Index

AAFIS. See Advanced Avionics Fault Isolation System
Aborted fault, 67
Abramovici, M., 102, 104
Ad hoc design technique, 144–149
Advanced Avionics Fault Isolation System (AAFIS), 246
Agarwal, V. K., 123
Aho, A., 110
Akers, S. B., 45, 125
ALU. See Arithmetic-logic unit
Ando, H., 226, 229
Angell, J. B., 143, 213, 226
Aramaki, T., 192
Arithmetic-logic unit (ALU), 257, 259
Armstrong, D. B., 30, 89
Asynchronous sequential circuit, 4–8, 67, 81–82
ATE. See Automatic test equipment
ATG. See Automatic test generation
Automatic test equipment (ATE), 21
Automatic test generation (ATG), 17
Backtrace, 50–52, 56–59
multiple, 58–62, 64
Backtrack, 38, 41–42, 46–47, 50, 53–54, 56, 58, 61, 64–67, 117
Backward-trace phase, 31
Baker T., 96
Bardell, P. H., 261–262, 265
Barzilai, Z., 177, 186
Bed-of-nails, 147, 149
Bennett, R. G., 133
Benowitz, N., 246
Berg, W. C., 133
Betancourt, R., 125
Bhattacharya, B. B., 186
Bhavsar, D. K., 243
BILBO. See Built-in logic block observer
Bipolar transistor, 8
Biswas, N. N., 192
Boolean difference, 24–30
Boolean function, 1–3. See also Logic function
Boolean operation, 1–3. See also Logic operation
Bossen, D. C., 30
Bound line, 57
Bozorgui-Nesbat, S., 140, 172, 175
Breuer, M. A., 127
Brglez, F., 133
Bridging fault, 9, 11, 199–201, 204
Bruce, B., 259
Built-in logic block observer (BILBO), 247–259
Built-in self-test, 238, 247, 256–259, 264
Built-in test, 19, 238, 246, 254
Bus-structured architecture, 145
Butt, H. H., 260, 264
CAD. See Computer-aided design
Carter, J. L., 243, 245
Centralized self-test, 262
C-frontier, 45
Cha, C. W., 45
Chang, H. Y., 89
Chappell, S. G., 89, 96
Characteristic polynomial, 239, 241–242
Checking sequence, 206, 210–212
Clause, 110
Clause-monotone expression, 111–113
Clegg, F. W., 30
Clocked flip-flop, 7, 67, 69
Clock pulse, 7
Closed composition, 121, 125, 128
Closedness under composition, 120–123, 127
under faults, 120–129
Closed tree composition, 123
Closure, 120
CMOS. See MOSFET, complementary
CNF. See Conjunctive normal form
Code word, 19
Combinational circuit, 3–8
iterative, 67, 69, 74, 76–77, 81–82
Compact testing, 23, 141–142, 239
Compatibility constraint, 155
Compatible sequence, 153–155, 159
Compiler-driven simulator, 84
Complementary MOSFET (CMOS), 8
Computer-aided design (CAD), 102
Concurrent fault simulation, 84, 96–102
Concurrent testing, 19
Conjunctive normal form (CNF), 110–111
Consistency operation, 40, 42, 66, 79. See also Line justification
Controllability, 52, 134–139, 142–143, 145, 147–149, 151, 206
Controllability transfer factor (CTF), 135
Controlling state, 50
Cook, S. A., 110, 111
Count function, 168–170
Cover, 124
Coy, W., 171
CRC code. See Cyclic redundancy check code
Crosspoint fault, 12, 197, 199–205
