Index

Abernathy, William J., 223, 225
Adell Chemical Company, 110
Advertising costs, in cereals industry, 151, 161
Allocation of resources, 83–116
Anderson, John, 9
Antitrust action, against ready-to-eat cereals industry, 142
Antitrust decrees, 171
and investment patterns, 208–209, 212–214, 216
and market structure, 217, 219–220
and patenting, 207–208
statistical studies of effects of, 207–220
Archibald, G. C., 64
Arrow, Kenneth J., 59, 130
AT & T, 108

Baldwin, W. L., 62
Barzel, Yoram, 61
Bell Telephone Laboratories, 60
Bond, Ronald, 63
Boulton, Matthew. See Watt-Boulton steam engine
Bright, A. A., 109
Brownlee, O., 177
Buzzell, Robert D., 150

Canadian Patent Office, 57, 292
Cannibalization
in cereals industry, 147–149, 152–156
and optimal product variety, 147–150
Capitalist-investor, role of, 13–14. See also Investment
Cereals industry. See also specific companies

cannibalization, 147–149, 152–156
consumers’ surplus in, 157–161
cost of new product launching in, 150–152
new products and profitability of, 156–157
product variety in, 142–162
structure of, 142–144
Characteristics preference models, and optimal product variety, 144
Childs, G. L., 62
Competition. See Rivalry of firms
Concentration, and productivity growth, 249–254
Consumer utility function, and optimal product variety, 144
Consumers’ surplus, in cereals industry, 157–161
Cournot assumption, in rivalry situations, 95–111
Critical revision, 10, 21
Dasgupta, Partha, 62
Decision making for innovation, 120–123, 125–128
Demand-pull theory, 1, 61, 120, 127
and patenting, 176–177, 179–180
Development, 21, 26. See also Research and development
cost functions, 62
optimal development schedule, 59–60, 76–80, 87
possibility function, 121, 123
of steam engine, 21
Dickinson, H. W., 17
Diversification, 191–193, 222–223
firm size, innovation and, 222–237
and inventive output, 235–236
Duoply behavior, and rivalry of firms, 90–111
Duplication models, 63–64
DuPont Company, 4, 5
Economic applications of invention, 5
Employment of technical engineers and scientists, 239–247, 268
Entrepreneur-innovator, role of, 13–14. See also Innovation
Equilibrium model, 61–62
Fast second strategies, 62
Federal Trade Commission’s line of business survey, 35, 226, 249, 292
Fellner, William, 59
Firm size, 169–171
diversification, innovation and, 222–237
and inventive output, 222–237
and patenting, 176–177, 179–191
and propensity to patent, 188–191
statistical studies of, 175–198
First-mover advantage, 63
Fisher, Franklin M., 170
Ford Motor Company, 183

Galbraith, J. K., 59
Gelman Research Associates study, 223–225
General Dynamics, 193
General Electric, 189
General Foods, 142, 143, 152, 153, 156, 158
General Mills, 142, 143, 152, 153
General Motors, 183
Geographic spatial analogies, and optimal product variety, 144
Gibbs's law, 172, 254
Government-financed research and development, 182–183, 266
technology flows matrix in, 51–52, 54
Greer, Douglas F., 249, 250, 252
Griliches, Zvi, 177
Grossman, Elliot S., 271
Hambeg, Dan, 198
Hamm, Larry G., 219
Harvard Weapons Acquisition Research Project, 1
Hayes, Robert H., 223, 225
Horowitz, Ira, 59, 198
Hotelling, Harold, 144
I. G. Farben, 108
Improvements, in Watt-Boulton steam engine, 21–22
Incentives for research and development, 62–63
Industrial Research and Development competition, 225–227
Inflation, 261
Innovation, 5, 6, 26, 262
characteristics of entrepreneur, 13–14
clustered innovations, 263–264
decision making for, 120–123, 125–128
definition of, 8
demand-pull theory of. See Demand-pull theory
firm size, diversification and, 222–237
and investments, 263–264, 268
and market structure, 59–64
and productivity growth, 257–259, 262–263
statistical studies of, 169–173
in steam engine development, 10–16, 21
technological maturity and productivity growth, 261–269
technology-push theory of. See Technology-push theory
Input-output matrix, 1, 34. See also Technology flows matrix
Insight, 8–9
Interindustry technology flows, 32–57, 270–282
International Harvester, 189
Invention, 1, 5, 6
definition of, 8
and diversification, 191–193, 235–236
general use, 37–38
importance of and expenditures on, 3–7
patented inventions. See Patents
private goods, 38, 51
public goods, 38
specific use, 37–38
in steam engine development, 21
technology flows matrix. See Technology flows matrix
Inventive output
and diversification, 235–236
and firm size, 227–235
firm size, market structure and opportunity, 175–198
and market power, 194–198
patent statistics as index of, 175–176
Investment, 26, 32, 83–84, 169
and antitrust decrees, 208–209, 212–214, 216
characteristics of capitalist, 13–14
and importance of invention, 3–7
and innovations, 263–264, 268
in new cereals products, 150–152
in steam engine, 10–16
Jenkins, Rhys, 17
Joint maximization, in rivalry situations, 98–99
Kaysen, Carl, 61
Kellogg Company, 142, 143, 152, 153, 156, 158, 160
Kendrick, John, 271
Kohn, Meir, 170
Kondratieff, N. D., 263, 264, 268
Lancaster, Kelvin, 64
Lange, Oscar, 60
Lean, David, 63
Leontief, Wassily, 34
Loesch, August, 144
Loury, Glenn C., 62
Maclaurin, W. R., 109
Mansfield, Edwin, 109, 120, 122, 170, 185, 289
Manufacturing facilities, 5
technology flows matrix, sectors in, 51
Market growth, in cereals industry, 152–156
Market structure
and antitrust decrees, 217, 219–220
index

