a number of derived features, and generating two target features,
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Table 10.3

Features from the ABT for the SDSS galaxy classification problem.

Feature

Feature

Feature

SKYIVAR_U/G/R/1/Z
PSFMAG_U/G/R/1/Z
PSFMAGERR_U/G/R/1/Z
FIBERMAG_U/G/R/1/Z
FIBERMAGERR_U/G/R/1/Z
FIBER2MAG _U/G/R/1/Z
FIBER2ZMAGERR_U/G/R/1/Z
PETROMAG_U/G/R/1/Z
PETROMAGERR _U/G/R/1/Z
PSFFLUX_U/G/R/1/Z
PSFFLUXIVAR_U/G/R/1/Z
FIBERFLUX_U/G/R/1/Z
FIBERFLUXIVAR_U/G/R/1/Z
FIBER2FLUX_U/G/R/1/Z
FIBER2FLUXIVAR_U/G/R/1/Z
PETROFLUX_U/G/R/1/Z
PETROFLUXIVAR_U/G/R/1/Z
PETRORAD_U/G/R/1/Z
PETRORADERR_U/G/R/1/Z
PETRORS0_U/G/R/1/Z
PETRORS0ERR_U/G/R/1/Z
PETROR90_U/G/R/1/Z
PETROR90ERR_U/G/R/1/Z
Q_U/G/R/1/Z
QERR_U/G/R/1/Z
U_U/G/R/N/Z

UERR_U/G/R/1/Z
ME1_U/G/R/1/Z
ME2_U/G/R/1/Z
ME1E1ERR_U/G/R/1/Z
ME1E2ERR_U/G/R/1/Z
ME2E2ERR_U/G/R/1/Z
MRRCC_U/G/R/1/Z
MRRCCERR_U/G/R/1/Z
MCR4_U/G/R//Z
DEVRAD_U/G/R/1/Z
DEVRADERR_U/G/R/1/Z
DEVAB_U/G/R/1/Z
DEVABERR_U/G/R/1/Z
DEVMAG_U/G/R/1/Z
DEVMAGERR_U/G/R/1/Z
DEVFLUX_U/G/R/1/Z
DEVFLUXIVAR_U/G/R/1/Z
EXPRAD_U/G/R/1/Z
EXPRADERR_U/G/R/1/Z
EXPAB_U/G/R/1/Z
EXPABERR_U/G/R/1/Z
EXPMAG_U/G/R/1/Z
EXPMAGERR_U/G/R/1/Z
CMODELMAG_U/G/R/1/Z
CMODELMAGERR_U/G/R/1/Z

EXPFLUX_U/G/R/1/Z
EXPFLUXIVAR_U/G/R/1/Z
MODELFLUXIVAR_U/G/R/1/Z
CMODELFLUX_U/G/R/1/Z
CMODELFLUXIVAR _U/G/R/1/Z
APERFLUX7_U/G/R/1/Z
APERFLUX7IVAR_U/G/R/1/Z
LNLSTAR_U/G/R/1/Z
LNLEXP_U/G/R/1/Z
LNLDEV_U/G/R/1/Z
FRACDEV _U/G/R/1/Z
DERED_U/G/R/1/Z
DEREDDIFF_U_G
DEREDDIFF_G_R
DEREDDIFF_R_I
DEREDDIFF_1.Z
PETRORATIO_I
PETRORATIO_R

AE_I

PETROMAGDIFF_U_G
PETROMAGDIFF_G_R
PETROMAGDIFF_R_I
PETROMAGDIFF_1_Z
GALAXY_CLASS_3
GALAXY_CLASS.5

Jocelyn generated an ABT containing 327 descriptive features and two tar-
get features. Table 10.3™" lists these features (features that occur over all five
photometric bands are listed as NAME_U/G/R/1/Z to save space).'

Once Jocelyn had populated the ABT, she generated a data quality report
(the initial data quality report covered the data in the raw SDSS dataset only,
so a second one was required that covered the actual ABT) and performed an
in-depth analysis of the characteristics of each descriptive feature. An extract
from this data quality report is shown in Table 10.4".

