NAME INDEX

Abramowitz, M., 180, 184
Agin, G.J., 17
Arnold, R.D., 34, 206
Arrow, K.J., 174

Bachman, B.L., 117
Bajcsy, R., 5
Baker, H., 5, 34
Barlow, H.B., 43
Barnard, S.T., 5, 34
Barnea, D.J., 34
Barrow, H.G., 3, 5, 160
Beck, J., 39
Bergen, J.R., 35, 36, 42, 47, 49, 214
Berry, R.N., 213
Binford, T.O., 5, 34, 206
Bishop, P.O., 43, 44
Blakemore, C., 43
Braddick, O., 82, 83
Brady, J.M., 152
Braunstien, M.L., 5
Brewster, D., 34
Brucke, E., 34
Burr, D.C., 39
Burr, D.J., 34

Campbell, F.W., 35, 41
Chang, J.J., 34, 40, 41, 42
Chien, R.T., 34
Clatworthy, J.L., 40
Clegg, J.M., 40
Courant, R., 154, 155
Crick, F.H.C., 36, 214

Davis, L., 37, 181
Dev. P., 5, 34, 40
Din, al-, 5
Duchon, J., 151

Evans, C.R., 40

Felton, T.B., 41
Fender, D., 40, 41, 42
Fischer, B., 41, 43, 44
Forsyth, A.R., 154
Frisby, J.P., 5, 31, 36, 39, 40, 41, 87, 206
Fukushima, K., 34, 40

Gennery, D.B., 34
Gibson, J.J., 5
Giese, S.C., 35, 49
Grimson, W.E.L., 5, 12, 15, 47, 101, 107, 164
Gulick, W.L., 35, 102

Haber, R.N., 5
Hannah, M.J., 5, 34
Helmholtz, H., 5, 34
Henry, G.H., 44
Hershenson, M., 5
Hilbert, D., 154, 155
Hildreth, E.C., 5, 7, 8, 11, 15, 22, 23, 24, 32, 35, 36, 37, 39, 82, 115, 119, 163, 206, 210, 214
Hirai, Y., 34, 40
Horn, B.K.P., 5, 12, 109, 111, 112, 113, 117, 124, 146, 152
Howard, J.H., 213
Hubel, D.H., 37, 43, 44
Huffman, D.A., 124, 146
Hummel, R.A., 164
Hurwicz, L., 174

Ikeuchi, K., 5

Johansson, G., 5
Johnston, A.R., 17
Julesz, B., 5, 8, 34, 35, 40, 41, 42, 43, 63, 68, 69, 70, 71

Kahl, D.J., 34
Kak, A., 37, 181
Kato, H., 43
Name Index

Kaufman, L., 41
Kender, J.R., 5
Kidd, A.L., 59, 87
Knight, T.F., 50
Koffka, K., 34
Kuhn, H.W., 174

Lawson, R.B., 35, 102
Lerman, J.B., 34
Levine, M.D., 34
Lewis, R.A., 17
Lieberman, L., 5
Lilienstrand, R.L., 34
Longuet-Higgins, H.C., 5
Lukenberger, D.G., 161, 165, 168, 174, 175

McKee, S., 39
Mackworth, A.K., 124, 146
Marr, D.C., 1, 3, 5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 19, 21, 22, 23, 24, 26, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 47, 53, 59, 76, 78, 79, 82, 105, 115, 119, 159, 163, 179, 206, 207, 210, 214, 215, 216
Mayhew, J.E.W., 5, 31, 36, 39, 40, 41, 87, 206
Miles, W.R., 5
Miller, J.E., 41, 69
Moravec, H.P., 34
Mori, K., 34
Muller, J., 34

Nelson, J.I., 34, 40, 44
Nevatia, R., 34
Nicolides, F.E., 111, 113
Niehl, E.W., 40
Nikara, T., 43
Nishihara, H.K., 3, 6, 105

O'Brien, B., 36
O'Connor, D.N., 5
Ogle, K.N., 34

Panum, P.L., 34
Pettigrew, J.D., 43
Poggio, G.F., 41, 43, 44
Poggio, T., 1, 3, 5, 6, 7, 8, 11, 15, 18, 19, 21, 26, 31, 33, 34, 35, 36, 37, 39, 40, 42, 47, 53, 59, 76, 78, 79, 82, 159, 163, 179, 207, 210, 214, 215, 216