CTF. See Controllability transfer factor
Cubes
set of, 1–2
singular, 33–34, 41
Cyclic redundancy check (CRC) code, 239
Daehn, W., 251–252
D-algorithm, 24, 30–35
extended, 67, 74
DasGupta, S., 141, 161, 165–166, 223, 233, 237
D-calculus, 33
D-cube
primitive, 33–35, 38, 77–79
propagation, 35–37, 41–42, 79
D-drive, 41–42, 44–45, 74
Deductive fault simulation, 84, 89–96
Degating, 145
Deika, W. J., 133
Delay fault, 9
Denneau, M. M., 102
Design for testability, 133, 139–140, 171
Deterministic testing, 21
D-frontier, 41–42, 45, 64
Diagnostic resolution, 14
D-intersection, 37–38, 41–42, 44
Distinguishing sequence, 207–212
Distributed self-test, 262, 212
Dual-mode logic, 161–167
Dussault, J. A., 133
ECL. See Emitter-coupled logic
Eichelberger, E. B., 82, 83, 213, 218, 220, 223–224, 236
El-ziq, Y. M., 260, 264
Emitter-coupled logic (ECL), 8, 11
Equivalent fault, 15–16. See also Indistinguishable fault
Equivalent normal form, 30
Ercegovac, M. D., 172, 179
Error polynomial, 241–242
Error-propagation phase, 31
Event-directed simulation, 85, 89, 104, 106, 108. See also Selective trace
Exhaustive testing, 140, 171–180, 187
Exponential time algorithm, 109
External self-test, 260–262
External testing, 19

FAN. See Fanout-oriented test-generation algorithm
Fanout-free circuit, 123
Fanout-free function, 122–123
Fanout-oriented test generation algorithm (FAN), 24, 53–67
Fantauzzi, G., 82
Fasang, P. P., 256
Fault aborted, 67
bridging, 9, 11, 199–201, 204
crosspoint, 12, 197, 199–205
delay, 9
equivalent, 15–16
indistinguishable, 15–16
intermittent, 9
logical, 8
multiple, 14, 73–74, 77, 81–82, 124, 127–129, 156–157, 161, 192, 201, 205
parametric, 8
permanent, 9
redundant, 15
representative, 16
single, 14, 73, 124, 161, 182, 189–191
solid, 9
Fault coverage, 17, 84. See also Test coverage
Fault detection, 14, 112
Fault-detection circuit (FDC), 266–268
Fault diagnosis, 14, 18
Fault dictionary, 17
Fault injection, 86
Fault isolation, 14. See also Fault location
Fault location, 14. See also Fault isolation
Fault modeling, 8–12
Fault-secure circuit, 19
Fault simulation, 17, 84–108
concurrent, 84, 96–102
deductive, 84, 89–96
parallel, 84, 85–89
Fault table, 16
FDC. See Fault-detection circuit
Finite-state machine, 3–8
Flip-flop (FF)
clocked, 7, 67, 69
D (Delay), 6–7
JK, 6–7
pseudo, 69
SR (Set-Reset), 6–7
T (Trigger), 6–7
Flow table, 4. See also State table
Forward-trace phase, 31
Free line, 57, 66
Friedman, A. D., 147, 171
Frohwerk, R. A., 242–243, 245
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funatsu, S.</td>
<td>213, 215</td>
</tr>
<tr>
<td>Function-conversion unit</td>
<td>163</td>
</tr>
<tr>
<td>Function-independent testing</td>
<td>139, 188, 192, 199</td>
</tr>
<tr>