decision making for innovation in, 120-123, 125-128
and employment of engineers and scientists, 239-247
firm size, opportunity and output, 175-198
and innovation, 59-64
and inventive output, 194-198
statistical studies of, 169-173
Markham, Jesse, 59
Marx, Karl, 32
Minimax strategy, 95-97
Monopoly
of cereals manufacturers, 142
and innovation, 59, 126-127
and inventive output, 194-198
and product variety, 142
Motivation of entrepreneur, 13, 15
Mueller, Willard F., 219
N-firm case, and rivalry of firms, 111-114
National Distillers Products, 193
National Science Foundation surveys, 32, 34, 35, 36, 170, 182, 226, 227-235
Nelson, Richard R., 60, 191, 223
New production processes, 32
New products, 32, 266. See also Product variety: Rivalry of firms
in cereals industry, 150-152
and profitability of industry, 156-157
Newcomen, Thomas, 9
Nordhaus, William D., 62-63, 130-140
North American Aviation Company, 193
Nourse, R. E., 150
Nylon, development of, 4-5
Oligopoly, and innovations, 59
Opportunity, firm size, market structure and output, 175-198
Output per worker. See Productivity
Passer, H. C., 109
Patents
algebraic model of optimal patent life, 130-135
comparative statics of optimal patent life, 135, 137-138
compulsory licensing, 207-220
counts of, 34
demand-pull and technology-push theories, 176-177, 179-180
and firm size, 176-177, 179-191
firm size and propensity to patent, 188-191
firm size, market structure and inventive output, 175-198
geometric approach to optimal patent life, 130-140
market power and patented inventions, 194-198
nonlinear regression analysis of sales and patenting, 183-188
optimal patent life, 62, 63, 130-140
policy implications of patent terms, 138-140
profitability of, 176
propensity to patent, 34, 179, 180, 188-191
statistics as index of output, 175-176
technology flows matrix. See Technology flows matrix
and Watt-Boulton steam engine, 21-25
Pavitt, Keith, 57
Peck, M. J., 60, 62
Perception of unsatisfactory pattern, 9
PERT-type analytic studies, 67
Pittsburgh Plate Glass, 189
Post Company. See General Foods
President's Council of Economic Advisers, 262
Price, Derek J. de Solia, 259
Prices, new products and profitability of industry, 156-157
Private goods, 38, 51
Process innovation. See Product and process development
Producer Price Index series, 54
Product and process development, 5, 6, 32, 60, 262, 263
Product innovation rivalry. See Rivalry of firms
Product variety
and cannibalization, 147-149
and consumers' surplus, 157-161
model of, 64
pricing and profitability with, 156-157
theory of optimal product variety, 144-150
welfare economics of, 142-162
Productivity
declining productivity growth, 257-259
innovation and productivity growth, 257-259, 262-263
and research and development, 32, 54-57, 286-292
and seller concentration, 249-254
and technological maturity, 261-269
technology flows and growth of, 270-282
Index

