
1Conformation-Based Computing: A Rationale and a Recipe

Michael Conrad and Klaus-Peter Zauner

1.1 Objectives

Biological systems possess enviable information processing abilities, which are rooted

in the self-organization of context-sensitive building blocks. Molecular computing

can utilize this principle. Our objective in the present chapter is to show that this

opens up a realm of information processing that is inaccessible to programmable

machines. Our second objective is to present a tabletop prototype that illustrates a

methodology for pursuing this direction.

Algorithmic complexity theory provides a framework for elucidating the compar-

ative capabilities of programmable and nonprogrammable systems. Programmable

architectures are amenable to a more compressible description, concomitant to the

fact that they must conform to a simple user manual. To implement complex input-

output behavior, it is necessary to supply a complex program. The programmer

therefore must be the source of complexity. Biomolecular architectures are sharply

di¤erent: Complexity is inherent. The capabilities are constructed by orchestrating

a repertoire of complex components through an adaptive process. The number of

functions that can be implemented is limited by the time available for adaptation and

may not be larger than that in programmable systems. In this chapter, we will argue

that the complexity of the actual achievable behavior is greater.

John von Neumann (1951) referred to such noncompressible complexity in a dis-

cussion of the visual cortex:

It is not at all certain that in this domain a real object might not constitute the simplest de-
scription of itself, that is, any attempt to describe it by the usual literary or formal-logical
method may lead to something less manageable and more involved. (1951, 24)

In our case, the real objects are proteins. We will show that it is possible to utilize the

conformational dynamics of proteins to process input signal patterns—though at this

stage not in a manner that transcends formal description.

1.2 Algorithmic Complexity Rationale

Digital computers are commonly referred to as general purpose machines. The

seeming implication is that with su‰cient memory and operating speed it should be

possible to implement any computable process on such a machine. The concept of

computation universality, originally expressed in terms of the Turing model of com-

putation, captures this idea. For the present purposes, the Turing formalism can be



equated to a digital machine with no a priori limit on available memory and time.

Such an idealized machine would be capable of computing any computable function.

Realizable machines are, of course, finite. The memory available may not be suf-

ficient to perform the desired computation; or the computation might require an

unacceptable span of time. Here we are especially concerned with a further limita-

tion: The size of the program that can be presented to the machine is also subject to

practical restrictions.

The above distinction, between limits on processing capacity and program size,

has an important implication. Even if processing speed and memory space could

be increased indefinitely, a large class of information processing tasks would still be

inaccessible. The programs, or maps describing the input-output behavior of the

system, can be too large to practically specify.

Let us take as a computer any system that, starting from a state that encodes a

problem description, will change to a state interpretable as the solution of the prob-

lem. The limited precision and limited dynamic range of the computer’s components,

together with the requirement of a finite response time, restrict any computer to a

finite set of discernible inputs and a finite repertoire of outputs.

A deterministic computer is a physical realization of a function that takes an input

signal pattern as argument and returns as the value the associated output signal

pattern. To make the computer perform a desired task, it is necessary to specify the

appropriate function. The specification may be provided explicitly by programming

or, in the case of an adaptable system, implicitly through training. In either case, the

specification has to select the desired system behavior from the set of potential

behaviors.

Consider a deterministic computer that is supposed to respond to each n-bit input

pattern with an appropriate m-bit output pattern. The function that maps the input

into output can, in principle (and for small values of n also in practice), be described

by a table. The table would have 2n rows, one for every possible input, and each row

would contain the pattern that the computer should output in response to this input.

Programming a computer requires that the table it should implement be communi-

cated to it.

The amount of information necessary to specify the input-output map is given by

the number of bits needed to select one specific table from the set of all possible

tables. There are 2n rows corresponding to the possible inputs in the table, and any

one of the 2m possible outputs may be assigned to each row. This gives rise to 2ðm2 nÞ

possible tables. Selecting an arbitrary table from this set requires a specification that

is log2½2ðm2 nÞ� ¼ m2n bits long (Ashby 1968). The important implication is this: Even

for input patterns of very moderate size, it will almost always be impossible to pro-

2 Michael Conrad and Klaus-Peter Zauner



gram a computer to perform a map arbitrarily selected from the set of possible maps.

For example, consider a pattern of the size of a single character on a computer

screen, say 10� 10 black and white pixels (n ¼ 100 bits), and suppose we want to

classify such tiny images according to whether or not they contain a certain feature

(meaning that m ¼ 1 bit). This could require a program 1020 gigabytes in length.

On the surface, it might seem that for any particular job required, it should be

possible to devise an appropriate program of practical size. The following consid-

erations from algorithmic complexity theory reveal that programming a ‘‘general’’

purpose computer is in fact practical only in very special situations.

In the example considered above, every row of the table that describes the classifi-

cation of the 10� 10 pixel images has a 1-bit entry indicating the presence or absence

of the feature. The content of the table corresponds to a binary string of length equal

to the number of rows in the table. Chaitin (1966) asked the question: How long

would a program need to be in order to generate such a sequence? For our pur-

pose, we can take the ability to generate the contents of the table as equivalent to the

capacity to implement the input-output map described by the table. Some classi-

fications have short programs. If we want each input image to be classified according

to whether it is all black, then all but one row in the table will contain the same bit.

A program much shorter than the explicit table will be su‰cient to generate the

table. This corresponds to the fact that the table is highly compressible—the pro-

gram being a compressed description of the table. The algorithmic complexity of the

table is defined as the length, up to an additive constant, of the shortest program

required to generate it (Li and Vitányi 1997). The additive constant reflects di¤er-

ences in machine architecture that, from a practical point of view, can have an im-

mense impact as the constant becomes large (Kampis 1991).

For most tables, no significant compression is possible, as can be seen from a

simple counting argument (Chaitin 1974). Under the assumption that (due to the

capacity of the machine or its programmers) the longest practical program is limited

to a length of b bits, there exist only 2b distinct programs. The fraction h of tables

describing n bit inputs mapped to m bit outputs, which can be compressed to a b-bit-

long specification, is therefore at most

h ¼ 2ðb�m2 nÞ

Furthermore, this maximum value of h can only be achieved if the machine archi-

tecture is not degenerate in the sense that two or more distinct programs yield iden-

tical input-output behavior.

The above equation shows that, in practice, only a very small fraction of the

conceivable information processing tasks can be implemented by programming a

Conformation-Based Computing 3



putatively general-purpose computer. However, the compressibility of the tables is

relative to the machine architecture on which they are specified. Di¤erent archi-

tectures can bring di¤erent input-output behaviors within reach of practical specifi-

cations. An extreme example would be a machine specifically constructed to solve a

single large problem instance (Zauner and Conrad 1996).

Every realizable information processing machine can only implement a small sub-

set of the possible input-output transforms and is therefore a special-purpose device

(Zauner and Conrad 2001). The common computers, often naively assumed to be

general purpose, are in fact specialized devices that have been designed to implement

the narrow class of highly compressible input-output maps.

1.3 Trade-O¤ Principle

The comparative limits of programmable and nonprogrammable architectures can be

stated in terms of a trade-o¤ principle: Programmability, e‰ciency, and evolutionary

adaptability are incompatible. A system, to achieve high programmability, must

trade o¤ e‰ciency and evolvability.

A computing system is programmable if the initial state and a chosen set of for-

mally defined state transition rules can be explicitly invoked. The programmer com-

municates the intended relations among the system states to the system, which in

turn interprets the rules in rigid adherence to a finite user manual. If the program-

mability is bound into the material structure of the system, we will refer to it as struc-

tural. Material physical systems generally have self-organizing dynamics, hence a will

of their own that is incompatible with prescriptive programmability. The computer

designer must quench these self-organizing aspects in order to achieve a physical re-

alization of a formal system. Information processing systems, however, do not need

to be programmable; functionality can be molded through adaptive procedures.

