Abstract-mode assumption, 140
Abstract-mode model, 118–119, 142
Acceleration/deceleration times, in vehicle cycle, 221, 222
Acceptability of a course of action, in evaluation method, 353–354.
See also Community, agreement
Access, and choice, 108, 108
Accessibility. See Potential
Access time, 65–67, 67. See also Out-of-vehicle time
Actions, 341
Activity pattern, 61
Activity shifts, 13, 17–18, 20, 27–30, 312, 323
highway example, 35–38
land-use models, 33, 324
models of, in UTMS-1, 431–432
relation to transportation demand function, 63
representation of, 28–29, 31
Activity system, 12
evolution of, 14
interrelationship of transportation system and, 12–14, 58–60, 324
Activity-system equilibration, 29, 322–325. See also Activity shifts
Activity-system options, 17–18
in highway link example, 24
in network case study, 511, 520
Actors, 14–17, 186
and affected interests, 346
element of organizations in Los Angeles, 347
formal definitions, 336, 346
varying perspectives of, 352, 355
Actual volume using a system, 176
Adaptive planning. See Multiyear program plan; Periodic review and reassessment
Adverse effects, minimization of, 545, 563. See also Compensation
Advisor, role of analyst as to community interests, 570
to decision makers, 571
Advisory committees, 565
Aesthetic impacts, as resources consumed, 172, 172
Affected interests, 346. See also Actors
Aggregate behavior, derived from individual behavior, 76–78, 80–82, 114, 147–155. See also Aggregation
Aggregate demand functions, 114, 120
examples, 116–121
Aggregate deterministic demand functions, 120–121
Aggregate prediction of behavior, 114–157. See also Aggregation
Aggregate sequential demand functions. See Sequential choice structures, aggregate
Aggregate simultaneous demand functions. See Simultaneous choice structures, aggregate
Aggregate stochastic demand functions. 120–121
Aggregation
approaches to, 147–150
classification, 149–150, 153–154
distributions, 150
example, 150–155
naive, 149, 154
procedure, defined, 148, 149
sampling, 150
Aggregation (continued)

See also Aggregate behavior;
Aggregate demand functions
Agreement on actions, as process
objective, 561–564
Airborne revenue hours, 252
Aircraft routing over a network,
170, 170. See also Operating
plan; Vehicle trajectories
Aircraft utilization, effect on
relative costs, 252–254, 253
Airfreight, example of an
operating plan, 305–308, 306
Airline network, 302
Air pollution, 11, 19, 171, 172, 542
Airport, link representation of, 167
Airport access
and congestion, 501
as example of market
segmentation, 115
Airport planning
choice issues in, 540
and equity issues, 549
evaluation issues in, 333–334
Air quality standards, 542
Air-rights construction, 562
Air transportation, example of
analysis, 183–198
Allocation of costs, in network
case study, 529–534
All-or-nothing assignment, 495–
498, 502
Alternative actions, need for, 545–
546
Alternative models, importance of,
585
Alternative technologies, for a
penetration road, 237–241
Analysis
as a continuing activity, 40–45
and implementation, 40–47,
586
cycles of, 38, 394
in network case study, 522–529,
535–539
in operations planning case
study, 407–414
and study design, 585–586
ethics of, 589–594
iterative nature of, 38–40
levels of, 586
objectives of, 330, 560–564
and the political process, 47, 589
(See also Choice; Role of the
professional)
power of, 589
product of, 41–47 (See also
Choice; Evaluation report)
value judgments in, 586–587
Analysis of Alternatives Report,
554
Analysis summary form, 394, 395.
See also Evaluation report
Analyst, judgments of
about applications of theory, 34
about choice dimensions in
demand models, 415
in constructing economic goal
variables, 371–372
about demand functions, 121
in demand-model calibration,
406–408
in demand-model development
for carrier operations planning,
405–407, 408–409
about demand variation over
time, 321, 403
in evaluation, 355
about magnitudes of changes, 34
about management issues, 583,
585–586
in model development, 586–587
about operator equilibration, 326
about performance functions,
198–203
as prediction procedures, 350
about scenarios and models,
325–326
about the scope of analysis, 12
and simple demand prediction
methods, 142–147
about technical issues, 583–585
about travel-market equilibration,
316–319, 465–466, 501
values and, 583, 586–587
and worksheet design, 398, 399
Annual cycle, 221, 222, 224–225,
305
Annual net operating revenue, 371
Annual net revenue, 371
Approximate impact prediction, in
process strategy, 350, 567
Approximation methods, 34. See
also Incremental analysis;
Simplified prediction methods
Arc elasticity, 127
Arrival rate, 268
Assignment models, for developing operating plan, 308
Attributes of choices, in demand models, 86–87. See also Service variables
Automated-guideway transit, 10, 196–198, 197
use of disaggregate models for analysis of, 454
Automobile
attractiveness, mode-specific attributes, 140
availability, in linked demand models, 441, 451, 456
links, in network case study, 509, 517–519
in mode-choice model, 91–93, 98
in MTC model system, 457
in network case study, 509
occupancy
in MTC model system, 457
in network case study, 536
in UTMS-1, 431
ownership
disaggregate model of, 441, 444, 450, 456
in network case study, 536
in UTMS-1, 432
in work mode-choice and shopping joint-choice models, 440, 441, 450
typical speeds, 100
Auto-restricted zones, 10, 453
Available ton-miles, 234
Average cost, 231, 236
per loaded ton-mile, truck, 218
truck versus rail, 243–248
Average daily volume, 403
Average hourly volume, 403
Average product, 231
vs. marginal product, 231–233, 233
Average rail rate, 247
Average service time, 272, 272
Average total cost. See Average cost
Backhaul, effect on costs, 243–248
Balancing of interests, 19, 542
Balancing procedures, for gravity models, 430
Barriers to change, 550, 555, 577
