Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abramovitz, Moses, 13n, 15n, 17n</td>
<td></td>
</tr>
<tr>
<td>Acid bath. 30</td>
<td></td>
</tr>
<tr>
<td>Recovery of, see Crystallization, Evaporation</td>
<td></td>
</tr>
<tr>
<td>Ackerman, Bill, vii</td>
<td></td>
</tr>
<tr>
<td>Aging, 29, 136</td>
<td></td>
</tr>
<tr>
<td>Allen, George, vii</td>
<td></td>
</tr>
<tr>
<td>Alternative-active spinning, 32, 76, 99, 100, 112, 143</td>
<td></td>
</tr>
<tr>
<td>American Viscose Corporation, 29n, 44, 167, 173n, 180, 183, 187, 188n</td>
<td></td>
</tr>
<tr>
<td>Arrow, Kenneth J., 12n, 202n, 205n</td>
<td></td>
</tr>
<tr>
<td>Asahi dializer, 133, 170</td>
<td></td>
</tr>
<tr>
<td>Aukrust, Odd, 7n</td>
<td></td>
</tr>
<tr>
<td>Automatic-control mechanisms, 137</td>
<td></td>
</tr>
<tr>
<td>Avram, Mosi H., 29n, 133</td>
<td></td>
</tr>
<tr>
<td>Bachotte, M. R., viii</td>
<td></td>
</tr>
<tr>
<td>Baker Perkins shredders, 136, 137, 169</td>
<td></td>
</tr>
<tr>
<td>Bath guide systems, patents relating to, 173, 180</td>
<td></td>
</tr>
<tr>
<td>Beaming, 66, 82, 94, 99, 112, 128</td>
<td></td>
</tr>
<tr>
<td>Bellezza, J., 184n</td>
<td></td>
</tr>
<tr>
<td>Bobbin speed, 41n</td>
<td></td>
</tr>
<tr>
<td>Bobbin spinning, 30, 44, 78-79, 86n, 124-125, 130</td>
<td></td>
</tr>
<tr>
<td>Bradshaw, W. I I., vii, 173, 178n, 180, 182n</td>
<td></td>
</tr>
<tr>
<td>Brainard, S. W., viii, 174</td>
<td></td>
</tr>
<tr>
<td>Brown, Murray, 19n</td>
<td></td>
</tr>
<tr>
<td>Bucket speed, 41n, 61n, 125n, 138</td>
<td></td>
</tr>
<tr>
<td>Bucket spinning, 30, 44, 78-79, 86n, 122, 124-125, 130</td>
<td></td>
</tr>
<tr>
<td>Butterworth, H. W., and Sons, 138n</td>
<td></td>
</tr>
<tr>
<td>Cakes, 30, 45, 53, 63, 81, 128</td>
<td></td>
</tr>
<tr>
<td>Cake-to-cone (Type 5) process, 44, 58, 59, 60, 61, 81, 91, 99, 117, 122, 130, 140, 173-175, 206</td>
<td></td>
</tr>
<tr>
<td>patents for, 174</td>
<td></td>
</tr>
<tr>
<td>Capacity, definition of, 31-32, 38, 49</td>
<td></td>
</tr>
<tr>
<td>Capital, "embodied" technical change and, 4, 12</td>
<td></td>
</tr>
<tr>
<td>measurement of, 8, 9, 14, 16</td>
<td></td>
</tr>
<tr>
<td>Capital-output ratio, 4</td>
<td></td>
</tr>
<tr>
<td>Capital-using technical change, 117, 132-133, 158-160, 198-199</td>
<td></td>
</tr>
<tr>
<td>Cellulose, 29, 45, 213-214</td>
<td></td>
</tr>
<tr>
<td>costs of production and, 67, 68, 70, 84-85, 95, 105, 114, 150-152, 171-172</td>
<td></td>
</tr>
<tr>
<td>tire-cord rayon and, 129, 179</td>
<td></td>
</tr>
<tr>
<td>Cerini dializer, 133, 170</td>
<td></td>
</tr>
<tr>
<td>Chemical plant equipment, 135-138</td>
<td></td>
</tr>
<tr>
<td>Cobb, C. W., 3n</td>
<td></td>
</tr>
<tr>
<td>Compensation spinning, 58, 128</td>
<td></td>
</tr>
<tr>
<td>Comptoir des Textiles Artificiels, 167, 173, 185</td>
<td></td>
</tr>
<tr>
<td>Cones, 31, 45, 63, 81</td>
<td></td>
</tr>
<tr>
<td>Constant index system, 68</td>
<td></td>
</tr>
<tr>
<td>patents for, 175, 177</td>
<td></td>
</tr>
<tr>
<td>Continuous evaporation, 135n</td>
<td></td>
</tr>
<tr>
<td>Continuous operations, 45, 137</td>
<td></td>
</tr>
<tr>
<td>Continuous steeping, 66, 135, 142, 176</td>
<td></td>
</tr>
<tr>
<td>Controlled-humidity drying, patents for, 181</td>
<td></td>
</tr>
<tr>
<td>Converters, 63, 94, 132</td>
<td></td>
</tr>
<tr>
<td>"Cordura" yarn, 179, 183, 187, 206</td>
<td></td>
</tr>
<tr>
<td>Costs of production, automatic control</td>
<td></td>
</tr>
<tr>
<td>mechanisms and, 137-138</td>
<td></td>
</tr>
<tr>
<td>continuous operations and, 137-138</td>
<td></td>
</tr>
<tr>
<td>denier and, 40, 46, 51-52</td>
<td></td>
</tr>
<tr>
<td>fixed and variable, 36, 49, 60n, 102n, 111n</td>
<td></td>
</tr>
<tr>