We can phrase the programmability-e‰ciency trade-o¤ in terms of interactions.

To be as generous as possible, let us make the assumption that elementary particles

can serve as active components in a computing system and the system contains n

such particles. The potential function of the system can call on as many as n2 inter-

actions. If the system is structurally programmable, the input-output behavior of

components should remain the same as more components are added. This is only

possible if the components have a fixed number of possible inputs. Thus the number

of allowable interactions scales as Cn, where C is a constant. The fraction of inter-

actions available for problem solving falls o¤ as C=n as the number of components

increases. If the system is run in a serial mode, therefore in an e¤ectively program-

mable mode, the fallo¤ is even faster (i.e., as K=n2, where K is the number of com-

4 Michael Conrad and Klaus-Peter Zauner



ponents that can be active at any given time). If quantum features are pertinent

to the system’s problem solving, interference e¤ects among the possible states of

the particles must also be considered, further increasing the disparity between the

potential complexity of natural systems and systems configured to be structurally

programmable. The assumption that single particles could act in accordance with a

finite user manual is of course quite unreasonable. As the number of particles per

component decreases, it becomes increasingly likely that the system will self-organize

in a way that escapes a simple user manual description (Conrad 1995).

The trade-o¤ principle is intimately connected to the compression issues consid-

ered in section 1.2. The salient point is that all structurally programmable archi-

tectures must have a highly compressible description in order to conform to formal

rules specified in a simple user manual. Constructing a formal component calls for a

large number of particles, because this requires quenching of self-organizing charac-

teristics that deviate from the user manual. A large number of such formal and hence

low-complexity components is needed to build a system with complex behavior.

E‰ciency in terms of the necessary number of particles will therefore be low. In

short, to make a heavyweight architecture out of lightweight components, the system

must be large.

The conflict between structural programmability and evolutionary adaptability

can also be understood in terms of compression. In a program that is a highly com-

pressed description of the system’s behavior, a change in any single bit will, in gen-

eral, have radical e¤ects on the behavior of the modified program. The program

ordinarily describes an input-output table that is much larger than the program. Any

bit modification in the program will, in general, alter many bits in the input-output

table. Of course, the uncompressed input-output table can always be changed grad-

ually (bit by bit). But it is only possible to act on this table through modifications of

the program—hence the gradualism requirement for evolutionary adaptability cannot,

in general, be satisfied. If biological systems were amenable to a highly compressed

description, they would a fortiori be unsuitable for evolutionary adaptation.

The trade-o¤ principle does not assert that structural programmability absolutely

precludes evolutionary adaptability. Biological systems in nature are clearly highly

evolvable. In principle, it should be possible to use a structurally programmable

machine to simulate the structure-function plasticity that allows for this evolvability.

As long as mutations are restricted to the virtual level, rather than to the program

as encoded in the state of the base machine, it would be possible to duplicate the

requisite evolvability. But this comes at a computational cost; the computational

work required to simulate plastic structure-function relations puts a severe practi-

cal limit on the degree of evolvability that can be retained. In e¤ect, the simulation

Conformation-Based Computing 5



program is a decompression of some highly compressed program that could do the

same job as the simulated system. The decompression, if appropriately introduced,

reduces the fragility of the program.

The decompression has an equivalent in the interaction picture. Redundancy in the

number of components and interactions among them serves to bu¤er the e¤ect of

mutation on features of the system critical for function (Conrad 1979). This is not an

entirely general fact; it is restricted to a subclass of systems with self-organizing

dynamics. Protein folding, in particular, fits this picture. As the length of the amino

acid chain increases or as more amino acids with similar properties are available for

substitutions, the chance that a mutation will be acceptable increases. Without self-

organization, the introduction of redundancy would only yield fault tolerance, not

the topological distortability necessary for transformation of function (Conrad 1983).

The structure-function relations that enable high e‰ciency and high evolvability

require context-sensitive components. This sensitivity of the components’ behavior to

their environment is in sharp contrast to the precisely defined and therefore context-

free components of structurally programmable systems. Nevertheless, networks of

context-free components run in a parallel mode can also exhibit self-organization, as

in the case of artificial neural networks. The self-organization, however, causes a loss

of e¤ective programmability. With the main advantage of rigidly defined compo-

nents lost, there is no reason to restrict the architecture of the network to context-free

components. Instead, context-sensitive components that open the path to high e‰-

ciency and high evolvability can be employed.

The trade-o¤ principle suggests that there are two sharply di¤erent modes of

computing: the high programmability mode versus the high e‰ciency, high adapt-

ability mode. Biological systems, because they are the products of evolution, must

operate in the latter. The remainder of this chapter will focus on initial concrete steps

in the direction of artificial systems that operate in the biological mode.

1.4 Pertinent Molecular Properties

The trade-o¤ principle asserts that systems with nonprogrammable structure-function

relations are capable of implementing transforms that are too complex to embody in

general-purpose (programmable) architectures. The physical dynamics of such sys-

tems, suitably interpreted, e¤ectuates the computation. Conceivably many types of

physical dynamics could be utilized in this manner. Macromolecules a¤ord a partic-

ularly powerful combination of properties (see table 1.1).

The main property is folded shape. This requires long, nonconjugated polymers

(because rotation around single bonds is necessary). Carbon, the atom of life, sup-

6 Michael Conrad and Klaus-Peter Zauner



ports this requirement. Silicon, the only competitor for carbon in this respect, is

rather inferior (Henderson 1913; Conrad 1994b).

The C-C bond energy is about the same as for bonds with H or O. The energy

required to break the Si-Si bond is only about half as much as the energy required to

break Si-H and Si-O bonds. The number of carbon-based structures that are possible

is accordingly much greater than is possible with silicon (Sidgwick 1950; Edsall and

Wyman 1958). The longer chains possible with carbon allow for a greater variety of

folded shapes.

The well-known lock-key metaphor (Fischer 1894) for enzyme-substrate recogni-

tion is based on this fact of folded shape. Proteins must be big enough to have sig-

nificant shape features (not true for individual atoms) but small enough to scan each

other’s shapes through di¤usion (which we can refer to as Brownian search). The

shape fitting is in reality dynamic; conformational motions are critical to the rate of

complex formation and (in the case of catalysis) complex decomposition. The con-

formational motions are sensitive to a variety of milieu features (e.g., temperature,

ions, control molecules). The prototype device that we will shortly turn to utilizes this

context selectivity for signal pattern recognition.

As in all chemical reactions, thermal fluctuation (heat motion) is sine qua non. The

term Brownian search, used above, is intended to suggest its computational signifi-

cance. Recall the discussion of complexity: Complexity must either be provided in a

program fed to a system from the outside or it must have self-organizing dynamics,

Table 1.1
Computationally important properties of macromolecules

Property Draws on Confers

Folded shape Long flexible chains, weak
bonding, rotation around single
bonds

Specificity, self-assembly

Conformational dynamics Folded shape Milieu sensitivity, allosteric control

Well-defined ground state Individual molecules (not
statistical ensembles)

Precisely duplicatable nonlinearity,
specific shape

Brownian motion Specific shape, low mass, heat bath Cost-free search

High evolvability Combinatorial variety, high
dimensionality

Diverse repertoire of specialized
functions

Specificity with speed Defined shape, Brownian motion Low dissipation pattern
recognition

Supramolecular structure Self-assembly, free energy
minimization

Rich, extended 3-D architecture

Diverse specificities Building block principle, heat
bath, folded shape

Heterogeneous organization,
dynamic complexity

Conformation-Based Computing 7



therefore nonprogrammable structure-function relations. Protein folding and com-

plex formation are prime examples. The heat bath is a potent source of complexity.