Basic concepts, in systematic analysis, 231–235
Basic framework for analysis, 11–48
Basic premises of analysis approach, 11–14
Baumol-Quandt model, 118–119, 142
Behavior
of groups of consumers (See Aggregate behavior)
of individuals, 64–86, 467–470
Behavioral theory
and choice hierarchies, 439–443
and model formulation, 437
and path choice, 467–486
Benefit/cost analysis, 361, 382–383, 548
Benefits, distribution of. See Differential incidence; Incidence
Binary mode-choice model, 110, 110
Block-conditional structures, of choice dimensions, 441
Boston (Massachusetts) highway moratorium, 541
Transportation Planning Review, 434, 541
Bottlenecks, in network case study, 526
Budget constraints, in demand models, 87
Bundles of choices. See Choice dimensions
Burlington Northern railroad, case study, 256–261
Bus
demand for, in MTC model system, 457
typical speeds, 100
vehicle cycle for, 225–226
Buslanes, 10
Bus-route planning, 390–414, 453
Calculators, used for analysis, 407, 584. See also Manual methods; Simplified prediction methods
Calibrating a demand model, by judgment, 406–408
Calibration of models. See Model development
Capacity, 268-272, 269
alternative definitions, 271
excess, 286, 292, 300
highway, 271, 296-298, 298
railcar, 262 (See also Railcar utilization)
rail line, 271
relation to congestion, 268-273
of a system component, 268
Capacity constraint, effect on performance functions, 187, 189
Capacity restraint, in traffic assignment, 33, 430, 432
Capacity volume, 176
Capital recovery factor, 368-369, 369, 388
in network case study, 529-534, 530
Captive transit users, 429
Careers, in transportation systems analysis, 6-9, 7, 580
Carpooling, 10, 450, 453
demand for, in MTC model system, 444, 445, 457
Case studies
air transportation route performance, 183-198
carrier operations planning, 390-414
disaggregate prediction of behavior, 91-111
network planning, 505-539
owner-operator trucking, 243-248
penetration road, 237-241
railcar utilization, 256-261
Challenge of transportation systems analysis, 5, 10-49, 580
Change
barriers to, 550, 555, 577
dimensions of, 10-11
implementation of, 576-581
in socioeconomic characteristics, effect on consumer behavior, 79-80
strategies for, 577
Changing values, 10-11, 357-360
Choice, process of, 540-557
in airport planning, 540
in carrier operations planning, 393
defined, 39, 331
as a phase of the planning and design process, 565, 569-570
principles for, 545-555
See also Evaluation; Role of the professional
Choice-abstract model, 141
Choice dimensions of consumer behavior, 61-63, 415-417
linkages between, 421-425, 439-443
and path-choice behavior, 467-470, 493, 494
structure of, 441
in urban transportation, 439
Choice hierarchies, 61-63
and derived demand, 62-63
defined, 440
for a firm, 62
general concepts, for an individual, 61, 61
specific structures, 438-443, 440, 441
Choice-independent attributes, 138-142
in aggregate models, 141
Choice-independent utilities, 139
Choice probability, 83
Choice-specific attributes, 138-142
Choice transit users, 429
Clarification of issues as process objective, 560
role of evaluation in, 332-335, 554
and transportation decision making, 357-360
Classification as aggregation procedure, 149-150, 153-154, 453
into market segments, 114-116
Clean Air Act of 1970, 542
Collection link, 167, 168
Comfort and convenience, as service attributes, 65-66, 66
Community agreement in evaluation method, 353-354
as a process objective, 561-564
concerns of, in evaluation, 353-354
definition of, 336, 563
disruption, 11
facilities, 562
Community (continued)
organizations, 565
role of analyst as advisor to, 570–571
values (See Societal values)
Community interaction, 546–549, 564–570
catalog of techniques, 565
Compensation
for adverse effects, 546, 549–551, 568
in evaluation method, 352–355
for residential displacements, 562–563
in United Kingdom, 541
Compensation principle, and Pareto criterion, 550
Competition for services, in a network, 466
Components, of transportation systems, 164–166, 164
Composite activity variables, 136–138, 418
Composite service level, 134–136, 418
as measure of user impact, in network case study, 516, 525
for path, 486, 487
See also Generalized cost; User impacts
Composite variables
and the consistency of sequential forms, 418, 423–424, 441, 457
in demand functions, 134–138
Computer models, 584. See also specific names
Confidence of the public
in the decision process, 553
in transportation professionals, 358–359, 542, 544–545
Conflicting values, 589
Conflict resolution, 565–566, 571
Conflicts
in evaluation, 353–355
among interests, 552
between users and operators, 178, 178
See also Trade-offs
Congestion, 268–281, 295–300
and diminishing marginal productivity, 241
load-dependent, 277–281
load-independent, 276–281, 295–300
load-schedule, 277
load-vehicle, 277–281
models of, 273–276, 278–281, 295–300
transient conditions, 273
and vehicle cycle, 218–222, 222
vehicle-facility, 169, 276, 286–287, 295–300
vehicle-schedule, 276–278, 286–287, 305–307
Congestion toll, 273
Connecting services, 303
Consensus. See Agreement on actions
Consistency
of block-conditional model systems, 442–443
of demand functions, 421–425
internal, 425
of UTMS-1, 436–437
See also Choice dimensions
Constant-volume assumption, in equilibration, 23
Constraints on frequency, effects of, 290–292, 290
Consumer, definition, 64
Consumer behavior
classical theory, 86–87
in MTC model system, 457
in path choice, 466–470
Consumer behavior model I, 64–82, 120
appraisal, 82–83
and path choice, 491
Consumer behavior model II, 82–86, 120. See also Disaggregate demand models
Consumer choices, represented as demand functions, 73–74, 79–81
Consumer decision process, 70–71
Consumer surplus, in evaluation, 376, 377
Containerization, 10
and equity issues, 549–550
Continuing analysis process, 38–48, 40, 42. See also Operations
Continuing analysis (continued)

