Absorption laws, 20, 29
Adjacent
 column, 292
 diagram, 182
 map, 186, 293
 output, 292
 row, 292
Adjacent term, 81
Adjustable logic network, 65
Akers, S. B., Jr., 57
Algebraic determination of minimal sum, 108
Algebra of sets, 23
AND-EXCLUSIVE-OR gate combination, 55
AND gate, 42, 43
AND-NOT gate, 48
AND-NOT set, 46
Armstrong, D. B., 291, 295
Armstrong, D. B., Friedman, A. D., and Menon, P. R., 155
Ashenhurst, R. L., 68
Associative laws, 20, 47, 48
Asynchronous operation of sequential circuits, 126, 229
Bartee, T. C., 118
Bartee, T. C., Lebow, I. L., and Reed, I. S., 255
Basis, for minimization techniques, 80
Baugh, C. R., et al., 68
Bias
 input, 61
 weight, 64
Binary adder, 53
Binary addition, 6, 7
Binary arithmetic, 6–11
Binary bit, 7
Binary codes, 11–14
Binary counter, 247, 263–265
Binary division, 10, 11
Binary multiplication, 9, 10
Binary number system, 3, 4
Binary operations, 18, 19, 47
Binary sequence generator, 252–254
Binary serial adder, 232, 237, 256–258
Binary signal representation, 125, 126
Binary subtraction, 7–9
Bit time, 256
Boolean algebra, 19–23
Boolean function, 23
Booth, T. L., 255
Bowman, R. M., and McVey, E. S., 118
Branching method, 106
Burke, R. E., and Bosse, J. G., 68
Cadden, W. J., 128
Caelingeart, P., 55, 57
Caldwell, S. H., 165
Canonical EXCLUSIVE-OR and EXCLUSIVE-NOR expressions, 53
Canonical function form, 23, 32–37
Canonical product-of-sums expression, 33
Canonical sum-of-products expression, 33
Characteristic numbers, 33, 55
Chu, Y., 6, 255
Chuang, Y. H., 265
Clear input, 238
Clocked fundamental mode, 230–234
Clocked pulse mode, 234–240
Clock input, 229
Closed-cycle operation, 179
Closure property
 of binary operator, 19
 in flow table reduction, 278
Coates, C. L., and Lewis, P. M., 60
Codes
 binary, 11–14
 cyclic, 13
 distance between, 81
 Gray, 13, 14
 reflected binary, 13, 84
 self-complementing, 12
 triangle rule, 184
 unweighted, 12
 weighted, 11, 12
Coincidence, 47
Column adjacency, 292
Column dominance, 104–108, 114
Commutative operations, 19, 47, 48
Compatible row pairs, 278
Compatibles
 lower bound on the number of, 285
 splitting of, 286
 upper bound on the number of, 285
Complementary expression, 30
Complementation laws, 20
Complete cyclic code, 14
Completely specified function, 95
Consensus, 21, 93
Consensus term, 30, 31, 147, 149
Core terms, 103
Critical race, 144, 145, 181, 210, 214, 223, 230
Crowley, T. H., 295
Cyclic codes, 13
Cyclic prime implicant table, 106, 116
Davis, W. A., 296
Decimal-binary conversion, 5, 6
Decimal numbers in the Karnaugh map, 85
Decimal symbols for the representation of functions, 33
Delay in signal propagation, 79
 hazard due to, 146-152
 in pulse-mode operation, 208, 209
 in sequential circuit modeling, 128, 129
De Morgan's laws, 27
Direct-set (reset) flip-flop input terminal, 198,
Disjunctive terms, 35, 37, 148
Distance between codes, 81
Distinct code assignments, 290, 291
Distinct codes, 288
Distinguished cells, 92, 94, 97, 98, 112
Distinguished columns, 102
Distributive law, 19, 29
Dominance relations, 104-108, 114, 115
Don't care conditions, 96
Double-rail device, 142
Double-rail logic, 43
Double-rank register, 232
Dual gate functions, 66
Duality principle, 20
Duley, J. R., and Dietmeyer, D. L., 265

Earle, J., 67
End-around carry, 9
Equivalence function, 47
Equivalence-set, 275
Equivalent states, 174-176
Essential hazards, 152-155, 210, 223
 in pulse mode operation, 210
Essential prime implicant, 92, 93, 95, 103
Essential row, 103
 Essential subcube, 92
Excess-3 code, 12, 13
Excitation equations, 191-199
Excitation functions, 140
Excitation table, 141-143
EXCLUSIVE-NOR canonical expression, 53-58
EXCLUSIVE-NOR circuits, 53-59
EXCLUSIVE-NOR gate, 48
EXCLUSIVE-OR canonical expression, 53-59
EXCLUSIVE-OR circuits, 53-59
EXCLUSIVE-OR gate, 48
Expansion theorems, 28, 31, 32, 36

