Index

Acid Bessemer process, 156
Acid open-hearth process, 154–155
Activated complex, 102
Activities, in metal-oxide silicates, 70
in Mg$_2$SiO$_4$–Fe$_2$SiO$_4$ system, 69
in ternary silicates, 68 ff.
of CaSiO$_3$ in liquid silicate mixtures, 70
of oxides in ternary melts, 72
of silicates in Ca$_2$SiO$_7$–Fe$_2$SiO$_4$, 71
Activity of aluminum, in Fe–C–Al–Si, 49
of carbon, in Fe–C, 3 ff., 13, 98
in steels, 221
of copper in Cu–Ag, 17
of FeO, in CaO–FeO–SiO$_2$, 73, 75
in CaO–MgO–SiO$_2$, 69
in slags, 177
of MnO in CaO–MnO–SiO$_2$, 73, 75
of MnS in slags, 178
of SiO$_2$, in CaO–Al$_2$O$_3$–SiO$_2$, 65 ff.
in CaO–SiO$_2$, 63 ff.
Activity coefficient of aluminum, in Fe–Si–C–Al, 48
in iron, 48
of carbon, in Fe–C, 11, 39, 42–43
in Fe–C–Si, 44
in liquid iron, 10
of metal oxides, 222
of oxygen, in Fe–C–Si, 44
in iron, 39, 45, 221
of PbO in silicates, 75
of silicon in Fe–C–Si, 43
Adiabatic dropping calorimeter, 18 ff.
Alumina-graphite reaction, 46 ff.
Aluminum, activity coefficient, in Fe–Si–C–Al, 48–49
in iron, 48
deoxidation, 46 ff.
equilibrium distribution in Fe–Ag, 48
Aluminum-killed ingot, 184
Analysis of gas, 5, 51 ff.
of gases in iron, 51
of metal, 6
Vacuum fusion, 52
Anodic process, 245–246
As-cast structure, 210–213
Back reaction, 139
Basic Bessemer process, 173