planning process; Periodic review and reassessment
Corridor network, 500
Cost. See specific types
Cost-effectiveness analysis, 385
Cost functions, 234–266
definition, 234
effect of option characteristics on, 290–292, 291
general form of, 235–241, 235
limits of analysis using, 248–250
linear form, 237–238
long-run, 284
nonlinear, 235, 241
and output dimension, 234–235
penetration road example, 237–241
pipeline, 241, 242
short-run, 284
truck, 218
Course of action, 562
agreement on, as process objective, 568
Crisis of confidence, 358–359, 542, 544–545
Criteria for model development, 584
Criterion of selfishness, in path choice, 469
Cross-elasticity, 128
Cruise speed, in vehicle cycle, 221, 222
Crush loading, 177
Cycles
of analysis (See Analysis)
vehicle (See Vehicle cycles)
Cycle time, 262. See also
Utilization; Vehicle cycles

Data collection, in operations planning, 391–392, 400–401
Decision authority, locus of, 579
Decision issues, in transportation planning, 357–360
Decision makers
definition, 336
role of analyst as advisor to, 571
Decision process
at consumer level, 70–71
at system level, 552–555
Decision rule, and operator equilibration, 202, 211–212,

326. See also Operator equilibration
Decision variables. See Options
Demand
conditions, in equilibration, 176–177
congestion effects on (See Congestion)
derived, 62
generated vs. induced, 27
for a new mode, 141–142
nonuniformity of, effect on costs, 242–249
for transportation, 58–156, 319–322, 415–461
variations over space and time, 319–322, 394, 404, 404
effect on costs, 242–249
volume, 176
Demand functions, 20, 61
aggregate vs. disaggregate, 114
algebraic forms, 123
as behavioral representations, 61, 123–129
classification of, 121
common forms of, 146
derivatives of, 125–129, 125
elasticities of, 125–133, 125, 129, 146
in evaluation, 373–381, 373, 374, 375
grouped by choice structures, 426
and path choice, 303–304
properties of, 121–142
variables included in, 122–123
Demand models, 30
for air travel, 185–186
consumer behavior model I, 64–82
c consumer behavior model II, 82–86
with explicit choice hierarchies, 443–458
generations of, 156
methods from psychology and market research, 156, 157–158
in network case study, 510–511, 520
in UTMS-1, 437–438
See also specific types
Demand-responsive transit, 10, 454
Demurrage charges, 258
Department of Transportation Act of 1966, Section 4(f), 541
Design of an analysis, 5, 583–587. See also Study design
Design capacity, 200
Design logic, in model system, 325
Desired service policy. See Service-oriented analysis
Destination choice, disaggregate models of, 444, 446
Detailed analysis phase, 565, 568–569, 570
Deterministic demand functions, 120–121. See also Aggregate demand functions; Consumer behavior model I
Developing countries, transportation in, 4, 33, 60, 198, 237–241
Development. See Economic development
Dial-a-ride. See Demand-responsive transit
Differential incidence, of transportation impacts, 19, 542
and equity issues, 549–551
in network case study, 516, 538–539
and potential for political conflicts, 541
See also Equity; Incidence
Dimensionality of options, 281–294
Dimensions of change, 10–11
Dimensions of consumer choice, 415–461. See also Choice dimensions; Choice hierarchies
Diminishing marginal productivity, 240, 241
Direct demand models, 118–119, 156, 426. See also Choice dimensions
Direct elasticity, 128
Directionality, 403
Directionality factor, 404
Direct network, 500
Direct services, 303
Disaggregate demand functions, 114
Disaggregate demand models (stochastic), 84–86, 91–111, 120–121, 138–141, 147–156 applications of, 452–458
efficiency in estimation of, 437
freight, 458
in regional model system, 454–458
of simultaneous choices, 419, 420–421, 426, 444, 446, 448
See also Aggregation; Consumer behavior model II; Multinomial logit model
Disaggregate deterministic demand functions, 121. See also Consumer behavior model I
Discount rate, 369–370
Discrete choice, aspect of demand models, 86
Diseconomies of scale, 236, 241
Disincentives for automobile use, 10, 453
Distribution of characteristics, in aggregation, 150
of effects (See Compensation; Differential incidence; Equity)
of empty vehicles, and vehicle cycle, 229
of income, and evaluation methods, 364
of trips, 119, 428, 432 (See also Destination choice)
Distribution link, 167, 168
Distrust of analysts, 358–359, 542, 544–545
Disutility, 69
Diversion curves, 87, 142
Diversity of styles, for applying theory, 584
Diversity of values, in society, 358–359
DODOTRANS, 499
Domestic capital, in trade-off analysis, 198
Dominant direction of flow, 404
Do-nothing alternative. See Null alternative
Dual-mode transit, 10
example of analysis to set R&D priorities, 196–198, 197
See also Automated-guideway transit
Duties of the analyst, 570–571. See also Role of the professional

Ecological impacts, 11 as resources consumed, 172, 172
Economic capacity, 271
Economic concepts as goal variables, 366–384 in network case study, 516 in operations planning case study, 408 role in evaluation, 383–384
Economic development, role of transport in, 14, 58–60. See also Activity system; Penetration road
Economic interests, perspective of, 172
Economies of scale, 236
Effective agreement, 564
Effects of transportation, on social and economic activity, 58–60. See also Impacts
Elastic behavior, 126
Elasticities, 125–133 and composite variables, 137 and prediction, 129–133, 142–147 of prices, effect on revenues of, 194–195 properties of, 128–129, 129 in transit analysis, 399 types of, 127–128 for urban passenger demand functions, 131, 131 See also Demand functions
Empty backhaul, 244
Energy, as resource consumed, 172, 172
Energy conservation measures, 454, 458
Engineers, role in transportation organizations, 554
Entropy models, 120n
Environmental effects of transportation, 11 as resources consumed, 172, 172 See also Impacts
Environmental impact statements, 541, 554, 569 and evaluation, 355–356
Environmental interests, perspective of, 172
Environment of a system, in performance functions, 174, 176
Equilibration, 28–30, 312–327. See also Activity-system equilibration; Operator equilibration; Travel-market equilibration
Equilibrium analysis, 176–177
Equilibrium conditions, 314
Equilibrium flow pattern. See Travel-market equilibration
Equilibrium models in network case study, 515 simplified, 327 in travel-market equilibration, 30–31
Equilibrium volume, 21, 176 and capacity, differences between, 177 estimation using load factor, 199 as measure of user impact, 182
Equity, 541, 542, 549–551 barriers to, 550 considerations in developing alternatives, 545–546 of a course of action, 562–563 in evaluation method, 353–354 Equivalent annual cost, 368, 371 Equivalent-day volume factor, 403 Equivalent-hour volume factor, 403 Equivalent-service approach, 248 Estimation of model parameters. See Model development
Evaluation (continued)
issues to be clarified, 332–335
judgment, 360
as a management tool, 335, 355, 553
in network case study, 515–516, 536
operator perspective, 372
performance model use in, 182–183
product of, 331–332
purpose of, 330–335
reasons for proposed method, 356–365
role in the process of analysis, 330–331
role of prediction models, 350
scoring functions, 361–362
as a technical problem, 346–349, 347
user perspectives, 372–381
value judgments in, 331, 333–335, 358–360
Evaluation report, 332, 335, 348, 354–355, 408, 554
in decision process, 553
in network case study, 536
in operations planning case study, 393, 394, 396, 399
in process strategy, 567, 569
Exogenous events, 18, 28, 322, 325
Expertise, limits to, 590
Expert judgment, in evaluation, 360
Explicit equilibrium analysis, 198
Exploration of issues, as a phase in the planning and design process, 565, 567–568
Exponential demand model, 123, 125
Exponentials, values of, 595
Expressway links, in network case study, 509, 519
Feasibility, of a course of action, 562
Federal-Aid Highway Act of 1962, 541
Field offices, 565
Fieldwork, 565
Financing and subsidies, as options, 16
Fixed costs, 236
Fixed facilities. See Facilities
Flexibility of plans, 551. See also Multiyear program plan
Flight hours, as a measure of utilization, 251
Flow distribution rule behavioral perspective, 490–492
definition, 478
empirical evidence for, 491
major types, 486–492
system-optimizing, 489–492
user-optimizing deterministic, 486–488
user-optimizing stochastic, 488–492, 500
Flow patterns, 12–13, 19, 21
in network case study, 520–525
Flow prediction basic concepts, 19–27
basic hypothesis, 19–21, 31–32
simple example, 23–27, 35–38
Foreign exchange, in trade-off analysis, 198
Freight demand
disaggregate models of, 458
effect of incentive rate on shipper behavior, 258
example of shipper behavior, 72–78
market segmentation and, 115
Freight transportation, and aggregation, 150
Frequency of trips, disaggregate models of, 444, 446, 450
Friction factor, 135
Functional impacts, 19. See also Activity shifts
Generalized cost, 135, 430
Generalized extreme value model, 85
Generalized price, 135
General share model, 425
Generated demand, 27
Identification of effects, 546-547
Identification of problems and opportunities, 392
Idle time, in vehicle cycle, 222, 224
Impact prediction
approximate methods of, 547
and community involvement, 546-549
Impacts
definition, 18, 336
major types, 18-19
not reflected in profit, 573
resources consumed, 171-172, 172
of urban transportation actions, 340
Impact tableau
definition, 344
in evaluation, 346, 350-351
example, 342
in network case study, 516, 526,
527, 536, 537
Impedance, 135
Implementation
of change, 555-557, 576-581
of technical decisions, 542
Implementation phase, of analysis, 41
Implementation strategy, for
carrier operations planning, 390-391
Incentive rates, 258
Incidence, of adverse and
beneficial impacts, 332-335,
347, 365, 563
in network case study, 516, 538-539
See also Differential incidence
Income distribution, effect on
aggregate mode choice, 78-82
Incremental analysis, 34, 108-109,
142-147, 394, 584
to approximate equilibrium, 199
with assumed model structure, 144-146
with elasticities, 132, 142-144,
146
using a judgmentally estimated
model, 146-147, 146
using a performance model, 198
Incremental assignment, 499
Incremental logit, 108-109, 144-146, 453