Polit, A., 35
Pradzyn, K., 5
Pratt, W., 37, 181
Price, K., 34
Purdy, W.C., 5
Quam, L.H., 5, 34
Rashbass, C., 40
Reddy, D.R., 34
Rice, S.O., 79
Richards, W., 35, 40, 41, 44
Richard, J., 44, 217
Riggs, L.A., 40
Robson, J.G., 35, 41
Rosenfeld, A., 37, 181
Rosinski, R.R., 5
Rudin, W., 140, 143
Saye, A., 40
Schumaker, L.L., 164
Schwartz, T., 39
Schwartz, E.L., 214
Shirai, Y., 17
Silver, W., 5, 117
Silverman, H.F., 34
Sjoberg, R.W., 109, 111, 112, 113, 117
Smith, C.J., 44
Smith, R.A., 41
Sperling, G., 34, 40
Stegun, L.A., 180, 184
Stevens, K.A., 5, 120
Sugie, N., 34, 40
Suto, L.L., 34
Suwa, M., 17, 34, 40

Tanimoto, S.L., 34
Tenenbaum, J.M., 3, 5, 160
Thompson, W.B., 5, 34
Tucker, A.W., 174
Tyler, C.W., 213

Ullman, S., 5, 7, 8, 9, 10, 12, 44, 82, 101, 159, 163, 164, 179, 207, 210, 216, 217
Uzawa, H., 174

Wallach, H., 5
Westheimer, G., 39, 40
Wheatstone, C., 5, 34
Weisel, T.N., 37, 43, 44
Wilson, H.R., 35, 36, 42, 47, 49, 214
Witkin, A.P., 5
Woodburne, L.S., 213
Woodham, R.J., 5, 109, 111, 115

Zucker, S.W., 164
SUBJECT INDEX

Acuity, 36, 39, 213-214
Albedo (ρ), 112-119, 121-123, 223-227
Algorithm, 7, 9-10
Algorithmic criteria, 10, 161, 163-164
Bi-directional reflectance-distribution function (BRDF), see reflectance function
Biharmonic equation, 155, 157
Biological feasibility, see algorithmic criteria
Brightness, apparent, 111-112
Calculus of variations, 140, 154-156, 232-237; natural boundary conditions for, 155-156, 236-237
Computational paradigm, 1, 5-10; constraints in, 7-8; levels of description of, 7-10;
Condition of linear variation, 23, 119
Conjugate directions; 170-172; theorem, 172
Conjugate gradient method, 169-172
Conjugate gradient algorithm, 172, 191, 196; examples, 197-202
Constrained optimization, 161-178
Constr: constraint: continuity in stereo matching, 26; uniqueness in stereo matching, 26; surface consistency, 101, 106-109, 139-142, 159
Constraints: on false targets problem, 19; on correspondence problem, 26
Correspondence problem, 15-18, 26-31, 32; elements to be matched in, 17-18, 20-26
Curvature, of a curve, 148; principal directions of, of a surface, 149; principal, of a surface, (κ_a,κ_b) 149; first (or mean) (J), 149-150; second (or Gaussian) (K), 150
Depth, 15