<td>Fundamental mode operation</td>
<td>8</td>
</tr>
<tr>
<td>Garey, M. R.</td>
<td>110</td>
</tr>
<tr>
<td>Gate</td>
<td>1–3</td>
</tr>
<tr>
<td>AND</td>
<td>1</td>
</tr>
<tr>
<td>EDR</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>1</td>
</tr>
<tr>
<td>NOR</td>
<td>3</td>
</tr>
<tr>
<td>NOT</td>
<td>1</td>
</tr>
<tr>
<td>Godoy, H. C.</td>
<td>222</td>
</tr>
<tr>
<td>Goel, P.</td>
<td>24, 45, 50, 145</td>
</tr>
<tr>
<td>Gold, E. M.</td>
<td>111</td>
</tr>
<tr>
<td>Gold circuit</td>
<td>21</td>
</tr>
<tr>
<td>Goldstein, L. H.</td>
<td>133–134, 137</td>
</tr>
<tr>
<td>Grason, J.</td>
<td>133–134, 136–137</td>
</tr>
<tr>
<td>Gupta, B.</td>
<td>186</td>
</tr>
<tr>
<td>HAL</td>
<td>107, 108</td>
</tr>
<tr>
<td>Hardie, F. H.</td>
<td>86</td>
</tr>
<tr>
<td>Hardware simulator</td>
<td>102–108</td>
</tr>
<tr>
<td>Hayes, J. P.</td>
<td>123, 127, 141, 147, 150, 154–156, 171</td>
</tr>
<tr>
<td>Hazard</td>
<td>8, 81–83</td>
</tr>
<tr>
<td>Head-bounded circuit</td>
<td>118</td>
</tr>
<tr>
<td>Head line</td>
<td>57–58, 61</td>
</tr>
<tr>
<td>Head point</td>
<td>116</td>
</tr>
<tr>
<td>Head-point set</td>
<td>116–117</td>
</tr>
<tr>
<td>Heckelman, R. W.</td>
<td>243</td>
</tr>
<tr>
<td>Hess, R. D.</td>
<td>133</td>
</tr>
<tr>
<td>Holt, C.</td>
<td>226</td>
</tr>
<tr>
<td>Homing sequence</td>
<td>207</td>
</tr>
<tr>
<td>Hong, S. J.</td>
<td>30, 140, 192, 199</td>
</tr>
<tr>
<td>Hsiao, T. C.</td>
<td>187</td>
</tr>
<tr>
<td>Implication</td>
<td>40, 47, 52, 54, 57, 61, 64, 66</td>
</tr>
<tr>
<td>Implication, extended</td>
<td>115–116</td>
</tr>
<tr>
<td>In-circuit testing</td>
<td>147, 149</td>
</tr>
<tr>
<td>Inconsistency</td>
<td>40, 56, 58, 61, 74</td>
</tr>
<tr>
<td>Indistinguishable fault</td>
<td>15–16. See also Equivalent fault</td>
</tr>
<tr>
<td>Inose, H.</td>
<td>141, 161, 163</td>
</tr>
<tr>
<td>Intermittent fault</td>
<td>9</td>
</tr>
<tr>
<td>Internal self-test</td>
<td>260, 262, 265</td>
</tr>
<tr>
<td>Iterative combinational circuit</td>
<td>67, 69, 74, 76–77, 81–82, 142</td>
</tr>
<tr>
<td>Johnson, D. S.</td>
<td>110</td>
</tr>
<tr>
<td>Karnough map</td>
<td>1–2</td>
</tr>
<tr>
<td>Kautz, W. H.</td>
<td>189</td>
</tr>
<tr>
<td>Keiner, W.</td>
<td>133</td>
</tr>
<tr>
<td>Kernel</td>
<td>246</td>
</tr>
<tr>
<td>Khakbaz, J.</td>
<td>192</td>
</tr>
<tr>
<td>Kinoshita, K.</td>
<td>30, 168, 170, 192</td>
</tr>
<tr>
<td>Kobayashi, T.</td>
<td>213, 215</td>
</tr>
<tr>
<td>Kodandapani, K. L.</td>
<td>127, 191</td>
</tr>
<tr>
<td>Koenemann, B.</td>
<td>247, 265</td>
</tr>
<tr>
<td>Komonytsky, D.</td>
<td>262, 264–265</td>
</tr>
<tr>
<td>Kovijanic, P. G.</td>
<td>133</td>
</tr>
<tr>
<td>Kronstadt, E. K.</td>
<td>102</td>
</tr>
<tr>
<td>Ku, C. T.</td>
<td>30</td>
</tr>