Generation of alternatives, 39. See also Search procedures
Geographic aggregation. See Aggregation
Goal formulation and revision, 41, 330, 331
Goals
changes in societal, 10
of different groups, 333-335
latent vs. manifest, 345
service level, and performance
functions, 199-200
Goal statements, 345
and value information file, 346, 350
Goal variables
definition, 341
using economic concepts, 366-384
in network case study, 516, 538-539
Government, viewpoint of, in
evaluation, 381-383
Governmental impacts, 19
Gravity models, 32, 116-118, 430
as examples of sequential choice
structures, 419
Gross-benefit view, in evaluation, 375, 377
Gross revenue, 182
Gross user benefit, 374
Guideway, 165
Harvard-Brookings model system,
33, 277n, 324-325
path choice in, 487-488
and UTMS-1, 433
Hierarchical structure of analysis.
See Levels of analysis
Highways, 10
alignment of, systematic
analysis, 198
capacity of, 271, 296-298, 296
cost function example, 237-241
and equity, 549
and flow prediction, 23-27, 35-38
projects for, systematic analysis,
198
Historical sites, 562
Home-based trips, 429, 457
Home-to-work travel, 510
Hypothesis of choice-independent
utilities, 139
Incremental logit (continued) in operations planning case study, 405–406
Incremental prediction, 34. See also Incremental analysis
Independence of irrelevant alternatives property, 85, 468, 489
Indifference curves. 68, 68
Indiscretions of transportation options, 285–295
consequences of, 286, 291–295, 294, 295
effect on cost function, 294–295, 295
Induced demand, 27
Industrial logistics system, and network equilibrium, 491
Inelastic behavior, 126
Inequities, 542
elimination of, 568 (See also Compensation)
See also Differential incidence
In-service time, 222, 224
Interactions
between vehicles, 169–170, 169
between vehicles and facilities, 169, 170
between technical analysis and community interaction activities, 567–568
Intercity passenger demand models, 118–119
Intercity passenger transportation studies, 4, 12, 33. See also Northeast Corridor Study
Interdisciplinary approach, 554
Interest rate. 367–370
Intermediate-run cost functions, 284
Intermediate-run options, 282
Internal consistency, of demand functions, 421, 425
Interregional input-output model, 33
Intervening-opportunities model, 120n
Interzonal level of service, 493
Interzonal volume, 493
Intraorganizational elements, in the decision process, 574–575
Intuitive search procedures, 39
In-vehicle time, 65–67, 67
in estimated models, 445, 446, 447
in network case study, 509, 514
in performance model, 179–180
Issues, clarification of. See Clarification of issues

Jitney mode, in MTC model system, 457
Job training, 562
Judgment, as evaluation method, 360
Judgmental-model approach, in incremental analysis, 146–147

Known-service-level assumption, 316–317, 318
Known-volume assumption, 317–319, 318
Kraft-SARC model, 118

Labor
impacts on, in choice process, 573
and operating plan, 308
as a resource, 172, 172
in trade-off analysis, 198
Lancaster’s approach to demand, 87. See also Choice-independent attributes
Land, as resource consumed, 172, 172
Land-use models, 33
PLUM, 455
See also Activity shifts
Latent goals, 346
Laws and regulations affecting transportation planning and decision making, 541–542. See also Environmental impact statements: Process guidelines; specific names
Levels of analysis, 585, 586
Levels of choice, 61–63
for an individual, 61, 61
for a firm, 62, 62
See also Choice dimensions; Choice hierarchies
Levels of service. See Service levels
Life, of vehicle, 262
Light rail transit, typical speeds, 100
Limited information, making predictions with, 142–147
Linear cost functions, 236–238
Linear demand models, 123, 125, 143, 146
and network equilibration, 490–491, 495
Linear scoring functions, 361–362
Line-haul links, 12, 167, 168
Line-haul time, 65–67, 67
Linkage
of activity-shift and transport models, 323–325, 323, 324, 325
of purposes, in demand models, 451
Link level of service, 493
Links, 303, 464, 492
characteristics of, as options, 16
in network case study, 509, 513, 517–519
in simple networks, 479–484
types of, 167, 168
Link volumes, 493
Load-carrying system, 165
Load-dependent congestion, 277–281
Load factor, 177
assumption of, to estimate equilibrium volume, 199
in performance model 1, 181–182
as profitability surrogate, 213–214
Load-independent congestion, 276–281, 295–300
Load-schedule congestion, 277
Load/unload time, in vehicle cycle, 221, 222
Load-vehicle congestion, 277–281
Locational decisions. See Activity shifts
Locus of decision authority, 579
Logistic demand model, 123, 125, 145, 146
Logit model. See Multinomial logit model
Logsum variable, 423. See also Composite variables; Potential
Long Island Expressway, 36–38
Long-range plan, 43
uncertainty in, 551
See also Multiyear program plan; Periodic review and reassessment
Long-run cost functions, 284
Long-run equilibrium, 29, 322–325
Long-run options, 282
Low-capital options, 453
and relevance of demand models, 435–436
McLynn model, 118–119, 134
Maintenance, and operating plan, 306
Maintenance base, and vehicle cycle, 220, 221, 224
Maintenance strategies
effect on vehicle cycle, 224
and trade-off analysis, 198
Maintenance system, 166
Maintenance time, 224, 245
Management, of analysis process, 554
Management judgments, in analysis, 583, 585–586
Management system, 166
Manifest goals, 345
Manual methods, for prediction, 91–111, 394, 453, 454, 584. See also Simplified prediction methods; Worksheets
Marginal cost, 232, 236
vs. average cost, 273
Marginal product, 231
Marginal productivity, diminishing, 240, 241
Marginal service time, 272, 272
Marine shipping services, evaluation issues, 334
Market
in a network, 303
for transportation, 19–20
Market prices, in evaluation, 364
Market segments, 114–116, 149–150
as basis for classification, 453
and composite service levels, 136
in disaggregate demand models, 451
examples of, 115–116
representation in demand functions, 122, 133–134
sampling of, 150
in UTMS-1, 428
Market structure, influence of, 319–322
Mass media, monitoring of, 565
Master plans, 551. See also Periodic review and reassessment.