13 We direct the interested reader to http://skyserver.sdss3.org/dr9/en/sdss/
data/data.asp for a overview of what these features represent.
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The magnitude of the maximum values for the FIBER2ZFLUXIVAR_U feature
in comparison to the median and 3’¢ quartile value was unusual and suggested
the presence of outliers. The difference between the mean and median values
for the SKYIVAR_R feature also suggested the presence of outliers. Similarly,
the difference between the mean and median values for the LNLSTAR_R feature
suggested that the distribution of this feature was heavily skewed and also
suggested the presence of outliers. Figure 10.6'' shows histograms for these
features. The problems of outliers and skewed distributions is clearly visible in
these distributions. A number of other features exhibited a similar pattern.
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Figure 10.6
Histograms of a selection of features from the SDSS dataset.
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Figure 10.7
Histograms of the EXPRAD_R feature by target feature level.



Table 10.4
A data quality report for a subset of the features in the SDSS ABT.

% 15 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
SKYIVAR_U 640,432 0.00 639,983 0.00 465.53 784.78 793.20 1,079.53  2,190.05 447.36
SKYIVAR_G 640,432 0.00 640,081 0.00 442.55 3,318.72  2,949.62 6,008.31  9,898.47 2,769.84
SKYIVAR_R 640,432 0.00 640,178 0.00 127.18 1,629.86 1,094.93 3,342.65 4,596.46 1,513.38
SKYIVAR_I 640,432 0.00 640,042 0.00 48.28 842.18 436.13 1,825.88  2,515.35 852.73
SKYIVAR_Z 640,432 0.00 640,042 0.00 13.90 52.19 49.76 75.10 205.69 44.19
ME2_G 640,432 0.00 629,246 -0.96 -0.13 0.01 0.01 0.15 0.97 0.28
FIBER2FLUXIVAR_U 640,432 0.00 639,827 0.00 20.31 27.24 25.96 32.40 170.70 11.02
PSFMAG_U 640,432 0.00 632,604 13.76 20.59 21.05 21.12 21.58 25.56 0.81
PETROFLUXIVAR_U 640,432 0.00 627,391 0.00 0.16 0.40 0.31 0.53 6.29 0.36
LNLSTAR_R 640,432 0.00 639,600 -218,875.30 -12,623.05 -12,009.95 -6,771.37 -4,308.99 0.00 16,193.73
PETROMAG_R 640,432 0.00 628,562 11.72 16.76 17.08 17.29 17.61 22.72 0.75
EXPAB.I 640,432 0.00 623,467 0.05 0.49 0.65 0.67 0.81 1.00 0.20
DEREDDIFF_U_G 640,432 0.00 630,319 -2.47 1.29 1.61 1.67 1.89 6.67 0.40
DEREDDIFF_G_R 640,432 0.00 631,627 -1.06 0.64 0.82 0.84 0.99 4.70 0.27
DEREDDIFF_R_I 640,432 0.00 611,597 -4.46 0.36 0.39 0.40 0.44 2.22 0.10
DEREDDIFF_1_Z 640,432 0.00 615,131 -2.29 0.23 0.28 0.30 0.34 5.33 0.11
PETRORATIO_I 640,432 0.00 640,432 1.12 2.33 2.67 2.68 3.01 25.52 0.46
PETRORATIO_R 640,432 0.00 640,432 1.18 2.29 2.63 2.64 2.96 10.05 0.42
AE_I 640,432 0.00 640,432 0.00 0.13 0.27 0.23 0.38 0.90 0.18
MODELMAGDIFF_.U.G 640,432 0.00 630,476 -2.45 1.33 1.65 1.71 1.94 6.83 0.40
MODELMAGDIFF_.G.R 640,432 0.00 630,437 -1.05 0.68 0.85 0.87 1.03 475 0.27
MODELMAGDIFF_R_I 640,432 0.00 613,667 -4.46 0.38 0.41 0.42 0.47 2.25 0.10
MODELMAGDIFF_1.Z 640,432 0.00 615,346 -2.27 0.25 0.29 0.32 0.35 5.34 0.11
PETROMAGDIFF_G_R 640,432 0.00 631,901 -1.99 0.64 0.83 0.84 1.00 5.13 0.28
PETROMAGDIFF_R_I 640,432 0.00 612,827 -3.32 0.35 0.39 0.41 0.45 2.83 0.11
PETROMAGDIFF_1_Z 640,432 0.00 620,422 -4.43 0.19 0.24 0.27 0.33 3.69 0.15
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With Edwin’s help, Jocelyn investigated the actual data in the ABT to deter-
mine whether the extreme values in the features displaying significant skew or
the presence of outliers were due to valid outliers or invalid outliers. In all
cases the extreme values were determined to be valid outliers. Jocelyn decided
to use the clamp transformation to change the values of these outliers to
something closer to the central tendency of the features. Any values beyond the
15" quartile value plus 2.5 times the inter-quartile range were reduced to this
value. The standard value of 1.5 times the inter-quartile range was changed to
2.5 to slightly reduce the impact of this operation.