<td>high-speed equipment and, 137-138</td>
<td></td>
</tr>
<tr>
<td>interplant comparisons and, 130</td>
<td></td>
</tr>
<tr>
<td>investment and, 155-156, 198</td>
<td></td>
</tr>
<tr>
<td>organizational improvement and, 152-153</td>
<td></td>
</tr>
<tr>
<td>labor improvement and, 152-153</td>
<td></td>
</tr>
<tr>
<td>plant expansion and, 38, 118-120, 193-194</td>
<td></td>
</tr>
<tr>
<td>product differences and, 125, 128</td>
<td></td>
</tr>
<tr>
<td>properties of yarn and, 41-43, 44, 47, 200</td>
<td></td>
</tr>
<tr>
<td>rate of plant utilization and, 36, 37</td>
<td></td>
</tr>
<tr>
<td>"significant" changes in, defined, 49n, 139n</td>
<td></td>
</tr>
<tr>
<td>spinning nozzles and, 52</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Costs of production (continued)
spinning speed and, 41, 46, 51-52, 138
standard, 50-52, 191
textile and tire-cord yarn, compared, 126-129, 130
Cotton linters. See Cellulose
Courtaulds, Ltd., 183
Cox, N. L., 182n, 184
Crepe trade, 65
Crystal formation, 85, 96
Crystallization, 69, 85, 134, 170
Davis, I. P., 183n
Dean, Joel, 48n, 210
Denier, costs and, 40, 46, 51-52
"routine" changes in, 40, 75, 83
source of changes in, 169
technical change and, 40, 53, 103, 106, 107, 109
Textile Organon and, 39
tire-cord yarn and, 128, 129
United States Bureau of Labor Statistics and, 35
Denison, Edward F., 9n, 11n, 13n, 14, 15n, 16n, 17-18
Depreciation, 36n, 191n
Dessau, Jan, 205n
Dializers, 68, 133-134, 170
Diellectric drying, 66, 142, 176
Direct-factory costs defined, 49
Direct-maintenance costs defined, 49-50
Direct-slashing process, 100-102, 117, 125, 128, 147
patents for, 182
Dobson and Barlow, 138n
Domar, Everey D., 7, 9, 13n, 17n
Double-godet patents, 180
Douglas, Paul H., 3n
Down-twister machine patents, 99
"Duplex" shredding blade patents, 169
Dyeability, 42
Economics of scale, 18, 19, 20, 21, 24, 46, 47, 190
Electric spindle motor drive patents, 140
Esselen, G. J., 214n
"Essex" process, 176, 178
Evans, R. B., 214n
Evaporation, 69, 85, 134, 170
Fabricant, Solomon, 3n
Factory costs defined, 36
Fellner, William, 132
Fiberloid Company, 176, 178
Filson, J. S., 174, 177n
Filtration, 30, 96, 106, 134
Flat-wrap production, 81
Fonda, G. W., 174, 177n
Gang doffing, 59
General burden defined, 36
General Electric Company, 138, 169n
Gilfillan, S. C., 52n
Givens, J. H., 183n
Glansztof, 183n
Glucose, 30, 134n
Goldsmith, Raymond W., 6n
Griliches, Zvi, 19n
Hamberg, David, 204n
Haynes, Williams, 134, 172n
Heckert, W. W., vii
Hegan, H. J., 183n
Hicks, E. M., Jr., viii, 180n
High-sulphate bath, 99n
High-zinc bath, 99n, 184, 197
patents for, 182-183
Hill, T. F., 202n
Hoff, G. Preston. vii. 180
Hydraulic Press Manufacturing Company, 135
Industrial Rayon, 173n
Innovation, 27
Invention, 25-26
See also Research
Investment, costs of production and, 155-156, 198
decision making regarding, 131-132
interplant comparisons of, 156-158
materials recovery and, 133-135
Old Hickory and, 139-143
productivity and, 4, 9
properties of rayon and, 153-155, 200
replacement, 117, 158-160, 198-199
"significant," 139n
Spruance plants and, 143-150
"Super-Cordura" and, 148, 150
technical change and, 7-8, 12, 22, 53, 150, 155-156. 163-164. 197-199. 201-203
Iron bath, 99n
patents for, 182
Kaldor, Nicholas, 8n
Karns, G. M., 182
Kendrick. John W., 13ff. 18n. 19n. 202n
Klein, Lawrence R., 9n
Knitting yarn process, 45, 81
Kuznets, Simon, 202n
Leeming, J., 29n
Lewis, E. Z., 177n
McGraw-Hill Department of Economics, 23n
Machlup, Fritz, viii, 24n, 34n, 45n, 204
McKee, E. R., 175n, 177
Maintenance costs, 36, 49-50, 70, 209-210
Markham, Jesse W., viii, 37, 39
Massel, Benton F., 7, 9, 10
Materials, costs of, 51
INDEX