Materials, as resources consumed, 172, 172.

Mediation and arbitration, 565.

Merging of vehicle flows, 169.

Methodological challenge of transportation systems analysis, 5, 35, 48.

Metropolitan Transportation Commission. See MTCFCST; MTC model system.

Midrange plan, 43.

Mileage, total annual, and vehicle cycle, 218–220.

Milwaukee (Wisconsin), case study of, 196.

Minimizing adverse effects, 545, 563.

Minimum paths, 432, 470, 497.

Mission definition of an organization, 577–578.

Mobility bundle, 442.

Mobility choices, 440.

Mode choice.

 disaggregate model of, 91–111, 444.

example of calculations using worksheets, 92–98, 103–105.

in network case study, 510–511.

by urban passengers, 444, 445.

in UTMS-1, 119, 428, 430, 432.

Model development, 155, 584–587.

criteria in, 584–585.

in UTMS-1, 434.

value judgments in, 586–587.

Models.

physical, as community interaction techniques, 565.

vs. scenarios, 325–326.

Model systems. See Systems of models; specific names.

Mode-split models. See Mode choice.

Mode-specific constant, 92. See also Choice-specific attributes.

Moratorium on highway construction, 541.

Movement links, 167.

Movement processing time, 222, 223.

MTCFCST, 455.

MTC model system, 454–458, 456.

Multidimensional utility, 364.

Multidisciplinary approach, 586.

Multilink chains, 429.

Multimodal networks.

as a premise of analysis, 11–12.

in network case study, 517.

Multinomial logit model, 85–86.

for automobile ownership, 448.

conditions for consistency, 423–424.

in incremental analysis, 144–146.

in network case study, 510–511.

path choice, 468, 470, 484–486, 489.

relation to Dial’s stochastic assignment, 470, 489.

for shopping, 446.

and simplified prediction methods, 143–147, 146.

urban mode split, 91–93, 110.

See also Mode choice; MTC model system.

Multinomial probit, 85, 468, 489.

Multiobjective analysis, 385.

Multipath assignment models. See Stochastic assignment models.

Multipath stochastic assignment.

See Stochastic assignment models.

Multiple service attributes, in path choice, 486–488.

Multiple uses, of rights-of-way, 562.

Multistop services, 303.

Multiyear program plan, 43–45, 44, 46.

as focus for periodic review, 551–552.

See also Periodic review and reassessment.

Naive approach to aggregation, 149.

example, 154–156.

National freight transportation policies, model for analysis of, 458
National transportation policy analysis, 453
Negotiation to resolve conflicts, 565–566, 571
Negotiator, role of analyst as, 571
Net present value, 369, 371
Net revenue, 177, 183
frequency for maximum, 187, 188
in network case study (See Revenue to operator)
Network analysis case study, 505–539
Network characteristics, reflecting spatial structures, 166, 169, 464
Network definitions, 470–472, 471
Network equilibrium, 464–502
behavioral basis of, 466–470, 478–492
case study, 505–539
examples for simple networks, 479–484
flow distribution rules and, 478, 486–492, 499
general formulation of, 492–495, 494
issues in, 464–467, 472–476, 507–508
with multiple choice dimensions, 486, 498
network representation influence on, 500–501
network structure influence on, 464–466, 472–476, 479–484
relationships, 476–486, 478
and simultaneous choice structures, 486, 498
in UTMS-1, 32, 119, 428, 430, 432, 495
See also Stochastic assignment models
Network options, 16
Network of services, 300–308
Network representation, 500–501
Network size, 465
Network topology, 492
Newsletters and newspapers, in community interaction, 565
New transportation systems, and R&D priorities, 196–198, 197
Nodes, 492
Noise and Property Value Compensation Act, 541
Noise pollution, 11, 19, 171, 172
Non-home-based trips, 429
in MTC model system, 457
for people-mover system, 454
Nonlinear cost functions, 235, 241
Nonstop services, 303
Nonuniformity of demand, effect on costs, 242–248
Nonvehicle links, 167
Normative model of professional role, 559–580
Northeast Corridor Study, 4, 33, 118
Null alternative, 331, 344, 355, 545
barriers against choice of, 578
Objectives of analysis, 330, 560–564
Objectivity in analysis, 544–545, 587, 589
of analyst, consequences of supposed, 542
in balancing interests, 542
in model development, 586
See also Value judgments
Off-peak demand, 404
Off-road vehicles, 237
Ombudsmen, 565, 571
On-board survey, 413
Openness of the decision-making process, 550
Operating cycle, 220, 221–224, 222
Operating plan, 305–308, 306
Operating policies, 16–17
in air transportation example, 173–195
interrelation with other options, 281–295
in network case study, 513, 519–520
in operations planning case study, 390–414
railroad, and reliability and utilization, 264–265
and relevance of demand models, 435–436
systematic analysis of, 187, 188, 191–195
Operational base, 220, 221
Operational cycles, 305
Operationally stable capacity, 271
Operational servicing time, 221, 222
Operations planning case study, 390-414
Operations planning process, 42, 391-393
continuing analysis process, 38-48
periodic review and reassessment, 43-45, 551-552
Operator equilibration, 13, 29-30
conditions for usefulness, 325, 326
in integrated model system, 313, 325
and supply function, 200-205
Operators
cost to, in network case study, 251-254
definition, 14
impacts on, 18
in network case study, 516, 525, 526, 528, 535, 536, 538, 539
objectives of, in deriving supply function, 202, 327
perspective of reflected in economic goal variables, 372
in system performance, 171
on system of services, 302, 304-305
revenues of, 177
Operator-user trade-offs. See Trade-offs
Opportunity cost of capital, 370
Optimal frequency
for different technologies, 191
for a given price, 194
Optimization methods, as search procedures, 39, 326, 585
Options, 14-18
dimensionality of, 281-294
explicit variation of, 30
for facilities, 285, 287
indivisibilities of, 285-295
interrelated, effects of variations in, 291, 291
operating policy, 16, 282, 285, 287
in performance model, 179
time frames of, 282-285, 291-292 and time lags, 285
variations over time, 321, 403-404, 404
for vehicles, 285, 287
Organizational barriers to change, 555
Organizational policies, as options, 17
Organizational structures, 552
Origin-destination matrix, 494
Origin-destination pair, 492
Origin-destination patterns, in operations planning case study, 413, 414
Out-of-pocket travel cost, 65-67, 67, 72, 78, 91
in estimated models, 445, 446, 448
in network case study, 509, 514
in performance model I, 179-180
Out-of-vehicle time, 65-67, 67, 72, 78, 91
in estimated models, 445, 446, 448
in network case study, 509, 514
in performance models (See Performance models I, II, III)
Output dimension, in cost functions, 234-235
Owner-operator truckers
cost function for, 218
effect of backhaul on, 243-248
example of vehicle cycle, 218-220
and rail competition, 243-248
Parameter estimation. See Model development
Parameter variations, analysis of, 195-198
Parametric analysis. See Systematic analysis
Pareto criterion, 550
Park-and-ride, in network case study, 509
Parking facilities, in network case study, 509, 519
Parking restrictions, 453
Participation of public. See Community interaction; Public involvement
Passenger behavior. See Consumer behavior models I, II
Path of a user, 303, 464
of a vehicle, 170, 170, 220, 220, 303, 464
Path choice, 491
Path level of service, 473–474, 478, 493
Paths, in network case study, 513
Path volumes, 493
Pattern of flows. See Flow patterns
Peak and off-peak services, 407
Peaking factors, 403, 404
Peaking problem, 320–322, 403, 404
Peak period, in network case study, 510
Peak-period demand, 404
Peak-period demand functions, 410
Pencil-and-paper methods. See Manual methods; Simplified prediction methods
Penetration road, 237–241
People-mover systems. See Automated-guideway transit
Performance of a transportation system, 163–309
Performance functions definition, 174
highway, 296
and supply function, 200–203
surface, 175, 175
use in analysis, 176–178
Performance model I, 178–182, 182, 281
and more detailed analyses, 205–206
Performance model II, 278–281, 280
Performance model III, 286–291, 289
implications of, 291–300
Performance prediction, in operations planning case study, 412
Periodic review and reassessment, of transportation decisions, 43–45, 551–552, 579. See also Multiyear program plan
Personal flexibility, need for, 9
Personal values, 590
Perspectives of various interests, as complement to technical expertise, 587. See also Community interaction
Physical capacity, 271
Physical impacts, 18
Pipelines, cost functions for, 241, 242
Pivot-point methods, for incremental prediction, 132, 142–146
with an assumed model structure, 144–146, 146
with elasticities, 142–144
in operations planning case study, 399
Plan, 322. See also Long-range plan; Multiyear program plan; Options
PLUM, 455
Pocket calculator. See Calculators
Point elasticity, 127
Policy, 322
Political nature of transportation decisions, 47–48, 559
balancing of interests, 19, 542
conflicts among interests, 552
Political role of analyst. See Role of the professional
Pollution, 11
as resource consumed, 172
Port, link representation of, 167–169, 168
Positioning, 243
time, 221, 222, 224
Posters, as community-interaction technique, 565
Potential, in demand models, 117–118, 420. See also Composite variables
Power of analysis, 589
Practical capacity, 271
Prediction, 38, 330
of aggregate behavior, 121 (See also Aggregation)
context of, 38–49, 39
with demand elasticities, 129–133, 142–147
with disaggregate demand functions, 147–155
of effects, 546–547
in network case study, 513–515
of operator response (See Operators)
Index

