Reflections on Adaptive Behavior

Essays in Honor of J. E. R. Staddon

edited by Nancy K. Innis

The MIT Press
Cambridge, Massachusetts
London, England
Index

Active time model, 101, 104, 107–111, 121
Analogies and scientific investigation, 23, 24
Applied behavior analysis, 263, 264, 295–297
Aristotle, 251, 252, 326, 327
Artificial intelligence, 6
Assessment centers, 303, 304
Avoidance learning, 255, 256
Ayres, Sandra, 15

“Beam” model, 165–169
Behavioral analysis, 51
Behavioral biology, 18
Behavioral Theory of timing (BeT), 173, 174, 180
Behavioral units, 52, 53
Belke data set, 117–120
Bem, Daryl, 259, 260
Bertalanffy, Ludwig von, 304
Biological learning constraints, 14–16
Black-box models, 6, 9, 215–217, 286
Bradshaw, Chris, 7
Bruner, Jerry, 6

Center for Cognitive Studies, 6
Choice, 125, 126
Circadian timing, 172
Classical conditioning, 16
Cockpit-crew resource management (CRM), 302, 303
Cognitive revolution, 171–173, 293, 294
Cohen’s Kappa coefficient of agreement, 147
Collateral behaviors, 173
Competition theory for behavioral contrast, 100
Complexity recognition, 231–234
Concurrent VI VI behavior, 104–107
Conditioned reinforcement, 256
Consciousness, states of, 330, 331
Cue degradation experiment, 76–81
“Currencies” of animal behavior, 101–104
Cyclic schedules, 12
Darwin, Charles, 275, 276
Debreu, Gérard, 322, 323
Democritus, 251
De Vries, Hugo, 276
Diffusion-generalization model, 12, 13
Economics, 322–330
Electronic Systems Laboratory, 6
Emery Air Freight, 294, 295
Ethology, 279
Evolution of species analogy, 23, 24
Fixed-interval (FI) reinforcement schedules, 5, 10, 11, 174–179
Fixed-time (FT) schedule, 14, 15
Forgetting, 126, 127
Frequency-dependent behavior reinforcement, 87–100
“Frustration effect,” 7, 10, 11
Functionalism, 291

“Gap” studies, 171–191
Gene concept, 276, 277
Glymour, Clark, 262

Habituation model, 13
Harris, Charlie, 6
Hawthorne studies, 295
Herrnstein, Richard, 4
Higa, Jennifer, 12
High Performance Organization (HPO) model, 304, 305
Hippocrates, 125
Honig, Werner, 15
Hull, Clark, 242–245, 271
Hume, David, 252

Industrial-Organizational (I-O) psychology, 291–310
Inner states, 331
Innis, Nancy, 10
Instinctive drift model, 15
Integrator model, 13, 14, 139
Inter-food schedules, 14, 15
Interim behavioral state, 15
Internal clock models, 179–181, 187, 188
Inter-reinforcement time, 5
Interval time discrimination, 13
Interval timing, 223–226, 229–231
Iwata, Brian, 265

James, William, 253

Law of effect, 255
Learned response sequences, 52

Learned response structure extinction and integrity, 54
Learning constraints, 16
Learning principles, 17, 18

Markov chains, 56–58, 61–64
Matching, 107–110
Matching law, 16, 17
McCarthy, John, 6
McFarland, David, 8
Mechanistic organization model, 304
Mehler, Jacques, 6
Melioration, 104, 105, 109, 110, 113, 114, 121
Memory, 126, 143
Memory-trace choice models, 132–142
Mendel, Gregor, 240, 241, 276
Methodological behaviorism, 249, 250
Milesians, 152
Miller, George, 6
Minimum-distance theory, 17
Minsky, Martin, 6
Molar behaviorism, 264, 265
Molecular choice structure, 107, 111–114
Momentary maximization, 104–106, 110, 111, 114–117, 120, 121
Multiple-Time-Scale (MTS) theory, 13, 129, 181–191, 194–214

Neural networks, 273
Nisbett, Richard, 260

Office of Strategic Services (OSS), 303, 304
“Omission effect,” 11
Open-systems theory, 304, 305
Operant learning, 217–223
Optimality theories, 1, 12, 16, 17
Organic organization model, 304–306
Organizational Behavior Management (OBM), 295–297
Organization Development (OD), 306–310
Pareto optimality, 325
Pavlov, Ivan, 327
Pecking location research, 91–100
Peirce, Charles S., 252, 258, 269
Performance appraisal systems, 301
Piaget, Jean, 261
Pigeon Lab (Harvard University), 4–6
Popper, Karl, 23
Posner, Richard, 247, 248, 257–259
Pragmatism, 252
Proportional timing, 172
Protagoras, 251
Pseudo-Markov models, 56–58, 61–64, 84
Psychological explanation, 269–289
Rachlin, Howard, 150, 258, 264, 265
Radical behaviorism, 237–242, 247–268
Radical empiricism, 252, 253
“Reference memory,” 143
Reid, Alliston, 12–15
Reinforcement, 11, 12
Reinforcement schedules, 256, 257
Repeated acquisition procedure, 65
Reset mechanism, 226, 227
Response-initiated delay (RID), 12
Response rate to reinforcement rate matching, 129–132
Response-strength models, 127
Response structure research conclusions, 82–84
Response-variability control, 87–100
Run length, 107, 114–117
Santayana, George, 247
Scalar Expectancy theory (SET), 14, 173, 174, 180, 193–197, 200
Scalar timing, 172
Schedule-induced behavior, 15, 16
Science, 317–322
Scientific Management, 304
Selectionist model of choice behavior, 23–50
“Self-feedback,” 294, 295
“Self-perception” theory, 259, 260
Short-term memory (STM), 195–199
Simmelhag, Virginia, 14, 15
Simple exponential-decay models, 135, 136, 139, 140
Simple (parsimonious) theories, 6, 16, 231, 232, 286, 287
Single-integrator models, 138
Social sciences, 315–323, 326–351
Spaced responding, 4–6, 227–229
Spatial memory research, 143–169
“Split-session” condition, 65
Stark, Larry, 6
Stimulus control, 176
Superstitious behavior, 7, 14, 15
Target sequence response experiment, 64–76
Taylor, Frederick W., 304
Temporal control, 10–14, 176
Temporal discrimination, 4–7
Terminal behavioral state, 15
Theoretical behaviorism, 1, 237–246
Theories, temporary nature of, 6, 9
Theory of interests, 326, 331–351
Timing models, 127, 128
Tinbergen, Nikolaas, 27
Tolman, Edward C., 24, 25, 242, 243, 271
Trace-value model, 135, 136
Training error, 70–76
Training sequence relationship to training errors, 64–76

Unobservable entities, 271–277

VAR condition for learned response research, 54–60
VI VI data sets, 107–109
Vocal learning research, 87–92

Wait-and-respond model, 135, 136, 139, 141
Watson, John B., 271, 291, 292
Wilson, Timothy, 251
“Working memory,” 169
Wynne, Clive, 7, 9, 12

YOKE condition for learned response research, 60–63