The amino acid sequence draws on thermal fluctuations to explore itself in the fold-

ing process. The folded structure draws on thermal fluctuations to explore molecules

with which it interacts in the complex formation process. In general, physical self-

organization is based either on energy minimization or entropy maximization. The

randomness of the heat bath is an essential ingredient in both cases. If entropy max-

imization is the controlling feature, the fluctuations allow the system to assume a

greater number of structural forms. If energy minimization dominates, thermal en-

ergy must be given up to the heat bath in an irreversible way. From the point of view

of algorithmic complexity theory, the complexity of a pattern or process increases

as the size of the shortest program required to generate it increases—that is, as its

description becomes less compressible. Of all phenomena considered in physics, per-

haps the heat bath has the most incompressible description.

The combinatorial variety of carbon compounds is another powerful virtue. The

number of possible amino acid or nucleotide sequences is hyperastronomically large.

The important point is that the notion of a general-purpose system takes on a

new guise. Conventional electronic machines are constructed from simple standard

building blocks—for example, NAND gates. Biological systems, in contrast, are

built from an extremely large variety of macromolecular species, each capable of

performing a specific complex transform. Cells and organisms with di¤erent input-

output behaviors arise through adaptive processes that modify the proteins in the

repertoire or that express these proteins in di¤erent combinations.

The high evolvability of proteins is requisite for the e‰cacy of the adaptation

process. Again, folding is the key feature, because it allows for structure-function

malleability. As noted in section 1.3, there is an intimate connection between evolv-

ability and complexity. If protein folding could be described by an extremely com-

pressed program, therefore a simple process from the algorithmic complexity point of

view, then the structure-function relations would approach programmability and

would be fragile. Most mutations would be cataclysmic. Evolutionary considerations

thus imply that folding and (chemical) complex formation are complex processes in

the algorithmic sense. At the same time, the introduction of redundant amino acids

in the sequence and the utilization of amino acids with high replaceability serve to

bu¤er the e¤ect of mutation on conformational features critical for function (Conrad

and Volkenstein 1981).

Sometimes the argument is put forward that biological molecules are insu‰ciently

reliable for computing. The opposite is actually the case. Single molecules have defi-

nite ground states, as opposed to the macroscopic switches from which conventional

8 Michael Conrad and Klaus-Peter Zauner



computers are built. The latter are built from statistical aggregates of particles and

are therefore subject to erosion. The reliability issue is rather subtle, because it is

clear that with solid-state components, it is possible to perform many repetitive

operations and to do so rapidly. But if we want to build a reliable information pro-

cessing system out of nonlinear base components, the capability for reproducing the

nonlinearity in a highly precise manner is absolutely critical. This is infeasible with

conventional electronic or other macroscopic components, simply because it is im-

possible to exactly duplicate a statistical aggregate of particles, let alone preserve

their nonlinear characteristics on an operational time scale. The discrete amino acid

sequences that determine the function of proteins can be precisely specified. This is

su‰cient, at least for a large class of sequences, to uniquely determine the folded

shape and the set of available conformational states. The shape (or conformation), of

course, changes when the protein interacts with its environment, but the existence of

a ground state and, more generally, discrete energy levels confer precision that is

unobtainable with macroscopic processing elements.

1.5 Example: Protein Solubility as a Language

As a preliminary step, let us consider a transformation that is easy to implement with

macromolecules but di‰cult with programmable machines. Practically speaking, any

ab initio calculation of the properties of even a small cluster of particles outpaces

programmable computational capabilities. For the present purpose, however, we

would like to consider an example of a problem that typically arises in computer

science—namely, the problem of deciding whether or not a sequence of symbols

belongs to a given set of sequences. Such sets are considered in formal language

theory. The question is whether it is possible to construct a machine, subject to given

constraints, that can recognize the language. For example, the constraint might be

that the machine is a finite automaton (as are actual computers).

Consider a language L in which the elements are protein sequences that satisfy a

certain property (Davidson and Sauer 1994; Prijambada et al. 1996; Yamauchi et al.

1998). The alphabet of such a language would be a set of amino acids—for instance,

the twenty amino acids that are the predominant building blocks of natural proteins.

We can choose solubility S in water as the property that has to be satisfied by a

sequence p composed of the amino acids that constitute the alphabet (S). The con-

ditions c of the process must be fixed (e.g., temperature, pressure, pH, and cosolutes;

Laidler and Bunting 1973; Cacace, Landau, and Ramsden 1997). Formally, we can

write

Conformation-Based Computing 9



L ¼ p A S�:ScðpÞ > x; jpjawf g

where L denotes the language, x is a fixed solubility threshold (massprotein=masssolvent),

and we assume that length (jpj) of the sequence of amino acids does not exceed some

constant w. The important point is that Sc is a physical and not a formal condition.

In principle, a computer of su‰cient size and speed should be able to answer the

question whether a given sequence p is a member of L. In practice, however, per-

forming physics calculations to answer the membership question for the above lan-

guage by implementing formal rules is not e‰cient. To decide the membership of a

sequence in this language, the properties of the (possibly folded) amino acid sequence

need to be known, thus the language encodes the protein-folding problem. Calling on

calculational methods of physics to solve this problem is clearly daunting; however, it

is also possible to decide the membership by actually synthesizing the protein with

the sequence in question and measuring its solubility. The synthesis and measure-

ment procedure could be automated. The resulting machine can easily decide for any

particular sequence presented to it whether it belongs to L, in e¤ect performing a

computation that may well exceed the practical capabilities of presently available

general-purpose machines.

1.6 Macro-Micro Interface

Language-recognition problems of the type considered above can be viewed as pat-

tern-recognition problems. The patterns might be computer codes that have to be

compiled. Or they might be objects in the world—say, chairs. If all (and only) chairs

were marked with a standard printed ‘‘C,’’ then it would be easy for a digital com-

puter to say ‘‘yes’’ whenever it is presented with a chair and ‘‘no’’ whenever it is

presented with some other object. Without such preprocessing, however, no existing

computer program can do this job. The morphology of chairs is too ambiguous and

variable. The required program, though it might exist, is too complex to express in a

reasonably compressed way, even assuming that we knew how to write it at all. Yet

humans perform this transformation with relative ease.

The protein solubility example was intended to show that molecules can be used

to perform transformations that are refractory to programmable machines. But of

course that example is far from using this power to address any problem of interest.

To do so, the molecular level needs to be connected to the external world and the

transformation needs to be adapted into a useful function.

We will return to the adaptation issue in section 1.9. Here, it is pertinent to con-

sider the general requirements for input and output (Conrad 1984, 1990). In biologi-

10 Michael Conrad and Klaus-Peter Zauner



cal cells, the signals that represent the patterns to be recognized could come from

either the internal milieu or the environment. The former case is pertinent to regula-

tion and the latter to perception-action activities. Three levels of scale are involved:

macro, meso, and micro. The signals from the environment are generally macro-

scopic on some dimension of scale (energy, mass, dissipation, time, space) or repre-

sent features of the world that are macroscopic. The nerve impulse, for example, is a

macroscopic signal. Signals inside the cells (say, di¤usion of substances) can be either

macroscopic or mesoscopic. The signals constitute the milieu patterns, or context, to

which proteins and other biological macromolecules respond. Because these mole-

cules must be su‰ciently large to have significant shape features (and shape dynam-

ics), they can be classified as mesoscopic. But the nuclear coordinates couple with the

electronic coordinates, so that we also have to think in unambiguously microscopic

terms (Conrad 1994a). In short, we have downward flow of influence from the macro

to the meso to the micro.