<tr>
<td>Kuban, J.</td>
<td>259</td>
</tr>
<tr>
<td>Kubo, H.</td>
<td>67</td>
</tr>
<tr>
<td>Kuhl, J. G.</td>
<td>141</td>
</tr>
<tr>
<td>Kuntzmann, J.</td>
<td>120</td>
</tr>
<tr>
<td>LAMP system</td>
<td>89, 96</td>
</tr>
<tr>
<td>Large-scale integration (LSI)</td>
<td>8, 17–18, 140, 192, 199, 218</td>
</tr>
<tr>
<td>Levelizing</td>
<td>84</td>
</tr>
<tr>
<td>Level-sensitive logic circuit</td>
<td>218</td>
</tr>
<tr>
<td>LFSR. See Linear-feedback shift register</td>
<td></td>
</tr>
<tr>
<td>Linear-feedback shift register (LFSR), 175–178, 239–251, 256, 260–262, 266</td>
<td></td>
</tr>
<tr>
<td>Linear function</td>
<td>120, 126–129</td>
</tr>
<tr>
<td>Lineback, J. R.</td>
<td>102</td>
</tr>
<tr>
<td>Line-justification phase</td>
<td>31, 40, 42–45, 58, 66, 74, 79–80</td>
</tr>
<tr>
<td>Literal</td>
<td>110</td>
</tr>
<tr>
<td>Logic circuit</td>
<td>1–8</td>
</tr>
<tr>
<td>Logic function</td>
<td>1–3. See also Boolean function</td>
</tr>
<tr>
<td>Logic operation</td>
<td>1–3. See also Boolean operation</td>
</tr>
<tr>
<td>Logic testing</td>
<td>1</td>
</tr>
<tr>
<td>Logical fault</td>
<td>8</td>
</tr>
<tr>
<td>Logical partitioning</td>
<td>145</td>
</tr>
<tr>
<td>LSI. See Large-scale integration</td>
<td></td>
</tr>
<tr>
<td>LSSD. See Level-Sensitive Scan Design</td>
<td></td>
</tr>
<tr>
<td>McAnney, W. H.</td>
<td>261–262, 265</td>
</tr>
<tr>
<td>McCluskey, E. J.</td>
<td>140, 172, 175, 192</td>
</tr>
<tr>
<td>Markowsky, G.</td>
<td>186</td>
</tr>
<tr>
<td>Masson, G. M.</td>
<td>30</td>
</tr>
<tr>
<td>Maximal false vertex</td>
<td>124</td>
</tr>
<tr>
<td>Menon, P. R.</td>
<td>96</td>
</tr>
<tr>
<td>Mercer, M. R.</td>
<td>226–227</td>
</tr>
<tr>
<td>Metal oxide semiconductor field effect transistor. See MOSFET</td>
<td></td>
</tr>
</tbody>
</table>
Index

MICROBIT system, 256–257
Microcomputer, 145, 256, 259
Microprocessor, 145, 245–247, 256–257
Minimal true vertex, 124
Monotone circuit, 112–115
Monotone expression, 111–112
Monotone function, 121, 124–125
MOSFET (metal oxide semiconductor field-effect transistor), 8, 11–12, 192–193, 201, 259
complementary (CMOS), 8
n-channel (N-MOS), 8, 11, 179, 201, 256
p-channel (p-MOS), 8
Mucha, J., 251–252
Multiple backtrace, 58–62, 64
Multiple fault, 14, 73–74, 77, 81–82, 124, 127–129, 156–157, 161, 192, 201, 205
Muth, P., 67, 76
Nine-value circuit model, 76–81
n-MOS. See MOSFET, n-channel
Noncode word, 19
Noncontrolling state, 50
Nonlinear feedback shift register, 252, 254
NP-completeness, 109–115
NP-complete problem, 109–115
Objective, 50–52, 59–61
current, 59, 61
fanout-point, 59, 61, 64
final, 61, 64
head, 59, 61
initial, 50, 52, 59–60, 64
Objective line, 50
Objective value, 50
Observability, 52, 134–139, 142–143, 145, 147–149, 151, 206