Prediction (continued) of service levels, 99–108
See also Incremental analysis; Simplified prediction methods
Preferences of consumers, represented by utility functions, 68–71
Presentation of information to the public. See Community interaction
Price effect of incentive rate on shipper behavior, 258
elasticity, 194–195
as an option, 16
in performance model, 179–180
variations, and performance functions, 191–195, 193
Pricing policies analysis using disaggregate demand models, 453
and performance functions, 191–195, 193
See also Operating policies
Principles for choice process, 545–555
application to airport planning, 556
application to highway planning, 555
application to transit, 556
Private-sector decision-making process, 571–576
Probabilistic choice, example, 84–86
Probability formulas, 597
Process guidelines, 555
Process objectives, 560–564
Process strategy, 564–570
Product, average vs. marginal, 231
Product-form demand model, 123, 125, 143, 146
See also Utilization
Product of analysis, 41–47. See also Choice; Evaluation report
Professionals career trajectories of, 6–9, 7, 580
style of, 578–579
See also Analyst; Distrust of analysts; Public views of transportation professionals;
Role of the professional;
Technical team
Profit maximization, as objective of firm, 572
Program, 322. See also Multiyear program plan
Programming, 552
Public hearing, 565
in process strategy, 569
Public information centers, 565
Public involvement, 547–549. See also Community interaction
Public views of transportation professionals, 358–359, 542, 544–545
Qualifications, for project manager, 554
Queuing models, 273–275, 274, 275
of load-schedule congestion, 278–281
in performance model II, 278
of vehicle-facility congestion, 295–300
Radio and television, in community interaction, 565
Railcar cycle, 226–229. See also Vehicle cycle
Rail commuter service demand for, in MTC model system, 457
links, in network case study, 509, 519
Rail rapid transit, typical speeds, 100
Railroads costs of, compared with truck costs, 243–248, 247
demand for, 72–78
network of, 302
randomness in consumer choice, 83–86
system policy, and vehicle cycle, 261–265
truck as competition to, 243–248
Ranking of actions, 345
Rate of return, 361
Recreational and community facilities programs, 344
Referenda, 565
Regional model system, 454–458
Regional passenger transportation studies. See Intercity passenger transportation studies
Regulation, as option, 16
Relationship of individual to group choices, 76–78, 80–82. See also Aggregation
Relevance as criterion in model development, 584
of UTMS-1, 435–436
Reliability of rail service, 264–265
and utilization. 264–265
Replacement housing program, 344, 562
Research and development evaluation issues, 334
priorities for, 196–198, 197
Resource consumption, 29, 171–172, 172
in cost function analysis, 248
functional representation of, 174
in performance model I, 180–181
in performance model III, 288
and service level, in performance functions, 174–176, 175
Resource models, 30
in network case study, 513–515
See also Performance models I, II, III
Revenue flight hours, 251
Revenue ton-miles, 234
Revenue to operator, in network case study, 516, 525, 526, 528
Revision of prior decisions. See Periodic review and reassessment
Reward structure, in an organization, 578
Risk, as basis for discount rate, 370
Role of engineers in transportation organizations, 554
Role of the professional, 5, 559–581
classical model, 542–545
normative model, 559–580
personal style, 578–579
political role, 559
in private-sector decisions, 571–576
technical role, 559
See also Analyst; Professionals
Route, 303, 464
Route choice, in MTC model system, 457
Route planning, bus, 390–414, 453
Safety, as a service variable, 66
Sample size, for disaggregate models, 452
Sampling aggregation procedure, 149–150, 153–154, 453
applied to freight analysis, 458
in MTC model system, 458
Satisficing behavior, 87
Scenarios, 322, 325–326
Scheduled maintenance, 224
Schedule slack, 222, 223
Scheduling of facilities, 308
of labor, 307–308
of vehicles, 307–308
Scope of an analysis, 12
Scoring functions, 361–362, 548
Search procedures, 39, 330, 585
in network case study, 516, 522–523, 526, 535–536
relation to performance functions. 199–200
Selfishness criterion, in path choice, 469
Sensitivity analysis to alternative demand models, 409–410
need for, 551
performance function used for, 195–198
Sequential choice structures, 417–426
aggregate, 418–420, 419, 426
disaggregate, 420–421, 419, 426
in UTMS-1, 427–433
Sequential demand functions. See Sequential choice structures
Sequential production process, 579. See also Periodic review and reassessment
Serviceability, of a railcar, 262
Service attributes. See Service variables
Service characteristics, 20. See also Service variables
Service conditions, in equilibration, 176–177
Service cycle, 220, 222, 224, 305
Service function, 20, 174
highway example, 23
in network case study, 512–514
See also Performance models I, II, III
Service levels
effect on mode choice, 93–99
example of calculations, 99–108
goals, and use of performance functions, 199
importance in cost function analysis, 248–250
as measure of user impacts, 182
necessary to cause a shift in choice, 74–75
in performance model I, 174, 179–181, 181
in performance model III, 287
relation to highway capacity, 271
and resources, interrelation in performance functions, 174–176, 175, 180–181, 181
Service models, 30
Service-oriented analysis, 292–295, 300, 325
in network case study, 530–531
Service rate, 270
Services, and number of stops or transfers, 303
Service times, marginal and average, 272, 272
Service variables, 20, 65–67, 66, 67
in network case study, 509
Setup phase, of analysis, 40–41
in carrier operations planning case study, 400–407
in network case study, 507–521
See also Study design
Shared-ride mode, disaggregate models of, 444, 445
Share functions, in UTMS-1, 428
Share models and consistency of sequential forms, 425
in incremental analysis, 143–147, 146
Shipper behavior
effect of rate on, 258, 258
as example of consumer behavior model I, 72–78
Shipper services, as service variable. 66
Shopping trips, disaggregate model, 444, 446
Short-range plan, 43
Short-run cost functions, 284
Short-run equilibrium, 29. See also Travel-market equilibration
Short-run options, 282
Simplified prediction methods, 130–132, 142–147
with disaggregate models, 155, 453–454
in process strategy, 567, 585–586
See also Calculators; Incremental analysis; Manual methods; Worksheets
Simultaneous-choice demand models, and network equilibrium, 486
Simultaneous choice structures, 417–426
Simultaneous demand functions. See Simultaneous choice structures
Sketch-planning methods. See Simplified prediction methods
Social effects of transportation, 11, 18, 58–60. See also Differential incidence; Incidence
Social impacts, as resources consumed. 172. 172
Social interests, perspective of, 172
Social-recreational trips, 444
Social welfare function, 548. See also Scoring functions
Societal values changes in, 357–364
economic goal variables to reflect, 381–383
procedures for determining, 364–365
See also Incidence; Evaluation
Socioeconomic context, of transportation, 11–14
Spatial structure, of transportation system, 166, 169, 300–308, 464. See also Network equilibration