Materials (continued)
investment and, 150
recovery of, 45, 69, 84, 85, 95, 96, 106, 133–135, 170
Materials price correction, 210–212
Mauersberger, H. R., 134
Max Ams Chemical Engineering Company, 118n
Mechanical (centrifugal) purification equipment, 185
Milne, T. R., viii
Mixing, 29, 63, 137
Moncrieff, R. W., 180n
Moore, C. L., 213n
Mueller, Willard F., 16n
Napper zinc bath patent, 167, 173, 176
National Bureau of Economic Research. See Total Factor Productivity
Old Hickory, analysis of costs at, 54ff
cost changes summarized, 73–76
history of, 28
investment at, 139–143
Operating labor, 33, 49, 50–52, 66n, 209
Overhead costs, 34, 36, 46, 49, 72, 209–210
Pakurar, P. J., viii
Parker, H. H., vii, 181
Patent protection, 171, 185–188, 197, 206–207
Plant-expansion effect, 24, 46, 190
costs and, 38, 118–120, 193–194
Popkin, Joel, 19n
Pressure-washing patent, 182
Price correction, 45, 52, 129, 191, 209–212
Production function, Cobb-Douglas aggregate, 3n. 4. 5
disaggregation and, 9–11
productivity and, 8n
Productivity, economics of scale and, 19, 20, 21
innovation and, 9
investment and, 4, 9
production function and, 8n
research and, 9
technical change and, 3, 6, 20
total factor, 4, 13–18
Properties of rayon, 41–43, 126
costs and, 41–43, 44, 47, 200
investment and, 153–155, 200
source of improved, 200
Quality of product. See Properties of rayon
Quant, Willis C., 33
Rainier Pulp and Paper Company, 172n
Rayonier, Inc., vii, 172n
Rayon Organon, 34
Recovery of materials, 45, 84, 85, 96, 133–135, 170
equipment for, 106, 118
See also Crystallization, Evaporation, Dializers
Research, delayed application of, 160–163
Ripening, 30, 137
Roller bath guide patents, 173, 180
Russell, Arthur O., 134
Salter, W. E. G., 20, 190, 214n
Schmoeker, Jacob, 13n
Schuelke, Eric, 136n
Schumpeter, Joseph A., 27
Scott, W. M., 214n
Scott-Venable, C., vii
Sezal, Martin, 26n
Semet-Solvay Engineering Company, 134n
Shields, J. L., vii
Shredding, 29, 63, 66, 82, 136, 142
Simplification of process, 117, 128
Skeining, 30, 45, 63, 81
Skein-lacing, 81
Skein-reeling, 45, 61, 122, 123
Solow, Robert M., 5, 11, 15, 16, 19, 197
Spiethoff, Arthur, 25n
Spinnings, 29–30, 138
Spacing, capacity. See Capacity
Spinning nozzles. See Capacity
Spinning speed, 31, 61n
costs and, 41, 46, 51–52, 138
source of changes in, 168–169
technical change and, 53
Spruance Plant I, analysis of costs at, 76ff
cost changes summarized, 88–91
history of, 28
investment at, 143–145
Spruance Plant II, analysis of costs at, 91ff
cost changes summarized, 97–99
history of, 28
investment at, 145–146
Spruance Plant III, analysis of costs at, 99ff
cost changes summarized, 107–109
history of, 28
investment at, 146–148
Spruance Plant II-A, analysis of costs at, 100ff
cost changes summarized, 115–117
history of, 28
investment at, 149–150
Stafford, R. H., viii
Standard costs, 50–52, 191
Standley, G. P., 181
Steeping, 29, 135
Stretch spinning, 44
"Super-Cordura" yarn, 104, 110, 148–150, 183–184, 187, 197, 206
patents for, 183–184
Swank, II. W., 184n
Swenson Evaporator Company, 134, 170
Technical change, cake size as, 53
capital-using, 117, 132–133, 158–160, 198–199
definition of, 3–4, 5, 7, 23ff, 190–191
Technical change (continued)