This downward flow is complemented by an upward flow, triggered by the

response of the macromolecule or macromolecular aggregate—say, a catalytic re-

sponse in the case of an enzyme or a mechanical response in the case of a contractile

unit. For the present purpose, it is su‰cient to think in terms of enzymes. The chem-

ical changes produced in the milieu link the activity of di¤erent enzymes. The

linking chemicals can be thought of as signals, either because they provide context or

because they serve as common intermediates. The communication between the pro-

cessing macromolecules is thus essentially at a mesoscopic level. Macromolecules can

also communicate through direct conformational interactions, in which case the sig-

nal energies are in the micro domain. Biological cells are replete with receptors that

convert signals representing macro features of the external environment to internal

signals that can be brought into the web of meso- and microlevel processing.

The amount of computational work performed at the meso- and the micro-

levels should be as great as possible, due to the thermodynamic cost of producing

macroscopic signals. Enzymes, as catalysts, are thermodynamically reversible; their

pattern-recognition work is free, driven only by the heat bath. The dissipation in

a typical biochemical reaction can range from 10 to 100 kT . A nerve impulse

might cost 105 to 1010 kT , depending on the size of the neuron. To the extent that

processing is kept as close as possible to the microlevel, the amount of information

processing obtainable is vastly enhanced.

Macro-micro communication links are essential for any computational system that

utilizes the activity of individual molecules, as opposed to systems that employ only

statistical aggregates of particles. The signal processing activities of the medium can

itself have significant nonlinear dynamics (see chapters 3 and 4 of this volume). The

Conformation-Based Computing 11



whole medium, not just the controlling macromolecules, can then contribute to the

input-output transform. But the controlling macromolecular components are criti-

cal, because the recognition-action events would otherwise be slow and di‰cult to

mold for di¤erent functionalities. The addition of new signal substances and macro-

molecular species to the medium need not and in general does not yield an additive

response. This nonlinear component interaction is where the potential for performing

powerful context-sensitive transforms resides.

1.7 Prototype System

Recall (from section 1.4) that protein molecules are flexible chains of amino acids.

Many sequences will curl up into a compact three-dimensional shape (cf., e.g.,

White, Handler, and Smith 1968; Stryer 1988). The folded shape is stabilized by

electrostatic interactions among its atoms, but possesses at the same time a defined

agility that enables it to assume numerous conformational states. Under given phys-

iological conditions, a subset of these states is favored (Frauenfelder, Park, and

Young 1988; Freire 1998). A change in physiochemical context can induce a switch

to a di¤erent favored state. This prevalent protein behavior has two points of signif-

icance for novel information processing devices. The first is that proteins have sub-

stantial freedom to select the specific stimuli to which they respond and to associate

these with a response in an essentially arbitrary way. The intricate conformational

dynamics constitutes the second point, because this allows the protein to fuse infor-

mation in a complex nonlinear fashion that would require large numbers of conven-

tional components to duplicate.

The nonlinear conformational dynamics harbors the computational resource we

seek to exploit but at the same time precludes direct engineering of a prototype sys-

tem. An alternating sequence of exploratory and selective steps can be used instead

to sculpt desired functionality. In general, there are three levels open to exploration:

the coding of the input signals, the amino acid sequence and operational conditions

that control the protein’s capacity to fuse input signals, and the choice and inter-

pretation of the output (figure 1.1). The output could, for example, be mediated by

fluorescence probes attached to the protein. If the protein is an enzyme, however,

its catalytic activity is most often critically dependent on conformational state and

therefore provides a sensitive probe for conformation change. Changes in physio-

chemical context that alter the preferred conformational state of the enzyme will

hence modulate the speed of the reaction catalyzed by the enzyme.

Enzymes that catalyze reactions involving NAD (nicotinamide adenine dinucleo-

tide) are particularly convenient in this regard, because the oxidized form and the

12 Michael Conrad and Klaus-Peter Zauner



reduced form of NAD have quite di¤erent absorbance in the ultraviolet (UV) range.

Changes in the concentration of NADH can therefore be observed with little e¤ort

by a spectrophotometer.

We used an easy-to-tend enzyme, malate dehydrogenase (MDH), which partic-

ipates in the citric-acid cycle and is widely available. MDH catalyzes the oxidation of

malate to oxalacetate while reducing NADþ to NADH. For our purposes, we can

view MDH as an implementation of a function that takes selected features of its

physiochemical milieu as arguments and maps these into absorbance values. Di¤er-

ent compositions of the reaction milieu are thereby grouped by MDH into classes of

UV absorbance levels (Zauner and Conrad 2000). The aim is to associate input sig-

nals with milieu features in a way that results in a useful classification.

The number of potential milieu factors that could conceivably be used to encode

input signals is virtually boundless and of course not limited to chemicals of known

physiological significance. Only in exceptional cases can mechanistic kinetic models

predict the outcome of a specific signal encoding. Furthermore, the cases where

mechanistic models apply are likely to be of limited interest from a computational

point of view, because the possibility of formulating such models indicates the realm

of low-complexity behavior. Instead, empirical models of factor interactions medi-

ated by the protein are employed to discover signal encodings that yield interesting

response characteristics.

Sampling the protein’s performance under di¤erent milieu conditions allows for

the construction of a response surface for a small number of the potentially operative

factors (Box and Draper 1987; Cornell 1990). Figure 1.2 shows such a response sur-

face for MDH with respect to changes in the MgCl2 and CaCl2 concentration.

Figure 1.1
Schematic illustration of signal fusion mediated by conformational dynamics.

Conformation-Based Computing 13



The response surface, once established, can be used to analyze various signal

encodings. Di¤erent encoding schemes are evaluated according to a performance

measure. For pattern classification tasks, the minimum di¤erence in the response to

signal patterns that should be grouped into separate classes can serve as the perfor-

mance measure, to be referred to as signal strength. Only encodings yielding a posi-

tive signal strength allow for the implementation of the desired function; in general,

an encoding that maximizes signal strength is advantageous.

As a concrete example, consider the exclusive-or (XOR) operation (table 1.2). This

can be viewed as a simple arithmetic operation adding two bits without carry. It is

also the simplest pattern classification problem that is not linearly separable. For

this reason, it is used as a benchmark for learning in natural and artificial systems

(Gri‰th et al. 1968; Minsky and Papert 1969; Ellacott and Bose 1996). The XOR

operation groups patterns into one output category when both input signals are the

same and into another when the signals are di¤erent. The signal strength Ds for the

XOR operation can therefore be expressed as

Ds ¼Min½rð01Þ; rð10Þ� �Max½rð00Þ; rð11Þ�

where the function r denotes the response to the signal pattern (e.g., 00; 01; . . . ; etc.).

With this performance measure, we can ask which signal encoding best adapts the

enzymatic system to the desired input-output behavior—here the XOR operation.

The empirical response surface shown in figure 1.2 is used as the response function r.

The question is how much MgCl2 and CaCl2 should be used for the input signals to

maximize the signal strength Ds. Several encoding methods are possible. For exam-

ple, MgCl2 can be used as the signal carrier on one input line and CaCl2 as carrier

for the other input line. The XOR operation, however, is commutative and hence

there is no need to encode the signals arriving from di¤erent input lines by di¤erent

carrier substances. It is therefore possible, for example, to encode 1-signals indepen-

dent of the input line by a mixture of MgCl2 and CaCl2 and 0-signals by a di¤erent

mixture or the absence of ions. For encodings that use the same carrier substance for

both input lines, only signal encodings up to half the concentration range covered by

the response surface can be evaluated, because the carrier substances are additive

Table 1.2
Exclusive-or logic function

Input 1 0 1 0 1

Input 2 0 0 1 1

Output 0 1 1 0

14 Michael Conrad and Klaus-Peter Zauner



with respect to their contribution to the reaction milieu. Signal strengths for di¤erent

encoding methods are shown in figure 1.3 as functions of the MgCl2 and CaCl2
concentrations used to represent the signals.