Observability transfer factor (OTF), 135–136
Off-line testing, 19, 266–267
Oktobdzija, V. G., 172, 179
One-dimensional path sensitization, 31. See also Single path sensitization
On-line testing, 19, 266–267
Ostapko, D. L., 140, 192, 199
OTF. See Observability transfer factor
Page, E. W., 191
Parallel signature analyzer (PSA), 243, 245, 250, 253, 256–258, 261, 263
Parallel fault simulation, 84, 85–89
Parametric fault, 8
Parker, K. P., 144
Partitioning, 145, 171–177, 179, 186
logical, 145
mechanical, 145
Path-oriented decision-making (PODEM) algorithm, 24, 45–59, 61, 64, 67
Path sensitization
one-dimensional, 31
single, 31–33, 67
Permanent fault, 9
Petersen, W. W., 177, 239
Pfister, G. F., 102
PLA. See Programmable logic array
p-MOS. See MOSFET, p-channel
Posage, J. F., 30
PODEM. See Path-oriented decision-making algorithm
Polarity-hold parallel and shift-register latch (PSRL), 224
Polynomial time algorithm, 109–112, 114–120
Polynomially transformable problem, 110–111, 113–114
Pradhan, D. K., 191–192
Programmable logic array (PLA), 12, 140, 192–205, 251–255, 257
PRPG. See Pseudorandom-pattern generator
PSA. See Parallel signature analyzer
Pseudo flip-flop, 69
Pseudo input, 69, 73–74
Pseudo output, 69
Pseudorandom-pattern generator (PRPG), 256–257, 260, 263–264, 266
PSRL. See Polarity-hold parallel and shift-register latch
Putzolu, G. R., 67
Race, 8, 81–83
critical, 8
Rademacher-Walsh spectral coefficient, 187
Rademacher-Walsh spectrum, 187
RAM. See Random-access memory
Ramanatha, K. S., 192
Random-access memory (RAM), 107, 108, 145, 256–258
Random-Access Scan, 229–231
Random testing, 21
Read-only memory (ROM), 107, 145, 256–259
Reddy, S. M., 123, 125, 140–141, 147, 156, 161, 188–189, 191–192
Redundancy, 19
dual, 20
Redundant fault, 15
Reed-Muller canonical circuit, 140, 188–192
Representative fault, 16
ROM. See Read-only memory
Roth, J. P., 24, 33, 35, 40, 45, 67

SA. See Signature analysis; Signature analyzer
Sakauchi, M., 141, 161, 163, 172
Saluja, K. K., 141, 147, 156, 161, 191–192, 224
Sasaki, T., 102, 107
SAT. See Satisfiability
Savir, J., 140, 182, 184–186
Scan, 143, 206, 213–237, 261–262
Scan design, 206, 213–237, 259
complete, 232–233
enhanced, 232, 236–237
incomplete, 232–233
Scan Path, 213, 215–218, 250, 259
Scan/Set Logic, 227–229
Sedmak, R. M., 267
Segers, M. T. M., 260, 262
Selective trace, 85, 89
Self-checking circuit, 19–20, 267, 270
Self-test, 238, 247, 250, 257–266. See also
Built-in self-test; Built-in test
centralized, 262
distributed, 262, 265
external, 260–262
internal, 260, 262, 265
simultaneous, 265
with scan design, 259–266
Self-testing, 20. See also Self-test
Self-verification, 266–271
Seller, E. F., 30
Sequential circuit, 3–8.