Speeds, of various transportation modes, 100, 100

“Spider” network, 500

Spokesmen for affected interests, 346 role of analysts as, 571

Staged construction, and trade-off analysis, 198

Staging of actions, 43, 322–325, 324, 325, 327

See also Multiyear program plan; Periodic review and reassessment

Station stopped time, 221, 222

Status hierarchy, in an organization, 578

Stochastic aggregate demand functions, 120–121

Stochastic assignment models, 120n, 468, 470, 484–486, 488–492

Stochastic disaggregate demand models, 84. See also Disaggregate demand models (stochastic)

Stochastic multipath assignment models. See Stochastic assignment models

Stochastic user-optimizing flow distribution rules, 488–492, 500

Strategies to preserve flexibility, 551

Strategy, for achieving process objectives, 564–570

Strategy for analysis, 45–47, 585. See also Design of an analysis; Study design

Stratification, 133–136 in UTMS-1, 429

Street links, in network case study, 509, 519

Streetcar mode, in MTC model system, 457

Study design, 5, 583–587

flexibility in, 586

as phase in process strategy, 566–567 (See also Setup phase)

resource allocation in, 585

See also Analysis; Choice

Styles, for applying theory, 584

Styles of prediction, 34

Substantial agreement, as a process objective, 563–564

Subsystems, 164–166, 164, 167

Supply functions, 29–30
derived from performance functions, 200–203, 203, 313

See also Operator equilibration Surveys, 565

Synthetic prediction, 34

Systematic analysis, 47

basic concepts in, 231–235
cost function in, 234–250
display of results, 234–235

dependence of frequency and price, 191–195, 195, 407
general applicability of, 198

typical model design, 585

dependence of operating policy, 187, 188 of options, 212–213

air transportation example, 186–196
transit fare example, 93–99

using performance functions, 177–178, 178, 183, 184, 186–196, 188, 198–203

dependence of pricing options, 191–195, 193, 195

and R&D priorities, 196–198, 197

System effects, in evaluation of user benefits, 379–380

System operating policies. See Operating policies

System-optimizing flow distribution rules, 489–492

as search procedures, 499

System performance basic representation of, 173–175, 175

dependence in space and time, 300–308 (See also Network equilibrium)

See also Performance functions

Systems of models, for prediction, 30–34. See also Harvard-Brookings model system; MTC model system; Urban Transportation Model System