Fan-in, 43, 48
Fan-out, 43
Feedback, 124, 127
Feedback loop delay, 128, 129, 132, 134,
 136, 181, 214
Flip-flop
design for operation in pulse mode, 220-223
direct input terminals, 198
double-rank, 221
master-slave, 221
type JK, 241-248
type RS, 141-143, 192-199, 241-247, 258-261
type RST, 241-247
type T, 241-247, 263-265
Flow table, 134, 136
covering requirements, 274
formation for operation in fundamental
 mode, 165-173
formation for operation in pulse mode, 210-217
initial state, 173, 174
reduction, 173-181, 274-287
redundant rows, 174
strongly connected, 171
Forbidden input combinations, 96
Formal implication, 26, 47
Friedman, A. D., Graham, R. L., and
 Ullman, J. D., 191
Full adder circuit, 53, 54
Functional completeness, 46, 49, 53
Functions
 number of, 68
 of two variables, 46, 47
Fundamental mode of circuit operation,
 126, 131, 143, 144, 179, 198, 223
clocked, 230-234
Fundamental terms, 32
Gain in feedback loop, 138, 139
Gardner, M., 3, 84
Gate
 AND, 42, 43
 ANDNOT, 48
 EXCLUSIVE-NOR, 48, 53
 EXCLUSIVE-OR, 48, 53
 NAND, 48, 49
 NOR, 48, 49
 NOT, 42, 43
 OR, 42, 43
 ORNOT, 48
 sharing, 110, 114, 115, 183
Generic variable, 23
Gimpel, J. F., 118
Grasseli, A., and Luccio, F., 286
Gray codes, 13, 14
Half-adder circuit, 53
Half-pulse hazard, 249
327 INDEX

Hartmanis, J., and Stearns, R. E., 296
Hazard
essential, 152–155, 210, 223
static. See Static hazards
Hellerman, L., 68
Hlavíčka, H., 155
Hopcroft, J. E., 65
Huffman, D. A., 126, 129, 190, 191, 275, 276
Hyperplane, 64

Idempotent laws, 20
Identity elements, 19
Implication, formal, 26, 47
Implication table, 278
Impossible sequential circuits, 125, 173, 219
Inaccessible state, 174, 176
INCLUSIVE-OR function, 47
Incompatible row pairs, 278
Incompletely specified functions, 95
Information transfers in sequential circuit design, 255–265
Initializing input, 174, 238
Internal race problem, 144, 145
Internal state, 129
Intersection of sets, 23
Inversion, 42
Inverter, 43
Irredundant sum, 81
Iterated consensus, 109, 110, 118

JK flip-flop, 241–248
Johnson, D. L., and O’Keefe, K. H., 296

Karnaugh, M., 84
Karnaugh map
adjacent cells in, 84
decimal labeling, 85
determining multiple-output prime implicants from, 112
determining prime implicants from, 87–92
determining prime implicates from, 89
distinguished cells, 92, 94, 97, 98, 112
optional entries, 96–98
selection of subcubes from, 92–95
subcubes in, 87–91
writing minimal products from, 95
writing minimal sums from, 92–95
Kella, J., 286

Leading edge, of pulse, 126
Leading-edge triggering, 220, 222
Linearly-separable switching function, 68, 64

Linear-separable logic, 60
Literal, 27, 52, 79
Logic
circuits, 42–46
gain, 49
modules, 67
negative, 66
positive, 66
symbols, 43
transition, 265
Logical addition, 27, 42
Logical multiplication, 27, 42
Loomis, H. H., 46

McCluskey, E. J., 99, 126, 165, 174
McCulloch, W. S., and Pitts, W., 60
Maki, G. K., and Tracey, J. H., 188
Marihugh, G. E., and Anderson, R. E., 92
Maximal compatibility class, 278
Maximal compatibles, 280
Maximal incomposables, 285
Maxterm, 32
Mealy, G. H., 126
Merger diagram, 177
Miller, J. E., 2
Minimal logic circuits, 67–69, 79
Minimal sets of prime implicants, 92–95
Minimal sets of prime implicates, 95
Minimal sum by algebraic determination, 108

Minnick, R. C., 65
Minterm, 32
Module, logic, 67
Moore, E. F., 68, 126
Mott, T. H., 109
Mukhopadhyay, A., and Schmitz, G., 58
Multiple-output circuits, 110–118
Murago, S., and Takasu, S., 63, 65, 66

Nadler, M., 84
NAND circuits, 49–52
NAND gates, 48, 49
Narasimhan, R., 286
n-ary operations, 47, 49
n-dimensional cube, 64, 82
Necula, N. N., 118
Negative logic, 66, 78
Next-state functions, 133, 140, 141, 143
Next-state variables, 129
Nichols, A. J., 296
Nickels, A. J., and Armstrong, D. B., 295
Nodes, additional, 184, 188–190
Noncritical race, 144
Nonrestoring binary division, 10, 11
NOR circuits, 49-52
NOR gates, 48, 49
NOT gate, 42, 43
Null set, 23
Number representation, 3, 4
Number system conversion, 4-6