The areas of positive signal strength in figure 1.3 suggest that an enzymatic XOR

based on MDH is feasible. To realize such a device, and more generally to explore

enzymes as active components for the implementation of pattern classifiers, we

constructed the experimental setup shown in figure 1.4. Small piston pumps, each

composed of a 3 cm3 syringe and two one-way valves, deliver input signals from

reservoirs to a mixing chamber. The two signal solutions, one representing 0-signals

and the other 1-signals, contain the same amount of L-malate, a substrate in the re-

action catalyzed by MDH. In addition, the solution representing the 1-signal con-

tains MgCl2, while 0-signals are represented by the absence of MgCl2. By injecting a

defined amount of MDH/NADþ solution into the mixing chamber, a reaction is

initiated. The reaction progresses while the mixture is pumped to a spectrophoto-

meter and the absorbance of the NADH produced during the transit time is recorded

as the output response.

Figure 1.5 illustrates the details of an improved version of the prototype in which

the spectrophotometer cuvette (Cv) serves as the mixing chamber, thus permitting

shorter response times and increased reliability. The injection of the enzyme solution

Figure 1.2
Empirical response surface of MDH with respect to CaCl2 and MgCl2. The dots are at concentrations
where measurements were made. The surface is obtained by interpolation. (Reprinted with permission
from Biotechnol. Prog. 2001, 17, 553–559. : 2001 American Chemical Society/AIChE.)

Conformation-Based Computing 15



Figure 1.3
Signal strengths for the XOR operation under di¤erent signal encoding schemes. The contour lines indicate
areas of positive signal strengths, therefore concentrations that make the XOR feasible. Bold contour lines
indicate an increase in signal strength of 0.1, the outermost line being 0. (A) Input line 1 releases MgCl2
when a 1-signal arrives on this line. Input line 2 releases CaCl2 under the same condition. When the input
is 0 no ions are released. Encoding the input lines by di¤erent signal substances makes it possible to utilize
the whole concentration range of the response surface. (B) Here both signal lines are encoded the same
way, with MgCl2 representing the 1-signal and CaCl2 representing the 0-signal. (C ) Input lines 1 and 2
have the same encoding. The 0- and 1-signals are both encoded with CaCl2 concentrations that conse-
quently must be di¤erent in order to obtain a positive signal strength. The symmetry of the graph reflects
the symmetry of the XOR operation with respect to negation of the input signals (cf. table 1.2). (D) In this
case the 1-signal is encoded by a mixture of MgCl2 and CaCl2 for both signal lines. The 0-signal is encoded
by the absence of these ions. (Reprinted in part with permission from Biotechnol. Prog. 2001, 17, 553–559.
: 2001 American Chemical Society/AIChE.)

16 Michael Conrad and Klaus-Peter Zauner



Figure 1.4
Experimental setup for first version of the tabletop XOR module. (: 2001 Zauner.)

Conformation-Based Computing 17



(R1/Sy1) activates microswitches (Ms1, Ms2) that provide a trigger signal for the

timing of the measurement used as the output response. A syringe (Sy4) takes up the

air displaced when the cuvette (Cv) is filled. Several T-valves (T4–T6), a water

reservoir (R4) and a peristaltic pump serve to clear the system between consecutive

signal-processing cycles.

The XOR was also implemented with the improved setup (figure 1.5). The device

was required to classify 135 consecutively presented 2-bit input patterns. The re-

sponse time (i.e., the time period from injecting the enzyme/NAD solution until the

output measurement is taken) was set to 10 sec. All 135 input patterns gave rise to

response levels that permit correct classification by a single thresholding operation

(figure 1.6). The choice of 10 sec is due to the limits of our tabletop instrumentation,

Figure 1.5
Flow diagram for direct injection version of the XOR module. Figure 1.4 shows an earlier version utilizing
a mixing chamber separate from the cuvette. (Reprinted with permission from Biotechnol. Prog. 2001, 17,
553–559. : 2001 American Chemical Society/AIChE.)

18 Michael Conrad and Klaus-Peter Zauner



not to the underlying process. The prototype demonstrates that enzymes can be

used to transform pattern classifications that are not linearly separable into simpler

(linearly separable) problems. Of more importance, it points to the feasibility of de-

veloping novel computational systems that operate on the basis of high-complexity

conformational processors.

1.8 Multienzyme Response Surfaces: A Simulated Example

The XOR demonstration points to the possibility of using networks of enzymes to

create computationally richer response surfaces. This would only be of interest if the

response of the individual components of the network interact in a nonlinear fashion.

Placing multiple enzyme species in a common milieu can then lead to a response

surface that is quite di¤erent from the summation of the surfaces yielded by the

enzymes taken in isolation.

We have developed a software simulation tool to investigate the interaction of

conformational, kinetic (reaction-di¤usion), structural, and dynamic (force) inter-

actions of protein networks in three-dimensional space that for the present purposes

can be used to illustrate this nonadditivity (Zauner 1996; Zauner and Conrad 1997).

    

 

Figure 1.6
Experimental run illustrating repeated operation of the XOR module. The absorbance output separates the
01/10 inputs from the 00 and 11 inputs.

Conformation-Based Computing 19



Recipe

Materials

UV-spectrophotometer (l ¼ 339 nm); analytic scale; adjustable micropipettes (200 ml, 1 ml); pH
meter; timer.

Malate dehydrogenase from porcine heart, as ammonium sulfate suspension (store refrigerated);
NADþ (oxidized b-nicotinamide adenine dinucleotide), as free acid (store refrigerated or frozen);
l-malic acid, as free acid; MgCl2 as magnesium chloride hexahydrate (MgCl2 � 6H2O); MOPS
(3-[N-morpholino]propanesulfonic acid); glycine (aminoacetic acid), as free acid; 10 N HCl and
10 N NaOH (for pH adjustment); pure (distilled) H2O. (Below, ‘‘water’’ always refers to pure
H2O.)

Method

1. Basis Solution for signals (120 mM glycine, 7.5 mM l-malic acid, 1 l): Dissolve 9 g glycine in
about 950 ml water. Add 1 g l-malic acid and allow to dissolve while stirring. Adjust to pH 10.5
with 10 N NaOH. Fill with water to a final volume of 1000 ml.

2. MgCl2 Solution (4 M MgCl2, 50 ml): Dissolve 40.66 g MgCl2 � 6H2O in 15 ml hot water. Let the
solution cool to room temperature. Fill with water to 50 ml.

3. Signal solutions: Add 5 ml of water to 100 ml of the signal basis solution (1). The resulting
solution is used for 0-signals. Add 5 ml of the MgCl2 solution (2) to 100 ml of the signal basis
solution (1). The resulting solution is used for 1-signals.

4. Enzyme solution (MDH/NADþ, 10 ml): Dissolve 20.93 g MOPS in about 300 ml water, then fill
up to 475 ml. Adjust pH to 7.4 with 10 N NaOH. Fill up with water to a final volume of 500 ml.
This is the 0.2 M MOPS bu¤er. Weigh 36 mg of NADþ into a test tube that can hold 10 ml fluid
and is wide enough to access with the 1 ml micropipette. Add 10 ml of the 0.2 M MOPS bu¤er and
shake to dissolve the NADþ. Add about 20 ml malate dehydrogenase suspension and shake. If the
response time for the signal processing is found to be too slow, more of the enzyme suspension can
be added to the solution.

5. The volume of the signal solutions and the reaction solution may need to be adjusted for the
particular spectrophotometer used. The minimum volume required to cover the beam path can be
determined by marking the beam at lA540 nm on a white piece of paper fixed to the cuvette. If
this volume is larger than 2.1 ml, the volume for the signals and the enzyme solution (6 and 8)
should be adjusted proportionally.