Jocelyn also made the decision to normalize all the descriptive features
into standard scores.The differences in the ranges of values of the set of
descriptive features in the ABT was huge. For example, DEVAB R had a
range as small as [0.05,1.00] while APERFLUX7IVAR_U had a range as large
as [—265,862,15,274]. Standardizing the descriptive feature in this way was
likely to improve the accuracy of the final predictive models. The only draw-
back to standardization is that the models become less interpretable. Inter-
pretability, however, was not particularly important for the SDSS scenario (the
model built would be added to the existing SDSS pipeline and process thou-
sands of galaxy objects per day), so standardization was appropriate.
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Figure 10.8

Small multiple box plots (split by the target feature) of some of the features from the SDSS ABT.

Jocelyn also performed a simple first-pass feature selection using the 3-level
model to see which features might stand out as predictive of galaxy morphol-
ogy. Jocelyn used the information gain measure to rank the predictiveness
of the different features in the dataset (for this analysis, missing values were
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simply omitted). The columns identified as being most predictive of galaxy
morphology were expRad_g (0.3908), expRad._r (0.3649), deVRad_g (0.3607),
expRad.i (0.3509), deVRad.r (0.3467), expRad_z (0.3457), and mRrCc_g
(0.3365). Jocelyn generated histograms for all these features compared to
the target feature—for example, Figure 10.7""' shows the histograms for the
EXPRAD_R feature. It was encouraging that in many cases distinct distributions
for each galaxy type were apparent in the histograms. Figure 10.8"” shows
small multiple box plots divided by galaxy type for a selection of features
from the ABT. The differences between the three box plots in each plot gives
an indication of the likely predictiveness of each feature. The presence of large
numbers of outliers can also be seen.

10.4 Modeling

The descriptive features in the SDSS dataset are primarily continuous. For
this reason, Jocelyn considered trying a similarity-based model, the k near-
est neighbor, and two error-based models, the logistic regression model and
the support vector machine. Jocelyn began by constructing a simple baseline
model using the 3-level target feature.

10.4.1 Baseline Models

Because of the size of the ABT, Jocelyn decided to split the dataset into a
training set and a large hold-out test set. Subsets of the training set would
be also used for validation during the model building process. The train-
ing set consisted of 30% of the data in the ABT (approximately 200,000
instances), and the test set consisted of the remaining 70% (approximately
450,000 instances).'* Using the training set, Jocelyn performed a 10-fold
cross validation experiment on models trained to use the full set of descrip-
tive features to predict the 3-level target. These would act as baseline perfor-
mance scores that she would try to improve upon. The classification accura-
cies achieved during the cross validation experiment were 82.912%, 86.041%,
and 85.942% by the k nearest neighbor, logistic regression, and support vector

14 Tt is more common to split an ABT in the opposite proportions (70% for the training set and
30% for the test set). In this case, however, because the ABT was so large it was more useful to
have a very large test sample as 200,000 instances should be more than enough for the training set.
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Table 10.5

The confusion matrices for the baseline models.

(a) k nearest neighbor model (classification accuracy: 82.912%, average class accuracy: 54.663%)

Prediction
elliptical spiral other Recall
elliptical 115,438 10,238 54 91.814%
Target spiral 19,831 50,368 18 71.731%
other 2,905 1,130 18 0.442%

(b) logistic regression model (classification accuracy: 86.041%, average class accuracy:

62.137%)
Prediction
elliptical spiral other Recall
elliptical 115,169 10,310 251 91.600%
Target spiral 13,645 56,321 251 80.209%
other 2,098 1,363 592 14.602%

(c) support vector machine model (classification accuracy: 85.942%, average class accuracy:

58.107%)
Prediction
elliptical spiral other Recall
elliptical 114,721 10,992 18 91.244%
Target spiral 13,089 57,092 36 81.307%
other 2,654 1,327 72 1.770%

machine models respectively. The confusion matrices from the evaluation of
these models are shown in Table 10.5".