denier as, 40, 53, 103, 106, 107, 109

economies of scale and, 19, 22, 24

“embodied,” 11, 12n

“indirect,” 24, 118, 120, 195

invention and, 25

innovation and, 27

major and minor, 52–53, 156, 186, 195,

neutral, 5, 14

patents and, 22, 25, 53, 196, 197, 206–207

productivity and, 3, 6, 20

research and, 22, 25

resource allocation and, 10

sources of, 170–171, 185–188, 197–199

total factor productivity and, 4, 15

See also Costs of production.

Terborgh, George, 132n

Terleckyi, Nestor E., 19n. 25

Textile Organon, 39

Tire-cord rayon, 45, 99, 125, 126–129, 130,

162, 178, 179

See also “Cordura” yarn, “Super-Cordura” yarn

Tire-cord stretching patents, 184

Topham spinning box, 167

Total factor productivity, 4. 13–18

 Traverse system, 79

patents for, 180n

 Tube spinning, 64, 175–176

patents for, 176

 Twist, 31, 61, 79, 138n

Type 1 process, 45, 61, 81

Type 5 process. See Cake-to-cone process

Type 9 process, 81, 117, 122, 123, 130, 144,

175

patents for, 177

Type 10 machines, 60, 61, 141, 175

Type 146 yarn, 103n, 183

Type 156 yarn, 104

United States Bureau of Labor Statistics, 35

United States Tariff Commission, 29n

Urquhart, M. C., viii

Viscose-making equipment, 117, 128, 135–

138, 169–170

Viscose process, 29–31

Viscose solution, 29

recovery of, 68, 133–134, 170

Vollrath, H. B., 135n, 136n, 137n

Walters, A. A., 19n

Washing of yarn, centrifugal, 76, 99, 112,

128, 138, 139, 184–185

drip, 66, 81, 91, 109, 138–139, 142, 176

pressure, 101, 138, 139n, 182

Weaving yarn process, 45, 81

Werner and Pfleiderer, 137n

Wet reeling, 30, 173n

Wet-slashing process, 112, 117, 128, 149,

184–185

Wheeler, R. E., 29n

Whitin Corporation, 138n

Wicaco Machine Company, 138n

Wicksell, Knut, 25n

Wilson, L. P., 180

Wood pulp. See Cellulose

Xanthation, 29, 63, 82, 136

Yntema, Theodore, 48n