6. The input signal pattern is composed of two 0.8 ml portions taken in any combination from the
two signal solutions (3). The signal solutions are pipetted into a cuvette.

7. Set the spectrophotometer to continuously record absorbance at l ¼ 339 nm.

8. To start the processing, pipette 0.5 ml of the enzyme solution (4) into the cuvette containing the
signal solutions (6). A timer is started and the cuvette content is mixed (e.g., by inverting the sealed
cuvette or by stirring when the enzyme solution is added).

9. Record the progress of the reaction for various combinations of the input signals by repeating
steps 6 through 8. Choose a response time that will separate 00 and 11 input patterns from 01 and
10 inputs and determine the threshold level from the corresponding absorbance values.

10. Signals can now be processed using the time and threshold determined in the calibration step
(9).

Note: The above protocol can serve as a starting point to explore other signaling substances. It is
quite robust and could easily be adapted (e.g., replacing the micropipettes with disposable syringes)
for classroom use.

20 Michael Conrad and Klaus-Peter Zauner



The basic concept of the simulator is as follows. The simulation space, a three-

dimensional lattice, contains two classes of components: macrocomponents and

microcomponents. The former represent proteins, and the latter represent milieu

substances—that is, metabolites on which the proteins act catalytically, as well as

control molecules and ions that trigger conformational changes. The microcom-

ponents are represented by the integer number present in each unit cell. Each cata-

lytic or di¤usional event is associated with an integer increment or decrement of this

number.

The macrocomponents are represented in the simulation space by dodecahedra,

each consisting of up to twelve coupled finite-state automata that model active pro-

tein domains. Recognition, binding, control, and catalytic properties are assigned to

the states of these domains. The state transitions of the domains correspond to con-

formational changes. Transition probabilities depend on the local milieu, and there-

fore on the microcomponents present in the location of the dodecahedra and on

adjacent macrocomponents. The local milieu can change through reaction (cata-

lyzed by macrocomponents) and by di¤usion. The whole system forms a loop

encompassing context, conformation, and action. Milieu molecules and adjacent

macrocomponents provide the context in which enzymes function. This influences

conformation. Conformation controls action, including catalysis and structure for-

mation. Catalysis and structure formation in turn control context, and so on (figure

1.7).

For illustrative purposes, we consider two toy reactions running separately and

then consider the response of the combined reaction. The first reaction, catalyzed by

enzyme e1, is

Aþ B !e1 C þD

We assume that e1 has ten conformational states that di¤er in the catalytic activity

that they confer. The transition probabilities and activity associated with the di¤erent

states are illustrated in figure 1.8. R and S in the figure denote substances used as

milieu signals. The product D is chosen as output signal. The response surface of e1
with respect to R and S, illustrated in figure 1.9, shows that even a relatively small

number of conformational states can yield a nontrivial surface.

For the second reaction, catalyzed by enzyme e2, we take

Aþ E  !e2 F þ 2D

Here we assume that e2 has only four conformational states. As shown in the state

transition diagram (figure 1.10), the enzyme is sensitive to the same two signaling

substances, R and S, as e1. The response surface is shown in figure 1.11.

Conformation-Based Computing 21



Figure 1.7
Schematic of interactions supported by the CKSD simulator (for simplicity limited to a three enzyme sys-
tem). The enzymes (labeled by e1, e2, and e3) have from one to three states (labeled by the qi). States rep-
resent conformations. Arrows connecting states represent conformational transitions. These are typically
influenced by the milieu components (dashed arrows) and also may be influenced by direct interactions
between two enzymes (dashed arrow from e2 to e1). Specific conformational states catalyze milieu reactions
(indicated by bent arrows). Enzymes in complementary conformational states may self-assemble to form
quaternary structures (indicated by the double arrow between e1 and e2). Note that the transitions of dis-
tant enzymes may be coupled through their catalytic e¤ect on the milieu.

Figure 1.8
Conformational transition used to simulate enzyme e1. The diagram is not based on any actual enzyme.
The numbers below the state name indicate the relative catalytic activity of the state. Capital letters on the
transitions refer to metabolites and signal molecules. The transition probabilities in the presence of these
molecules is specified by superscripts.

22 Michael Conrad and Klaus-Peter Zauner



Figure 1.9
Simulated response surface for enzyme e1 with respect to signaling substances R and S. The product D is
used as the output value. The values in the diagram show the actual number of molecules present in the
simulation space. The latter contained 200 e1 enzymes distributed on a 61� 61� 21 lattice.

Figure 1.10
Conformational transition diagram for enzyme e2. See caption of figure 1.8 for explanation.

Conformation-Based Computing 23



Now suppose that both enzymes are introduced into the reactor. As can be seen

from the reaction schemes above, e1 and e2 will then compete for substrate A and

both will contribute to the output signal D. Furthermore, they a¤ect each other’s

conformational transitions via the products C, D, and F (see figures 1.8 and 1.10).

The resulting response surface is shown in figure 1.12. The response obtained by

combining the enzymes cannot be easily predicted from knowledge of the response of

the individual enzymes. This nonadditivity precludes the possibility of using a sim-

pler user manual to anticipate the e¤ect of adding components on the input-output

map of the system. From our point of view, this means that it should be possible to

build up molecular signal-processing modules that can implement transforms that

cannot be achieved by linking the processing components in a context-independent

way. The joint system self-organizes into a de novo transform.

1.9 Architectures and Adaptive Procedures

The tabletop prototype discussed in the previous section can be thought of as an ex-

treme abstraction of the recognition-action dynamics of a biological cell. The cell is

crudely pictured as a mixing chamber. The syringes roughly correspond to receptors

that serve to introduce signaling substances into the chamber. The enzyme is the

primary processing component, acting on the medium to trigger an output signal

that could potentially control an action.

Figure 1.11
Simulated response surface for enzyme e2. The space contained 300 e2 enzymes; cf. figure 1.9.

24 Michael Conrad and Klaus-Peter Zauner



As noted above, more enzymes and signaling substances could be added. Alterna-

tive designs are possible—for example, designs with enzymes that are embedded in a

matrix in an ordered way. The potential nonadditivity of the superposed response

surface increases, thereby increasing the complexity of the transformation. The goal

is to create a repertoire of high-complexity basis functions for implementing input-

output transforms that cannot be accommodated by programmable architectures (as

discussed in section 1.2).

Three issues arise: how to migrate the tabletop prototype to a chip, how to gener-

ate a useful repertoire of transformations, and how to use these chips as molecular

coprocessors for a conventional architecture or to organize them into novel archi-

tectural designs.

Current advances in lab-on-a-chip technology open up a number of possible

migration pathways. Figure 1.13 visualizes one of these (Zauner and Conrad 1997).

This coprocessor comprises two layers; a molecular layer that contains the macro-

molecules and milieu components, and an optoelectronic layer that serves as the

input-output interface. The molecular layer could be a sealed fluid film, gel matrix,

or Langmuir-Blodgett film (Blodgett 1935). Proteins could be embedded in the

film and materials moved around using microfluidic techniques (Hadd et al. 1997;

Chohen et al. 1999; Unger et al. 2000). Specific molecular components are selected

to couple the molecular layer to the optoelectronic layer for input and output.

A pattern of light signals introduces the pattern to be classified. The induced pattern

Figure 1.12
Combined response surface resulting from interaction between enzymes e1 and e2.

Conformation-Based Computing 25



of milieu features is then fused by the conformational dynamics of the embedded

proteins.