These initial baseline results were promising; however, one key issue did
emerge. It was clear that the performance of the models trained using the SDSS
data was severely affected by the target level imbalance in the data—there
were many more examples of the elliptical target level than either the spiral
or, especially, the other target level. Having a dominant target level, like the
elliptical target level in this example, means that models trained on this data
can over-compensate for the majority target level and ignore the minority ones.
For example, based on the confusion matrix in Table 10.5(c)™”, the misclassi-
fication rate for the elliptical target level is only 8.756%, while for the spiral
target level, it is higher, at 18.693%, and for the other target level, it is a fairly
dire 98.230%. The single classification accuracy performance measure hides
this poor performance on the minority target levels. An average class accuracy
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performance measure, however, brings this issue to the fore. The average class
accuracy scores achieved by the models were 54.663%, 62.137%, and 58.107%
by the k nearest neighbor, logistic regression, and support vector machine mod-
els respectively. Jocelyn decided to build a second set of models in which she
would address the target level imbalance issue.

The target level imbalance in the SDSS dataset arises through relative rar-
ity.!> In the large SDSS dataset, there are plenty of galaxies in the other and
spiral categories; there are just many more in the elliptical category. In this
case, Jocelyn addressed the target level imbalance problem by using under-
sampling to generate a new training dataset in which all three target levels had
an equal distribution. This was referred to as the under-sampled training set.
Jocelyn performed the same baseline test on the three model types using this
new dataset. The resulting confusion matrices are shown in Table 10.6"".

The resulting classification accuracies (average class accuracies and classi-
fication accuracies are the same in this case because the dataset is balanced)
from the 10-fold cross validation experiment were 73.965%, 78.805%, and
78.226% for the k nearest neighbor, logistic regression, and support vector
machine models respectively. The overall performance on this balanced dataset
was not as good as the performance on the original dataset; however, balanc-
ing the training set did result in the performance on each target level being
more equal. Predictions for the other target level are actually being performed
this time, whereas in the previous example, this target level was essentially
being ignored. Choosing between models in this sort of scenario is difficult as
it really comes down to balancing the needs of the application—when the sys-
tem makes errors (as it inevitably will from time to time), what error is least
bad? In this example, is it better to classify a galaxy that should be other as
an elliptical galaxy or vice versa? Jocelyn discussed this issue and the results
of these two baseline experiments with Edwin, and both decided that it would
be best to pursue the optimal performance measured by overall classification
accuracy because, in practice, the important thing for the SDSS system was to
classify elliptical and spiral galaxies as accurately as possible.

15 Target level imbalance typically arises through either absolute rarity or relative rarity of the
minority target levels. Absolute rarity refers to scenarios in which there simply do not exist many
examples of the minority target levels—for example, in automated inspection tasks on production
lines, it is often the case that there are simply very few examples of defective products that can be
used for training. Relative rarity, on the other hand, refers to scenarios in which the proportion of
examples of the majority target levels in a dataset is much higher than the proportion of examples
of the minority target level, but there is actually no shortage of examples of the minority target
level.
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Table 10.6
The confusion matrices showing the performance of models on the under-sampled training set.

(a) k nearest neighbor model (classification accuracy: 73.965%)

Prediction
elliptical spiral  other Recall
elliptical 23,598 4,629 5,253 70.483%
Target spiral 4,955 24,734 3,422 74.700%
other 3,209 4,572 25,628 76.711%

(b) logistic regression model (classification accuracy: 78.805%)

Prediction
elliptical spiral  other Recall
elliptical 25,571 4,203 3,706 76.378%
Target spiral 3,677 26,267 3,166 79.331%
other 2,684 3,763 26,963 80.705%

(c) support vector machine model (classification accuracy: 78.226%)

Prediction
elliptical spiral  other Recall
elliptical 24,634 4,756 4,089 73.579%
Target spiral 3,763 26,310 3,038 79.460%
other 2,584 3,550 27,275 81.640%

With these baseline performance measures established, Jocelyn turned her
attention to feature selection in an effort to improve on these performance
scores.

10.4.2 Feature Selection

In the SDSS dataset, many of the features are represented multiple times for
each of the five different photometric bands, and this made Jocelyn suspect
that many of these features might be redundant and so ripe for removal from
the dataset. Feature selection approaches that search through subsets of fea-
tures (known as wrapper approaches) are better at removing redundant fea-
tures than rank and prune approaches because they consider groups of features
together. For this reason, Jocelyn chose to use a step-wise sequential search
for feature selection for each of the three model types. In all cases overall
classification accuracy was used as the fitness function that drove the search.
After feature selection, the classification accuracy of the models on the test
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Table 10.7
The confusion matrices for the models after feature selection.