Technical-analysis phase, 41, 564

Technical judgments, in analysis, 583–585
Technical team, 336, 562
responsibility of, 563–564
Technology
alternative road-vehicle combinations, and cost functions, 237–241
as an option, 15–16
in network case study, 509, 517
in performance model, 179
Temporal and directional variations in demand, 403, 404
and travel-market equilibration, 472
Temporal structure, of a transportation system, 166
3-C planning process, 542–543
Time, value of, in evaluation, 378
Time budget, in demand model, 87
Time frames of options, 282–285, 283
consequences of, 291–292
Time-of-day, in MTC model system, 457
Time lags
in changing options, 285
in impacts on the activity system, 324
Time-staged simulation model, 324
Time value of money, 367–370
Total cost incurred by operator, 183, 231
Total transportation system, need to deal with, 11–12
Total-user-and-operator-cost approach, in evaluation, 382
Trade-offs, 47, 408
in choice phase, 569
demonstrated by alternatives developed, 545–546
among design elements of a highway, 198
in evaluation method, 355, 384–385
among frequency and price, 195, 195
among options, price and frequency, and net revenue, 195, 195
represented by curves, 178, 178
between resources consumed and levels of service, 204
role of evaluation report, 554
among service attributes in demand functions, 75–77, 80
between user and operator in alternative highway alignments, 198
in network case study, 516, 525, 528
using performance functions, 186–196, 188, 192
See also Systematic analysis
Trade-off ratio, in utility functions, 69–70
Traditional approaches to decision making, failures of, 358–365, 542–545
Traffic assignment, 32, 495. See also Network equilibrium
Trajectory of a vehicle, 170, 170, 220, 220, 303
Transferability, of disaggregate models, 452
Transfer facilities, 166
alternative views of, 167–169, 168
Transfer links, 167
Transfers, number of, in path choice, 488
Transfer services, 303
Transit fare variations
effects of, 93–111, 96
in network case study, 529
worksheet for, 98
Transit finance, and equity issues, 550
Transit mode split, disaggregate models of, 110, 444, 445
Transit projects, and equity, 549
Transit systems, simplified methods for analysis, 454
Transportation as political power, 589
socioeconomic context of, 11–14
Transportation control plans, 542
Transportation demand function, relation to activity-shift function, 63
Transportation options, 15–17
in network case study, 512–513, 517–520
Transportation plans, 341
Transportation system alternative perspectives on, 164–172
Transportation system (continued)
components of, 165-166
definition of variable, 12
performance function for, 173-178
Transportation systems analysis
applications of, 32-34
basic premises of, 11-14
characteristics of, 3
challenges of, 5-6, 10-49, 580
methodological, 35, 48
substantive, 14
hypotheses in, 31-32
as a political process, 542
Transportation systems
management. See Low-capital
options; Multiyear program
plan; Options: Operating
policies; Systematic analysis;
Trade-offs
Transportation teaching package
(TTP), 508
Transport model, 323
Trapezoidal approximations, to
user benefits, 376-377, 377
Travel choices, 440
Travel-market equilibration, 24, 29,
30-31, 312-322
approximations to, 199, 247, 316-319
backhaul ratio and, 247
computational approaches to,
498-500
in deriving supply function, 202,
204
examples of congestion effects,
314
in networks, 464-502 (See also
Network equilibrium)
with performance functions, 176-177
using performance model I, 181-182
using performance model II, 280-281
simplified, 327
solution methods, 25-27, 498-500
in UTMS-1, 430-433, 431
Travel options, 17
Travel time
prediction of, 412
as service variable, 65-67, 66, 67
Travel time while loaded, 221, 222
Travel time while unloaded, 221, 222
Trip attraction, 429, 430, 432
Trip definition, in UTMS-1, 429
Trip distribution, 119, 428, 432
(See also Destination choice)
Trip frequency, 444, 446, 450
Trip generation, 428, 429, 432
aggregate model for, 159
in UTMS-1, 119
Trip profiles, examples, 100-108, 101
Truck costs
compared with rail costs, 243-248
example of backhaul, 243-248
example of vehicle cycle, 218-220
See also Owner-operator truckers
Truck mode, demand for, 72-78
Type 1 relationship, 13, 20, 63,
312. See also Travel-market
equilibration
Type 2 relationship, 13, 20, 27-28.
See also Activity shifts;
Activity-system equilibration
Type 3 relationship, 13, 20, 27, 29,
200-205, 313, 326
Ultimate capacity, 271
Uncertainty
and design of alternatives, 551-552
in evaluation, 355
about exogenous events, 325-326
ranges of, in estimates, 397, 398
Unique equilibrium, existence of,
32
Unscheduled major maintenance,
224
Urban development, impact of
transportation on, 58
Urban highway, evaluation issues,
333, 337, 340, 342
Urban passenger transportation
market segmentation, 115
tavel demand elasticities, 130-132, 131
Urban redevelopment, 562
Urban Transportation Model System (UTMS-1), 119–120, 156, 426–437, 494, 584
appraisal, 433–437
conceptual structure, 426–429, 435–437
dimensions of choice, 426–427, 435–437
directions for improvement, 437–438, 454–458
inconsistencies in, 32, 433–437
limitations of, 433–437
market segments in, 428
and network equilibrium, 494
sequential structure, 427–428
submodels, 32, 427–431
travel-market equilibration in, 419, 430–433

Urban transportation planning, 3, 32

Urban Transportation Planning System (UTPS), 455

Urban travel models, new directions, 443–458

User benefit/cost analysis, 361, 382–383, 548

User cost, 66
in evaluation, 376, 377
trapezoidal approximation, 376–377, 377

See also Composite service level

User impacts, 18
differential incidence, 378–379, 380
economic goal variables and, 372–381, 373, 374, 375, 377
expressed by service level and equilibrium volume, 182
in network case study, 516, 525, 527, 528, 535, 537, 538, 538
options available, 14–15, 17

User-operator total cost, in evaluation, 382

User-operator trade-offs. See Trade-offs

User-optimizing flow distribution rules, 490, 499

User perspectives
on alternative paths, 303–304
economic goal variables and, 372–381
on path choice, 473–474
on a transportation system, 171

See also Service variables; Trip profiles

Utilities, 69
Utility, 69
choice-independent, 139
Utilization, 251, 262
effect on costs, 251–254
of a fleet of vehicles, 306–307, 307
and operating plan, 306–307
of railcars, 261–265
of vehicles, as a policy issue, 262
(See also Vehicle cycles)

UTMS. See Urban Transportation Model System

UTPS. See Urban Transportation Planning System

Value information file, 346, 350
Value judgments, in analysis, 583, 586–587. See also Analyst, judgments of
Values, changes in, 10
Van pools, 10
Variable cost, 236
Vehicle acquisition cost, 295
Vehicle assignment to routes, 304–305
Vehicle availability, relation to congestion, 277n
Vehicle cost, effect of utilization on, 251–254
changes in, and effect on costs, 219–220
components of, 220–225
economics of, 250–265, 257
in network context, 302, 305
opportunities to affect, 229–230
Vehicle-facility congestion, 169, 276, 286–287, 295–300
Vehicle-facility interactions, 169, 286–287
Vehicle fleet economics of, 254–255
management of, effect on vehicle cycle, 229
Vehicle investments, 287
Vehicle links, 167
Vehicle operating-cycle time, 222, 224
Vehicle options, 16, 186–191, 190
Vehicle productivity, 178–179
Vehicle-schedule congestion, 276–278, 286–287, 305–307
Vehicle trajectories, 170, 170, 220, 220, 303
Vehicle utilization. *See* Utilization; Vehicle cycles
Vertical or short takeoff and landing (V/STOL) aircraft, 10, 12

Volume
actual, 176
capacity, 176
constraint, 187, 189
demand, 176
equilibrium, 176
of flow, 20 (*See also* Flow patterns; Flow prediction)
Volume-capacity ratio, 296
Volume–travel time functions, 512

Waiting time
as a function of headway, 100
in performance model, 179–180
See also Out-of-vehicle time

Walk distance, and path choice, 488
Walking, typical speeds, 100
Walk links, 167
in network case study, 509, 517
Wardrop’s first principle, 469–470, 479, 488
Wardrop’s second principle, 490–491
Willingness to pay, 373–381, 373, 374, 375

Working meetings, 565
Work rules, 308

Worksheets
for analysis summary, 395
in carrier operations planning, 395, 398, 407
for demand prediction, 91–98, 95, 98
for organizing calculations, 93
for parametric analysis, 98
for service-level prediction, 99–108, 103
for volume estimation, 95, 98
Workshops, 565

Zone centroids, 471, 492
Zones, traffic, 427, 470–472