Octal number system, 3, 4
Octal representation of canonical terms, 100-102
Odd-level gate inputs, 51, 52
One's complement, 8, 9
Open-loop characteristic, 138, 139
Optimal circuit, 67
realization, 79
Optional entries, 96-98, 136
Optional terms in Quine-McCluskey technique, 101, 104
OR gate, 42, 43
OR-NOT gate, 48
OR-NOT set, 46
Output adjacencies, 292
Output assignments to avoid momentary false outputs, 167
Output table, 130

Parallelogram rule, 64
Partial pulses, 249
Paull, M. C., and Unger, S. H., 275, 278, 286
Paull, M. C., and Waldbaum, G., 286
Perfect induction, method of, 27, 28, 38
Peterson, W. W., and Weldon, E. J., Jr., 13
Petrick’s method, 108, 116
Pierce arrow function, 47
Positive logic, 66, 78
Postulates of Boolean algebra, 19, 20
Present-state variables, 129
Prime-implicant function, 108, 116
Prime implicants
complete sum of, 89
core of, 103
definition of, 88
essential, 92, 95, 97, 103-106, 112
minimal sum of, 92-95
multiple output, 112
secondary essential, 103, 105, 106
table of, 102-108
Prime implicates, 89
Primitive flow table, 136, 166
minimum row, 176, 275
Product-of-sums expression, 33, 37
Propositional logic, 23, 24-27

Pseudoequivalence, 276
Pulse
leading edge, 126
trailing edge, 126
Pulse-mode operation of sequential circuits, 126, 144, 210

Quine, W. V., 99, 118
Quine-McCluskey technique, 99-102
using octal symbols, 100-102

Race conditions, 144, 145
Radix point, 3
Ramamoothy, C. V., 58
Redundant rows, 174
Reed, I. S., 256
Reflected binary code, 13
Register, 255
Resolution time, 144, 229, 249
Richards, R. K., 6, 11
Ricketts, A. W., Jr., 63
Ring sum function, 47
Row, essential, 103
Row adjacencies, 292
Row dominance, 104-106, 114, 115
Row merging, 177-181
Row sets, 190
RS flip-flop
application table, 193
characteristics, 141
excitation equations, 191-199
 gating costs, 243-247
RST flip-flop, 241-247
Russo, R. L., 67

Schorr, H., 265
Secondary essential prime implicant, 103, 105, 106
Self-complementing codes, 12
Sequence generator, 252-254
Sequential circuit
analysis, 124-155
asynchronous operation, 126, 229
clocked, 229-240
closed cyclic operation of, 179
control states in design of, 252-255
memory characteristics, 124, 127
model, 128, 140
modes of operation, 126
physical requirements, 137, 138, 139
resolution time, 144, 229, 249
shift-register realizations of, 296
stable state, 129
Sequential circuit (continued)
 state-point motion, 131, 144
 synchronous operation, 126, 229
 total state, 130
Serial binary adder, 232, 237, 256–258
Sets
 algebraic, 23–25
 row, 190
Shannon, C. E., 28
Sheffer-stroke function, 47
Shift register, 230, 236
Single-rail logic, 43
Slagle, J. R., Chang, C.-L., and Lee, R. C., 118
Sling, 145
Smith, J. R., Jr., and Roth, C. H., 265
Smith, R. A., 68
Split pulse, 249
Stabler, E. P., 265
Stable state, 129
Standard logic modules, 67
State
 diagram, 145, 146
 discrete, 1
 stable, 129
 total, 130
State assignments, 287–296
 partitioning techniques in, 295
Static hazards
 in flip-flop circuits, 198, 199
 in gate circuits, 146–152, 214
Subcubes, 83
 essential, 92
 selection of, 92–95
Subsuming terms, 83, 109, 110
Sum-module-two operation, 47
Sum-of-products expression, 33, 37
Switching algebra, 27
Switching functions
 classes of, 68
 geometric representation, 82
 incompletely specified, 95–98
 number of, 68
Synchronizing circuits, 248–252
Synchronous operation of sequential circuits, 126, 229

Table of combinations, 32, 33
Tan, C.-J., 296
Term
 adjacent, 81
 core, 103
 definition of, 23
Theorems in n variables, 27

Threshold adjustable-logic networks, 65
Threshold element
 bias, 61
 circuits, 59–66
 weights, 60
Threshold function inequalities, 61–64
Time-difference equations, 256
Tison, P., 109
Tracey, J. H., 191
Trailing edge of pulse, 126
Trailing-edge triggering, 223
Transfer notation, 256
Transition
 arrow, 145
 diagram, 182
 table, 181
Transition logic, 265
Trigger flip-flop, 241–247, 263–265
Two-level circuit realizations, 45, 79
Two’s complement, 8
Unger, S. H., 154, 191, 285, 286
Union of two sets, 23
Universal set, 23
Unstable state, 129

Veitch, E. W., 85
Venn diagrams, 24, 25

Weighted codes, 11, 12
Weight-threshold vector, 61
White, S. A., 66
Wood, O. L., 48

Yau, S. S., and Tang, C. K., 67