(a) k nearest neighbor model (classification accuracy: 85.557%, average class accuracy:
57.617%)

Prediction

Recall

elliptical 116,640 9,037 54 92.770%

Target spiral 15,833 54,366 18 77.426%
other 2,815 1,130 108 2.655%

elliptical spiral other

(b) logistic regression model (classification accuracy: 88.829%, average class accuracy:
67.665%)

Recall
elliptical 117,339 8,302 90 93.326%

Target spiral 10,812 59,297 108 84.448%
other 1,757 1,273 1,022 25.221%

Prediction

elliptical spiral other

(c) support vector machine model (classification accuracy: 87.188%, average class accuracy:
60.868%)

Prediction

elliptical spiral other Recall
elliptical 115,152 10,561 18 91.586%
Target spiral 11,243 58,938 36 83.938%

other 2,528 1,237 287 7.080%

set were 85.557%, 88.829%, and 87.188% for the k nearest neighbor, logis-
tic regression, and support vector machine models respectively. The resulting
confusion matrices are shown in Table 10.7%%. In all cases performance of
the models improved with feature selection. The best performing model is the
logistic regression model. For this model, just 31 out of the total 327 features
were selected.'® This was not surprising given the large amount of redundancy
within the feature set.

16 The features selected were AE_I, APERFLUX7IVAR_G, APERFLUX7IVAR_I, APERFLUX7_U,
DERED_U, DEVAB_R, DEVRADERR_Z, DEVRAD_U, DEREDDIFF_G_R, EXPRAD_G, EXPRAD_R,
FIBER2FLUXIVAR_Z, FIBER2ZMAGERR_G, FIBERFLUXIVAR_R, FRACDEV_.z, LNLDEV._G,
LNLDEV_R, LNLDEV_U, LNLDEV_z, MCR4_Z, PETROFLUXIVAR_G, PETROFLUXIVAR._I,
PETRORS0ERR_R, PETRORS50_G, PETROR90.G, PETRORATIO_R, PSFFLUXIVAR_I, PSF-
MAGERR_R, PSFMAG_R, SKYIVAR_U, and SKYIVAR_Z.
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Based on these results, Jocelyn determined that the logistic regression model
trained using the reduced set of features was the best model to use for galaxy
classification. This model gave the best prediction accuracy and offered the
potential for very fast classification times, which was attractive for integration
into the SDSS pipeline. Logistic regression models also produce confidences
along with the predictions, which was attractive to Edwin as it meant that he
could build tests into the pipeline that would redirect galaxies with low confi-
dence classifications for manual confirmation of the predictions made by the
automated system.

10.4.3 The 5-level Model

To address the finer grained 5-level (elliptical, spiral_cw, spiral_acw, spiral_eo,
and other) classification task, Jocelyn attempted two approaches. First, she
used a 5-target-level model to make predictions. Second, she used a two-stage
model. In this case the logistic regression model used for the 3-level target fea-
ture would first be used, and then a model trained to distinguish only between
different spiral galaxy types (clockwise, anti-clockwise, and edge-on) would
be used to further classify those galaxy objects classified as spiral by the first
stage.

Based on the performance of the logistic regression model on the 3-level
classification problem, Jocelyn trained a logistic regression classifier on the 5-
level dataset and evaluated it using a 10-fold cross validation. Following the
same approach as in earlier models, Jocelyn performed feature selection using
a step-wise sequential search to find the best subset of features for this model.
Just 11 features from the full set were selected.!” The resulting classification
accuracy on the best performing model that Jocelyn could build was 77.528%
(with an average class accuracy of 43.018%). The confusion matrix from this
test is shown in Table 10.8%*. The overall accuracy of this model is somewhat
comparable with the overall accuracy of the 3-level model. The classifier accu-
rately predicts the type of galaxies with the elliptical target level and, to a lesser
extent, with the spiral_eo target level. The ability of the model to distinguish
between clockwise (spiral_cw) and anti-clockwise (spiral_acw) spiral galaxies,
however, is extremely poor.