Profitability of research and development, 286–287
Public goods, 38
Quaker Oats Company, 142, 143, 160
Quality of end product, 62, 88–89
Rand Corporation, 60
Ravenscraft, David, 286, 291
Raytheon Corporation, 191
Ready-to-eat cereals industry. See Cereals industry
Research and development concentration, productivity growth and, 249–254
expenditures on. See Investment
government-financed, 51–52, 54, 182–183, 266
interindustry technology flows, 32–57, 270–282
phases of, 4–5
and productivity, 32, 54–57, 286–292
time-cost trade-off function. See Time-cost trade-off function
uncertainty of, 67–80, 120–121
Resource allocation
under nonrivalrous case, 83–87
under rivalry of firms, 83–116
Rhoades, Stephen A., 249, 250, 252
Risk, 120
Rivalry between firms, 59–61
Cournot assumption, 95–111
duopolistic models of, 90–111
and innovation, 125–128
minimax strategy in, 95–97
and N-firm case, 111–114
resource allocation under, 83–116
solution concepts in, 95, 97–111
and technological leadership, 88–90
von Stackelberg leadership in, 99–100
welfare implications of, 111–115, 125
Robinson, Joan, 150
Roebuck, John, 11, 12, 13, 14
Rosenbluth, Gideon, 64
Schaefer, J. W., 59
Schering Company, 110
Schmalensee, Richard, 63, 153, 154
Schmookler, Jacob, 1, 34, 120, 177, 258
Schumpeterian innovation. See Innovation
Science Policy Research Unit of Sussex University, 224, 225
Scott, John T., 170
Seller concentration, and productivity, 249–254
Smith, Adam, 32
Solow, Robert, 257
Spatial approach, to optimal product variety, 144
Spence, A. Michael, 64, 144, 148
Standard Oil of New Jersey, 183, 189
Standards of living, and technology levels, 32
Statistical studies
of antitrust decree effects, 207–220
of diversification, 191–193
of employment of technical engineers and scientists, 239–247
of firm size and patenting, 176–177, 179–191
of firm size, diversification and innovation, 222–237
of firm size, opportunity and output, 175–198
of market power and inventive output, 194–198
of market structure and innovation, 169–173
of patenting and sales, 183–188
patent statistics as index of output, 175–176
of productivity growth and seller concentration, 249–254
Steam engine. See Watt-Boulton steam engine
Stiglitz, Joseph, 62
Sveikauskas, Catherine D., 249, 250, 252
Sveikauskas, Leo, 249, 250, 252
Swift & Co., 189
Technical employment, statistical studies of, 239–247, 268
Technological innovation. See Innovation
Technological leadership, and rivalry of firms, 88–90
Technological maturity, 261–269
Technology flows, interindustry, 32–57, 270–282
Technology flows matrix, 1, 38–39, 51
applications for inventions, 37–38
categorization by use, 36
construction of, 34–38
general-use inventions, 37–38
government-financing in, 51–52, 54
manufacturing and nonmanufacturing
sectors, 51
private goods inventions, 38, 51
public goods inventions, 38
sample analyzed, 36–37
specific-use inventions, 37–38
Technology-push theory, 1, 61, 120, 127, 171
and patenting, 176–177, 179–180
Temin, Peter, 170
Time-cost trade-off function, 59–61, 85, 87, 121–122
modifications of model used, 73–76
optimal development schedule in, 76–80
properties of, 68–73
in uncertain empirical research and development projects, 67–80

U.S. Steel Corporation, 189
Uncertainty, 61, 67–80, 120–121
Usher, Abbott Payson, 1, 8
Usher, Dan, 114
Usherian invention. See Invention

Villard, Henry, 59
von Stackelberg leadership, in rivalry situations, 99–100
von Weizsacker, C. C., 62

Watt-Boulton steam engine, 1, 8–26
improvements made in, 21–22
invention of separate condenser and, 9
investment in, 10–16
and patents, 21–25
technical development of, 16
Welfare economics
of product variety, 142–162
and rivalry of firms, 111–115, 125
Western Electric, 197
Wilkinson, John, 18
Worley, J. S., 170

Xerox Corporation, 110