Basic Bessemer slags, 144 ff.
Basic Bessemer process, 156
Basic open-hearth process, 156
Bimolecular reaction, 247–248
Blast-furnace process, 152
Blast-furnace slags, 113 ff.
Blowholes, 188, 192
subsurface, 186–187
Bomb test, 107
Boundary layer, 238, 240, 242, 244–245
diffusion, 105–106, 238–239, 242
laminar, 238
slag, 106
turbulent, 238
Bubble, formation of, 104
growth of, 104
life of, 107
nucleation of, 105
Calorimeter, adiabatic dropping, 18 ff.
Ca$_5$Si$_3$O$_{10}$–CaF$_2$, viscosity of, 85
Carbon, activity, in Fe–C, 3 ff., 13, 98
in steels, 221
activity coefficient, in Fe–C, 11, 39, 42–43
in Fe–C–Si, 44
in liquid iron, 10
deposition of, 7
oxidation of, 106
solubility in iron, 43
Carbon boil, 103, 105–107, 109–110, 130, 155
kinetics of, 104
Carbon monoxide evolution, 107, 115, 129, 131–134, 247–248
rate of, 132
Carbon-oxygen equilibrium, 37 ff., 139, 141
in iron, 40, 42 ff.
Carbon-oxygen product in iron, 40
Carbon-oxygen reaction, 185, 192
Castings, segregation in, 216 ff.
Cathodic process, 245–246
Channel hole, 185, 188
Chemical kinetics, 105
Chemical potential of nitrogen, 103
Chromium, distribution of, 96–98
reduction of, 93 ff.
kinetic process of, 95
Chromium carbide formation, 94
Ingot, hot-top, 213
killed-steel, 184, 193
mechanically capped, 189
rimming, 189-190, 192
semikilled-steel, 186, 188, 193
solidification of steel, 181 ff.
taper, 202
Interface, gas-metal, 105
slag-metal, 131
Ionic bonds, 59
Iron, density of, 32
surface tension of, 27 ff.
Iron-carbon eutectic, surface tension of, 34
Iron ore reduction, 149, 151
Iron oxide, activity, in CaO—FeO—SiO₂, 75
in CaO—MgO—SiO₂, 60
in slags, 177
FeO—Al₂O₃ spinel, 80
reduction of, 159 ff.
Isotopes, radioactive, 247
Jet mixing, 166-167
Killed steel, 157, 182-183, 185
Killed-steel ingot, 184, 193
Kinetics, 109, 125, 223, 229, 237 ff.
chemical, 105
metallurgical, 101 ff.
of carbon boil, 104
of open-hearth reactions, 101, 103
Kinetic studies, 233 ff.
Kirkendall effect, 81
Kish, 95
Knudsen cell, 222, 224
Lead oxide, activity coefficient in silicates, 75
Lime desulfurization, 153
Local cell, 250
action, 131, 133
Local equilibrium, 102, 105, 130, 241
Manganese, deoxidation, 156
equilibrium distribution in Fe—Ag, 16
oxidation, 173
residual, 174, 177
Manganese oxide, activity in CaO—MnO—SiO₂, 75
Manganese-silicon deoxidation, 156
diagram for, 154
Manganese sulfide, activity in slags, 178
Melting point, of mullite, 78
of silicon, 24
Metal analysis, 6
Metal emulsions, 91
Metallurgical heat requirement, 103
Metallurgical kinetics, 101 ff.
Metal oxides, activity coefficients, 222
Metal-slag reactions, 237
Metals, liquid, sampling of, 17
neutral solubility in slags, 61-62
Mixing, 137
by bottom blowing, 169-170
by jet, 166-167
by jet pouring, 169
by pouring, 167-168, 170
Mixing, by rabbling, 168, 170
of slag and metal, 165 ff.
Mixing experiments, 166
Model study, 165
Mold, big-end-down, 185
big-end-up, 185
Molecular reaction, 102
Mullite, melting point of, 78
Nitrogen, activity in equilibrium, 103
chemical potential of, 103
removal of, 110-111
Nucleating agents, 212
Nucleation, 102, 133, 209
in solidification, 211-214
of bubbles, 105
rate of, 209
Open-hearth bath, degassing of, 109 ff.
Open-hearth furnace, 165
Open-hearth kinetics, 101, 103
Open-hearth process, 229
Overpotential, 247
Oxidation, of carbon, 106
of manganese, 173
of silicon, 119, 154
Oxides, activities in ternary melts, 72
Oxide slags, 55 ff.
Oxidizer, cupric oxide, 52
Oxygen, activity coefficient, in iron, 39, 45, 221
in Fe—C—Si, 44
solubility of, 176, 178
in iron, 143
in liquid iron, 38
Oxygen gas in equilibrium with iron, 41
Parabolic rate constant, 216
Parabolic rate law, 194, 200, 237
Perrin process, 165, 169
Phase-boundary reaction, 130, 237, 240, 242, 245, 247, 250
Phase diagram, CaO—CaF₂—SiO₂, 85
CaO—FeO—P₂O₅, 142
CaSiO₃—“FeSiO₃,” 68
Ca₂SiO₄—Fe₃SiO₄, 71
Fe—C—O, 150, 159
Fe—H—O, 150-151, 159
FeO—Al₂O₃, 80
MgSiO₃—“FeSiO₃,” 69
Mg₂SiO₄—Fe₂SiO₄, 69
SiO₂—Al₂O₃, 77 ff.
Pig iron, 118 ff.
Plant practice, 226 ff.
Polarization, 247, 249
Pouring mixing, 167, 170
Process metallurgy, 149 ff.
Product, carbon-oxygen in iron, 40
Properties of silicates, 59
Radioactive isotope, 244
Radioactive tracer, 239-240
Rate constant, 104
INDEX—255
Tapping, 157
Teeming, 181
Temperature gradient, 182
Temperature measurement, 5, 21, 46, 93
Ternary silicates, 59
Thermal diffusion, 7
Thermal equilibrium, 8
Thermal gradients, 183, 185
Transfer, of sulfur, 113, 116, 125 ff.
- control, 130, 242–243, 245
- controlled reaction, 241, 247
- process of, 126–129, 237, 241, 247, 250

Transfer, rate of, 150
True specific heat, 18
Two-phase film theory, 239

Vacuum-fusion analysis, 52
Vapor pressure of silica, 64
Viscosity, of Ca$_2$Si$_2$O$_5$–CaF$_2$, 85
of glasses, 56
of silicates, 57

Wiberg-Söderfors process, 149