17 The features selected were SKYIVAR_U, PETROFLUXIVAR_I, PETRORS50ERR_G,
DEVRAD_G, DEVRADERR_R, DEVRADERR.I, DEVAB_G, EXPFLUX_Z, APERFLUX7_Z,
APERFLUX7IVAR_R, and MODELMAGDIFF_1_Z.
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Table 10.8

The confusion matrix for the 5-level logistic regression model (classification accuracy: 77.528%,
average class accuracy: 43.018%).

Prediction
elliptical spiral_cw spiral_acw spiral_eo other Recall
elliptical 120,625 46 1,515 3450 95 95.939%
spiral_cw 7,986 373 4,715 2,176 30 2.443%
Target spiral_acw 8,395 435 4928 2272 35 30.673%
spiral_eo 8,719 75 1,018 28,981 78 74.556%
other 3,038 30 218 619 148 3.660%

Table 10.9

The confusion matrix for the logistic regression model that distinguished between only the spiral
galaxy types (classification accuracy: 68.225%, average class accuracy: 56.621%).

Prediction
spiral_cw spiral_acw spiral_eo Recall
spiral_cw 5,753 6,214 3,319 37.636%
Target spiral_acw 6,011 6,509 3,540 40.528%
spiral_eo 1,143 2,084 35,643 91.698%

To test the two-stage classifier, Jocelyn extracted a small ABT contain-
ing only spiral galaxies from the original ABT. Using this new ABT, Joce-
lyn trained a logistic regression model to distinguish between the three spi-
ral galaxy types (spiral_cw, spiral_acw, and spiral_eo). She used step-wise
sequential feature selection again, and this time 32 features were chosen.'®
This model was able to achieve a classification accuracy of 68.225% (with an
average class accuracy of 56.621%). The resulting confusion matrix is shown
in Table 10.9%*. Although it is evident from the confusion matrix that the model
could distinguish between the edge-on spiral galaxies and the other two types,
it could not accurately distinguish between the clockwise and anti-clockwise
spiral galaxies.

18 The features selected were AE_I, APERFLUX7IVAR_R, CMODELFLUXIVAR_U, DEV-
ABERR_G, DEVABERR_zZ, DEVAB_G, DEVAB_.I, DEVFLUXIVAR_.U, DEVMAGERR_U,
DEVRAD_G, DEVRAD.U, DEREDDIFF_.U.G, EXPABERR.U, EXPAB_G, EXPMAG._Z,
EXPRADERR_U, FIBER2FLUXIVAR_R, FIBER2MAG_I, FIBERFLUXIVAR_G, FIBERFLUX_G,
FIBERFLUX_R, FIBERFLUX_Z, LNLDEV_R, MCR4_z, MEIE1ERR_Z, MEI_U, MODEL-
MAGDIFF_R_I, PETROMAGDIFF_R_I, PETROR90_R, PSFMAG_U, SKYIVAR_U, and U_R.
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Table 10.10

The confusion matrix for the 5-level two-stage model (classification accuracy: 79.410%, average
class accuracy: 53.118%).

Prediction
elliptical spiral_cw spiral_acw spiral_eo other Recall
elliptical 117,339 76 2,510 5,716 90 93.326%
spiral_cw 2,354 4,859 5242 2,802 23 31.799%
Target spiral_acw 2,473 5,079 5499 2990 25 34.229%
spiral_eo 5,985 965 1,760 30,102 60 77.439%
other 1,757 98 341 834 1,022 25.222%

In spite of the model’s difficulty distinguishing between the clockwise and
anti-clockwise spiral galaxies, Jocelyn did perform an evaluation of the two-
stage model. This model first used a 3-level logistic regression model to distin-
guish between the elliptical, spiral, and other target levels. Any objects clas-
sified as belonging to the spiral target level were then presented to a model
trained to distinguish between the three different spiral types. The two-stage
model achieved a classification accuracy of 79.410%. The resulting confusion
matrix is shown in Table 10.10%.

Although the performance of the two-stage model was better than the perfor-
mance of the simpler 5-level model, it still did a very poor job of distinguishing
between the different spiral galaxy types. Jocelyn discussed this model with
Edwin, and they both agreed that the performance was not at the level required
by the SDSS scientists for inclusion in the SDSS processing pipeline. It would
most likely be possible to create a model that could distinguish between the
clockwise and anti-clockwise spiral galaxies, but this would probably require
the calculation of new features based on the application of image processing
techniques to the raw galaxy images. Based on the time available to the project,
Jocelyn did not pursue this avenue and, in consultation with Edwin, decided
to continue with just the 3-level model. The best performing model was the
3-level logistic regression model after feature selection (the performance of
this model is shown in Table 10.7(b)*). With this model selected as the best
performing approach, Jocelyn was ready to perform the final evaluation exper-
iment.
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Table 10.11

The confusion matrix for the final logistic regression model on the large hold-out test set (classifi-
cation accuracy: 87.979%, average class accuracy: 67.305%).