The resulting conformation change produces spectroscopically identifiable signals,

either directly or indirectly through catalytic change in the concentration of a light-

absorbing substance. The optoelectronic layer would include integrated optics (e.g.,

waveguides, gratings) for coupling to the molecular layer and could incorporate

integrated circuits for interfacing with a conventional electronic environment. Activ-

ities of multiple proteins in the molecular layer could be used for readout, but this

depends on spectrophotometers with parallel capabilities in an appropriate wave-

length range to come on-line. The choice of parameters for readout of the dynamics

constitutes the interpretation.

The second issue concerns the adaptation of the physical dynamics and the inter-

pretation. The tuning of our tabletop prototype was done by varying the substances

used for coding of the inputs and essentially by ad hoc variation of the substrate

concentration. A response surface was then constructed that could be used to elicit

di¤erent functionalities, attention being focused in the present case on the two-

variable logic functions (because only two input lines were used). The number of

signal substances could be increased. The number of enzyme species included could

be increased and their type varied. New macromolecular species could be evolved

with specific capabilities—using, for example, protein-engineering techniques (Beau-

dry and Joyce 1992; Gao et al. 1997). The combinatorics clearly grows explosively,

as it does in natural biological evolution. Response-surface methodology (Box and

Draper 1987) can be used to prune this gigantic search space. The surfaces would be

explored for features that could provide useful input-output transformations and the

next steps of variation could be focused on the most interesting regions of the sur-

face. The whole process can be automated.

The technology is available for this development program, but the evolution of

suitable transforms must, of course, be a long-term, continuing process. As a first

step, we envisage the development of a limited class of modules that can serve as

Figure 1.13
Hypothetical molecular coprocessor combining microfluidics and integrated optoelectronics. (Reproduced
with permission from Optical Memory and Neural Networks 1997, 6: 157–173. : 1997 Allerton Press, Inc.)

26 Michael Conrad and Klaus-Peter Zauner



molecular coprocessors for conventional machines. These could be used as pre-

processors to transform complex input patterns into rigidly defined output patterns

that can be rapidly processed by digital techniques. The conventional architecture

would provide the procedural capabilities, but these would be complemented and

synergized by the self-organizing dynamics of the molecular coprocessors.

As more molecular basis functions become available, it should be possible to build

up an architecture with a more neuromolecular character. Artificial neural net-

works are essentially built up out of a set of fairly simple transforms. The situation

in the brain is arguably quite di¤erent. The neuronal units exhibit a diversity of

capabilities that draw on internal molecular dynamics. Complex interweavings of

self-organization and procedural processes mediate what, according to our earlier

considerations, are the high complexity programs that cannot be accommodated by

conventional architectures.

Our group has developed a virtual system, referred to as the artificial neuro-

molecular (ANM) architecture, along this line (Chen 1993). The system consists of

neurons controlled by an internal signal integration mechanism modeled after the

neuronal cytoskeleton. Read-in elements represent molecules of the input layer in a

molecular chip; readout elements correspond to molecules that trigger output firing.

Neurons fire when a locus occupied by a readout element is su‰ciently activated.

The input-output transform performed by the neuron is adapted by varying internal

parameters (read-in locations, readout locations, structure of the signal integration

network) and varying the connections to other neurons. A repertoire of special-

purpose transforms is thus created. Memory manipulation mechanisms that are

essentially procedural in nature are then used to orchestrate the di¤erent neuron

types into assemblages capable of executing yet higher complexity transforms, again

using a variation-selection evolutionary technique.

The ANM architecture has been applied to a variety of 64-bit pattern-recognition

problems (the input interface being currently limited in this way). These include maze

navigation (Chen and Conrad 1994), Chinese character recognition (Chen and Con-

rad 1997), and most recently, hepatitis diagnosis (Chen 2000). The power of the sys-

tem lies in its computational adaptability properties. It is a virtual system run on top

of a conventional base machine. It uses the limited resources of a low-complexity

machine to achieve computational adaptability, but this must be at the expense of

other desirable features that programs using the same resources di¤erently might

exhibit. The molecular processing in the neurons—particularly the readout—is, of

course, nominal. The readouts are just threshold elements. It would be too com-

putationally costly to simulate the conformational dynamics that allows context-

sensitive fusion of milieu features. The reasonable supposition is that implementing

Conformation-Based Computing 27



the architecture with real molecules would enormously increase the complexity of the

programs that it is capable of embodying, thereby a¤ording concomitant expansion

of the problem domains that it is capable of managing.

1.10 Transformal Computing

The processing capabilities of the prototype described in this chapter are, of course,

extremely modest, indeed even minimal, in comparison to the architectural projec-

tions of the previous section. It is to be regarded only as an initial step designed to

concretize the conformation-driven computing concept and to demonstrate its tech-

nological feasibility at the level of what might be called macroscopic fluidics. The

step to lab-on-a-chip integration can readily be seen.

The important question concerns the basic claim—namely, that the conformation-

driven approach should provide access to computational processes that cannot prac-

tically fit into a conventional architecture. The term transformal computing is apt.

How would we even recognize whether a computational system performs an opera-

tion that is refractory to digital (i.e., formal) machines?

The famous thesis of Church and Turing asserts, in its strong form, that all pro-

cesses in nature can be brought into the circle of formal computation (Hofstadter

1980). This is an open question. Whether the answer is a‰rmative or negative is not

the issue with which we are concerned here. It is the practical question that is rele-

vant. Many examples could be cited: human aesthetic judgments, legal judgments,

ethical rules (like the Golden Rule), or any decision that involves an indefinitely large

number of situations. Arguably, an unambiguous description of such general deci-

sion rules by formal rules (i.e., by a program in the Turing sense) is infeasible. We

here enter the realm of what was referred to above as transformal computations.

Of course, we do not expect the conformation-driven technology proposed here to

perform such complex human operations either. Constructing an artificial brain that

comes close to the human brain, even under the reasonable assumption that con-

formational processing plays a key role in the human mental process, exceeds by far

any expectations that we would care to project. The proper question is: Can con-

formational processors perform transformations that exceed the practical capabilities

of formal machines; and how could such transformations be identified?

Take as a concrete example the functioning of an assembly line. Automation is

limited by the speed of visual processing and by the fact that quality control prob-

lems are often ambiguous. If conformational processors were evolved and harvested

that could preprocess ambiguous patterns in a manner that made them suitable for

28 Michael Conrad and Klaus-Peter Zauner



processing by vision algorithms, it would constitute what in practice might be called

a transformal computation.

By choosing to look at the benchmark XOR operation, we have a fortiori pre-

cluded the possibility of finding a transformal transformation. Our objective was

to demonstrate that even a single enzyme species could do more processing than

is standardly attributed to the threshold elements utilized in many current neural

net models. Our working hypothesis—that we can use the conformation-driven

approach to escape the practical limitations of programmable machines—is based

on three considerations: the complexity arguments indicating that systems with self-

organizing dynamics can perform more-complex operations than systems with

programmable architectures, the technological feasibility of fabricating conformation-

driven modules that utilize self-organizing dynamics, and the feasibility of using

an evolutionary response surface methodology for developing a repertoire of high-

complexity basis transforms that can be embedded in or conjoined with higher level

architectures. This is a three-point landing on theory, technology, and architecture.

The pieces are present; bringing them together should yield computational capa-

bilities complementary to and synergistic with digital capabilities.

Acknowledgments

This material is based upon work supported by the U.S. National Science Founda-

tion under grant numbers ECS-9704190 and CCR-9610054, and by NASA under

grant number NCC2-1189.

References

Ashby, W. R. 1968. Some consequences of Bremermann’s limit for information-processing systems. In
Cybernetic Problems in Bionics, ed. H. L. Oestreicher and D. R. Moore, 69–76. New York: Gordon and
Breach.