Developable surface, 120-123, 127, 148-149, 223-227
Direction cosines, 126
Directional derivative (v · ∇), 21-24, 37-39, 118-119, 126
Dirichlet problem, 158
Discontinuities in depth, 208-212
Disparity, 15, 16; crossed, 15, 16; measuring, 17; layers, 40-41; range versus resolution, 26, 28, 30-32; relation to surface shape, 94-99; uncrossed, 15, 16
Disparity map, examples, 57, 58, 64-75, 84, 85
Distance, 15, 94-96; relative, 96-97
Edge effects, 89-93
Euler equations, 155-156, 232-237
Eye movements, see vergence movements,
False targets problem, 18-20, 28, 32, 87-88; relationship range and resolution to, 28, 30, 31
Feasible: points, 166-167, 173; directions, 167, 169-172
Functional (Θ), 139-142; conditions for unique solution, 142-146; null space of, (N), 141-145, 156-159; rotationally symmetric, 152-154
Functionals of surface consistency, 139; constraints on, 146-147, 151-152; difference between possible forms, 154-156; effect of null space on minimal solutions of, 156-159; possible forms, 146-151; vector space of possible forms, 152-154
Gaussian, 24, 32, 118
Gradient (p,q), see also surface orientation, 116
Gradient of hypersurface, 167
Gradient projection algorithm, 177, 182-186; examples, 187-195
Gradient projection method, 175-177
Gradient space, 116, 124-132, 146
Hessian, 167
Hilbert space, 140, 145-146, 231
Hypersurface, see objective surface
Image formation, 109-117; geometric transformations, 109-111; grey-level formation, 111-117
Image irradiance (E): detecting changes in, 21-26; equation, 117; factors involved in formation of, 111-116; photometric effects, 112; topographic effects, 112, 117-118
Incident angle (i), 115-117
Information processor, visual system as, 1, 6
Inner product, 145-146, 231
Interpolation: of visual information, 159, 179; psychophysics of, 102-104; techniques, 238-246; see also surface interpolation
Irradiance, see image irradiance
Kuhn-Tucker conditions, 174
Lagrangian, 175
Laplacian (\(\nabla^2\)), 24, 118, 120, 223-227; versus directional derivatives, 21-24, 37-39, 118-119, 155-156
Laplacian of a Gaussian (\(\nabla^2G\)), 24-27, 29, 32, 35-36, 44, 206, 221-222; examples of convolution by, 27, 29, 51, 52
Levels of description, 7-10
Marr-Poggio stereo algorithm, 31-33; implementation of, 47-61; testing of, 63-76; discussion of, 76-89
Mathematical physics, differential equations of, 234-237
Mathematical programming, 164-178
Minima: conditions for local, 168, 174-175; conditions for global, 168; global, 165-166; local, 165-166; local versus global, 162, 168
Motion correspondence problem, 101
Natural boundary conditions, see Calculus of variations, natural boundary conditions for
Noise removal, 212-213
No news is good news, 102, 107-109, see also surface consistency constraint
Null space, see functional, null space of
Objective surface, in constrained optimization, 161-162, 164-178; convex, 166, 168-169; gradient of, 167; Hessian of, 167
Occluding boundaries, 149
Occluding contours, effects of matching, 89-93
Occlusions, 208, 210; interpolation across, 212
Optimization: basic steps in iterative algorithms for, 162
Overview, 10-14
Parallelogram law, 142-143, 230
Phase angle (\(\phi\)), 115-117
Primal Sketch, 3-6, 35-39, 101, 205, 210-212; extracting, from image, 20-26; operator, 25
Principle: of general position, 132; of graceful degradation, 9; of least commitment, 9; of modular design, 9
Projection: perspective, 109-110; orthographic, 110-111
Quadratic variation, 141, 148-149, 151-152, 154, 157-158
Quotient space, 143, 229
Random dot stereogram, 2, 8, 63-72, 102-104
Reflectance: function, 113-114; isotropic, 114, 132; map (\(I\)), 117, 121-132, 223-227; surface, see reflectance map
Regular point, 173-175
Representation, 1, 3-6, 83-85, 205; of surface shape, 101-105
Retinal mappings, 214-215
Semi-inner product, 141, 145-146, 152-153, 231
Semi-norm, 142-144, 229
Shape: from focusing, 5; from motion, 5; from occluding contour, 5; from shading, 5; from stereo vision, 5; from surface contours, 5; from texture, 5

Signum function (sgn), 121

Splines, thin plate, 151

Square Laplacian, 141, 150, 152, 154, 157-158

Steepest descent methods, 169

Stereo implementation, 47-61; constraint checking, 82; convolution, 50; depth discontinuities, 81-82; detection and description of zero-crossings, 50-53; direction of matching, 83; discussion, 80-89; input, 47-50; matching, 53-58; matching errors, 81; natural images, 72-76, 86-87; parallel versus serial, 88-89; pool responses, 80-81; testing of, on random dot stereograms, 63-72; testing of, on natural images, 72-76

Stereo: channels, 41-42; hysteresis, 42-43; previous models, 34; psychophysical evidence, 35-43; neurophysiological evidence, 43-44

Surface approximation, 139, 164-165; algorithm, 191, 196; examples, 198-202

Surface consistency: constraint, 101, 106-109, 159-142, 159; theorem, 119, 130-132; one-dimensional example of, 120-123

Surface interpolation, 139; algorithm, 182-186; comparison of square Laplacian to quadratic variation, 186-190; conversion to image domain, 179-182; computational needs, 105; effect of noise removal on, 212-213; examples, 187-195; general problem, 105-109; psychophysics, 102-101, 215-217; theorem, 117-132

Surface normal (N_y), see also surface orientation: 124. $p-q$ representation of, 116

Surface orientation, 97-99, 124-132

Terminations, 26, 50

Thin plate: minimum energy solutions to, 154-156, 234-237; tension factor of, 155-156, 235-237

Unconstrained optimization, 166-169

Vector spaces, 228-230

Vergence movements, 31, 39-40, 58-60

View angle (θ), 115-117

Visual processing, stages of, 3-5

$2\frac{1}{2}$-D Sketch, 4-6, 59, 60, 83-85, 105