asynchronous, 4–8, 67, 81–82
synchronous, 4–8, 67, 81
Sequential machine, 3–8, 206–207
Serial signature analyzer (SSA), 243, 246, 259, 261
Seshu, S., 86
Seth, S. C., 127, 187
Shift-register latch (SRL), 218–224, 236–237, 262–263, 265
stable (SSRL), 236
Shift-register modification, 143, 213–215, 226–227
Shimono, T., 24, 53, 67
Signature, 23, 175, 240
Signature analysis, 23, 238–247
Signature analyzer, 243–247, 253, 260, 263–266
parallel, 243, 245–246, 250, 253, 256–258, 261, 263
serial, 243, 246, 259, 261
Simultaneous self-test, 265
Single fault, 14, 73, 124, 161, 182, 189–191
Single-path sensitization, 31–33, 67. See also One-dimensional path sensitization
Smith, J. E., 241–243
Solid fault, 9
Son, K., 192
SPOOF, 30
Sridhar, T., 243
SRL. See Shift-register latch
SSA. See Serial signature analyzer
SSRL. See Stable shift-register latch
State
next, 3
present, 3
State diagram, 4
State-shiftable machine, 206–213
State table, 4. See also Flow table
Stephenson, J. E., 133–134, 136–137
Stewart, J. H., 147, 226–227
Structured design technique, 144
Suhocki, R. J., 86
Susskind, A. K., 187
Synchronizing sequence, 76, 207–210
Synchronous sequential circuit, 4–8, 67, 81
Syndrome testing, 181–188
Szygenda, S. A., 86

Table-driven simulator, 84, 108
Takamatsu, Y., 45
TEGAS simulator, 86
Testability, 133–134, 139–141, 144–145, 148–149, 206
analysis of, 133–139, 147–148
design for, 133, 139–140, 144, 171
measuring of, 52, 133–139, 147
Test application, 16, 141, 150, 167
Test coverage, 17, 67, 70, 224
Test data, 14, 21, 168, 170
Test generation, 16, 24–83, 133, 142, 149, 171
Testing
built-in, 19, 238, 246, 254 (see also Built-in self-test; Self-test)
compact, 23, 141–142, 239
complexity of, 109–129
concurrent, 19
Testing (cont.)
deterministic, 21
exhaustive, 140, 171–180, 187
external, 19
function-independent, 139, 188, 192, 199
in-circuit, 147, 149
off-line, 19, 266–267
on-line, 19, 266–267
random, 21
universal, 139, 171, 192, 197, 199
Test pattern, 14, 16–17, 21, 23, 26, 30, 69,
80, 140–141, 153–158, 161–167, 189–
199, 198–200, 203
Test-pattern generator (TPG), 267–268
Test point, 147, 149
Test sequence, 14, 74, 76–77, 80, 159, 168–
170, 198, 202
Test set, 14, 16, 27–30, 169, 197–198, 201,
205
Thatte, S. M., 257–258
Time complexity, 109
Toida, S., 113, 120
Toth, A., 226
TPG. See Test pattern generator
Transistor-transistor logic (TTL), 8–9
Tree composition, 123
Trischler, E., 232
TTL. See Transistor-transistor logic
Ulrich, E. G., 96
Unate circuit, 112–114
Unate composition, 123–125
Unate expression, 111–112
Unate function, 123–125
Unate gate network, 123
Unique sensitization, 54–56, 58, 64, 66
Universal testing, 139, 171, 192, 197, 199
Unjustified line, 42, 44–45, 57, 64, 66
Very-high-speed integrated (VHSI) circuit, 238
Very-large-scale integration (VLSI), 1, 8,
17–18, 140, 144–145, 192, 199, 218, 238
VHSI circuit. See Very-high-speed inte-
grated circuit
VLSI. See Very-large-scale integration
VLSI processor, 257–258. See also Micro-
computer; Microprocessor
Vogel, A., 171
Weldon, E. J., 177, 239
West, R., 133
Williams, M. J. Y., 143, 213, 226
Williams, T. W., 144, 213, 218, 220, 223–