Beaudry, A. A., and G. F. Joyce. 1992. Directed evolution of an RNA enzyme. Science 257: 635–641.

Blodgett, K. B. 1935. Films built by depositing successive monomolecular layers on a solid surface. J. Am.
Chem. Soc. 57: 1007–1022.

Box, G. E. P., and N. R. Draper. 1987. Empirical Model-Building and Response Surfaces. New York: John
Wiley and Sons.

Cacace, M. G., E. M. Landau, and J. J. Ramsden. 1997. The Hofmeister series: Salt and solvent e¤ects on
interfacial phenomena. Q. Rev. Biophys. 30: 241–278.

Chaitin, G. J. 1966. On the length of programs for computing finite binary sequences. J. Assoc. Comput.
Mach. 13: 547–569.

Chaitin, G. J. 1974. Information-theoretic computational complexity. IEEE Trans. Inf. Theor. 20: 10–
15.

Conformation-Based Computing 29



Chen, J.-C. 1993. Computer Experiments on Evolutionary Learning in a Multilevel Neuromolecular
Architecture. Ph.D. thesis, Wayne State University, Detroit.

Chen, J.-C. 2000. Data di¤erentiation and parameter analysis of a chronic heptatitis B database with an
artificial neuromolecular system. BioSystems 57: 23–36.

Chen, J.-C., and M. Conrad. 1994. Learning synergy in a multilevel neuronal architecture. BioSystems 32:
111–142.

Chen, J.-C., and M. Conrad. 1997. Evolutionary learning with a neuromolecular architecture: A bio-
logically motivated approach to computational adaptability. Soft Computing 1: 19–34.

Chohen, C. B., E. Chin-Dixon, S. Jeong, and T. T. Nikiforov. 1999. A microchip-based enzyme assay for
protein kinase A. Anal. Biochem. 273: 89–97.

Conrad, M. 1979. Mutation-absorption model of the enzyme. Bull. Math. Biol. 41: 387–405.

Conrad, M. 1983. Adaptability: The Significance of Variability from Molecule to Ecosystem. New York:
Plenum Press.

Conrad, M. 1984. Microscopic-macroscopic interface in biological information processing. BioSystems 16:
345–363.

Conrad, M. 1990. Molecular computing. In Advances in Computers. Vol. 31, ed. M. C. Yovits, 235–324.
San Diego: Academic Press.

Conrad, M. 1994a. Amplification of superpositional e¤ects through electronic-conformational interactions.
Chaos, Solitons, and Fractals 4: 423–438.

Conrad, M. 1994b. The fitness of carbon for computing. In Molecular and Biomolecular Electronics, ed.
R. R. Birge, 43–62. Washington, D.C.: American Chemical Society.

Conrad, M. 1995. Scaling of e‰ciency in programmable and nonprogrammable systems. BioSystems 35:
161–166.

Conrad, M., and M. Volkenstein. 1981. Replaceability of amino acids and the self-facilitation of evolution.
J. Theor. Biol. 92: 293–299.

Cornell, J. A. 1990. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. New
York: John Wiley and Sons.

Davidson, A. R., and R. T. Sauer. 1994. Folded proteins occur frequently in libraries of random amino
acid sequences. Proc. Natl. Acad. Sci. USA 91: 2146–2150.

Edsall, J. T., and J. Wyman. 1958. Biophysical Chemistry. New York: Academic Press.

Ellacott, S., and D. Bose. 1996. Neural Networks: Deterministic Methods of Analysis. London: Interna-
tional Thomson Computer Press.

Fischer, E. 1894. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der Deutschen Chemi-
schen Gesellschaft (since 1947: Chemische Berichte) 27-3: 2985–2993 (in German).

Frauenfelder, H., F. Park, and R. D. Young. 1988. Conformational substates in proteins. Annu. Rev.
Biophys. Biophys. Chem. 17: 451–479.

Freire, E. 1998. Statistical thermodynamic linkage between conformational and binding equilibria. Adv.
Prot. Chem. 51: 255–279.

Gao, C., C.-H. Lin, C.-H. L. Lo, S. Mao, P. Wirsching, R. A. Lerner, and K. D. Janda. 1997. Making
chemistry selectable by linking it to infectivity. Proc. Natl. Acad. Sci. USA 94: 11777–11782.

Gri‰th, V. V., J. A. Davis, and R. H. Kause. 1968. Learning of the exclusive-or logic function in rats. In
Cybernetic Problems in Bionics, ed. H. L. Oestreicher and D. R. Moore, 587–595. New York: Gordon and
Breach.

Hadd, A. G., D. E. Raymond, J. W. Halliwell, S. C. Jacobson, and J. M. Ramsey. 1997. Microchip device
for performing enzyme assays. Anal. Chem. 69: 3407–3412.

Henderson, L. J. 1913. The Fitness of the Environment. New York: Macmillan.

30 Michael Conrad and Klaus-Peter Zauner



Hofstadter, D. 1980. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books.

Kampis, G. 1991. Self-Modifying Systems in Biology and Cognitive Science, chap. 6, 278–343. Oxford:
Pergamon Press.

Laidler, K. J., and P. S. Bunting. 1973. The Chemical Kinetics of Enzyme Action. 2d ed. Oxford: Clarendon
Press.

Li, M., and P. Vitányi. 1997. An Introduction to Kolmogorov Complexity and its Applications. 2d ed. New
York: Springer.

Minsky, M. L., and S. Papert. 1969. Perceptrons: An Introduction to Computational Geometry. Cambridge:
MIT Press.

Prijambada, I. D., T. Yomo, F. Tanaka, T. Kawama, K. Yamamoto, A. Hasegawa, Y. Shima, S. Negoro,
and I. Urabe. 1996. Solubility of artificial proteins with random sequences. FEBS Lett. 382: 21–25.

Sidgwick, N. V. 1950. The Chemical Elements and Their Compounds. Vol. 2. New York: Oxford University
Press.

Stryer, L. 1988. Biochemistry. New York: W. H. Freeman.

Unger, M. A., H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake. 2000. Monolithic microfabricated
valves and pumps by multilayer soft lithography. Science 288: 113–116.

von Neumann, J. 1951. The general and logical theory of automata. In Cerebral Mechanisms in
Behaviour—The Hixon Symposium. New York: John Wiley. (Reprinted in J. von Neumann, Collected
Works, ed. A. H. Taub. Vol. 5, 288–328. New York: Pergamon Press, 1963.)

White, A., P. Handler, and E. L. Smith. 1968. Principles of Biochemistry. New York: McGraw-Hill.

Yamauchi, A., T. Yomo, F. Tanaka, I. D. Prijambada, S. Ohhashi, K. Yamamoto, Y. Shima, K. Ogasa-
hara, K. Yutani, M. Kataoka, and I. Urabe. 1998. Characterization of soluble artificial proteins with
random sequences. FEBS Lett. 421: 147–151.

Zauner, K.-P. 1996. Simulation system for studying spatially structured biochemical interactions. Master’s
thesis, Wayne State University.

Zauner, K.-P., and M. Conrad. 1996. Parallel computing with DNA: Toward the anti-universal machine.
In Parallel Problem Solving from Nature: PPSN IV. Vol. 1141 of Lecture Notes in Computer Science, ed.
H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, 696–705. Berlin: Springer-Verlag.

Zauner, K.-P., and M. Conrad. 1997. Conformation-driven molecular computing: The optical connection.
Opt. Mem. Neural Netw. 6: 157–173.

Zauner, K.-P., and M. Conrad. 2000. Enzymatic pattern processing. Naturwissenschaften 87: 360–362.

Zauner, K.-P., and M. Conrad. 2001. Molecular approach to informal computing. Soft Computing 5: 39–
44.

Conformation-Based Computing 31