Prediction
elliptical ~ spiral other Recall
elliptical 251,845 19,159 213 92.857%
Target spiral 25,748 128,621 262 83.179%
other 4,286 2,648 2,421 25.879%

10.5 Evaluation

The final evaluation that Jocelyn performed was in two parts. In the first part,
she performed a performance test of the final model selected—the 3-level
logistic regression model using the selected feature subset—on the large test
dataset mentioned at the beginning of Section 10.4"®. This dataset had not
been used in the training process, so the performance of the model on this
dataset should give a fair indication of how well the model would perform
when deployed on real, unseen data. The confusion matrix resulting from this
test is shown in Table 10.11%%. The classification accuracy was 87.979% (with
an average class accuracy of 67.305%), which was similar to performance on
the training data and well above the target that Jocelyn and Edwin had agreed
on at the beginning of the project.

The purpose of the second part of the evaluation was to encourage confi-
dence in the models that Jocelyn had built amongst the SDSS scientists. In
this evaluation, Edwin and four of his colleagues independently examined 200
galaxy images randomly selected from the final test set and classified them
as belonging to one of the three galaxy types. A single majority classification
was calculated from the five manual classifications for each galaxy. Jocelyn
extracted two key measurements by comparing these manual classifications to
the classifications made by the model she had built. First, Jocelyn calculated
an average class accuracy by comparing the predictions made by her model
for the same 200 galaxies with the manual classifications made by the SDSS
scientists. The average class accuracy was 78.278%, which was similar to the
accuracies measured on the overall test set.

Second, Jocelyn calculated an inter-annotator agreement statistic for the
manual classifications given by the five SDSS scientists. Using the Cohen’s
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kappa!® measure of inter-annotator agreement to measure how closely the
manual classifications matched each other, Jocelyn calculated a measure of
0.6. Jocelyn showed that even the SDSS scientists themselves disagreed on
the types of certain galaxies. This is not uncommon in this kind of scenario,
in which the classifications have a certain amount of fuzziness around their
boundaries—e.g., the exact line between an elliptical and a spiral galaxy can
be hard to define—and led to very interesting discussions for the scientists!

Together the strong performance by the model on the large test dataset and
the confidence built through the manual annotation exercise meant that Edwin
and his colleagues were happy to integrate the 3-level model into the SDSS
processing pipeline.

10.6 Deployment

Once Edwin had approved the models that Jocelyn had built, Jocelyn met again
with Ted to begin the process of integrating the models into the SDSS process-
ing pipeline. This was a reasonably straightforward process with just a few
issues that needed discussion. First, Jocelyn had put the SDSS data through
a preprocessing step, standardizing all descriptive features. The standardiza-
tion parameters (the mean and standard deviation of each feature) needed to be
included in the pipeline so that the same preprocessing step could be applied
to newly arriving instances before presenting them to the models.

Second, a process was put in place that allowed manual review by SDSS
experts to be included in the galaxy classification process. One of the advan-
tages of using a logistic regression model is that along with classifications, it
also produces probabilities. Given that there are three target levels, a predic-
tion probability of approximately 0.333 indicates that the prediction made by
the model is really quite unsure. A system was put in place in the SDSS pro-
cessing pipeline to flag for manual review any galaxies given low probability
predictions.

Last, a strategy needed to be put in place to monitor the performance of
the models over time so that any concept drift that might take place could
be flagged. Jocelyn agreed with Ted to put in place an alert system using the

19 The Cohen’s kappa statistic was first described in Cohen (1960). Using the Cohen’s kappa
statistic, a value of 1.0 indicates total agreement, while a value of 0.0 indicates agreement no
better than chance. Values around 0.6 are typically understood to indicate an acceptable level of
agreement, although the exact nature of what is and is not acceptable is very task dependent.
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stability index. This would raise an alert whenever the stability index went
above 0.25 so that someone could consider retraining the model.
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