## Index

Abort probability, 20, 23, 26, 38, 40, 48, 56
Access characterization, 99, 101
Affinity cluster, 98
Affinity routing, *see also* Transaction affinity101
Allowable throughput, 98
Asymptotic limit, 8, 10
Atomicity, 3, 13, 97
Availability, 1, 5

<table>
<thead>
<tr>
<th>Buffer</th>
<th>coherency, xvii, xx, 1, 3, 14, 100</th>
<th>coherency taxonomy, 101</th>
<th>coordinated management policy, 101</th>
<th>detection oriented policy, 100</th>
<th>fill up phase, 20</th>
<th>flushing, 28, 34, 38, 46, 47, 47, 51, 57, 58</th>
<th>hybrid coherency policy, 100</th>
<th>invalidation, <em>see</em> Broadcast invalidation</th>
<th>optimal allocation, xix, 10, 82, 90, 97</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>placement policy, <em>see</em> Shared buffer placement policy</td>
<td>purge policy, 8</td>
<td>update propagation, 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cache</td>
<td>coherency, 5, 9</td>
<td>hierarchy, 9</td>
<td>multi-level, 9</td>
<td>replacement policy, 9</td>
<td>snooping, 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centralized concurrency control, 3, 7, 8, 13, 25</td>
<td>Centralized lock management, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check-on-access policy, 14, 45, 100</td>
<td>Client-Server architecture, xvii, 4, 65, 91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold set, 3, 11, 41, 50, 52, 101</td>
<td>Commit delay, 16, 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commit phase, 18, 25, 48</td>
<td>Communication delay, 78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compensating effect, 61</td>
<td>Concave curve, 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conditional probability, 35, 49, 66, 67, 68, 70, 74, 79</td>
<td>Confidence interval, 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confidence of flow, 44, 46, 72</td>
<td>Contention</td>
<td>data, 6, 8, 11, 30</td>
<td>probability, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Empirical model, 8

Failure, see Node failure
File server, xviii, 13
Fixed point, 23
Flushing, see Buffer flushing
Flushing time, 47
probability distribution, 47
Force policy, see Recovery
Foreign transaction, 99

Global buffer, see Shared buffer

Hierarchical model, 10, 14, 95, 98
High contention, 30
Hot set, 3, 11, 41, 50, 52, 101
Hybrid architecture, 7, 34

Incremental growth, xvii
Independent reference model, 24
Inflection point, 11, 81, 97
Integrated concurrency coherency, xviii, 14, 100

Integrated system model, xviii, 12, 23, 24, 35, 41, 50, 55, 95
Interconnection network, 4, 13
Invalidation rate, 30, 30, 31, 33
IP data stream, 72, 74
IS data stream, 72, 74
Iterative procedure, xviii, 10, 23, 28, 45, 95

Little’s law, 45, 47
Load balancing, 98, 99, 101
Load surge, xx, 97, 99, 102
Load variance, xx
Lock retention policy, 14, 46, 100
Lock wait time, 6, 7, 20, 23, 49, 57
LRU analysis, 14, 45, 45, 67, 68, 75, 76, 101, 102
LRU replacement policy, 3, 9, 13, 15, 42, 44, 45, 60, 66, 100
M policy, 17
Markov chain, 28
Mean value analysis, 8, 10, 25
Memory hierarchy, 5

N data stream, 72, 74
Negative dependence, 66, 69, 70
No Force policy, see Recovery
Node failure, xvii, xx, 99
Non-LRU buffer management policy, 102
Non-uniform access, see Skewed access pattern

OCC, xix, 6, 8, 10–12, 18, 19, 19, 20, 23–25, 36, 41, 57, 60–62, 77, 92, 93, 95, 96
Optimal configuration, xix
Optimistic protocol, see OCC
Overhead
coherency, 3, 6, 98
commit, 5, 97
communication, 11, 78, 91
concurrency, 3, 6
global lock request, 98
invalidation, 20
message, 3, 14, 23, 49, 91, 98
remote database call, 5
shared buffer access, 19, 92
P data stream, 72, 74
Packaging requirement, 5
Page transfer policy, xviii, 15, 100
Partitionable workload, xix, 98
Piecewise linear model, 8
Positive dependence, 4, 66, 68, 70, 96, 101
Prototype, 5
Push-down rate, 44, 44
Query environment, see Transaction and query environment
R policy, 17
Random access stream, 99
Reconfiguration, xvii, xx
Recovery
  Force policy, 14
  No Force policy, 14
  REDO, 14
Recovery analysis, 102
Recovery complexity, 101
Recursive formulation, 44
REDO, see Recovery
Relabelling, 72, 74, 77, 78
Replacement rate, 31, 33
Replicated copies, 4, 66, 69, 70, 73, 74-78, 83, 84, 91, 92, 98, 99
Replicated database, 7, 99
Rerereference access stream, 99
Rerun transaction, 9, 20, 35, 42, 46, 46, 46, 47, 49, 57, 61
Resource contention, see Contention
Resource model, 8, 26, 49
S-shaped curve, 81, 83
Saturation point, 8, 33, 52, 55, 81
SBMP, see Shared buffer management policy
Scalability, xix, xx, 1, 5
SE, see Shared Everything
Secondary stack, 101
Sequential access stream, 99
Serializibility, 3, 13, 97
Shared buffer
  composite policy, 66
  compositions, 71, 71–78
  dependence, 9
dependency, see Dependence
  management policy, 15, 17, 101
  modeling framework, 65, 65–78
  placement, 2, 3, 65
  placement policy, 65–93
  update propagation, 11, 16
Shared disk, 65, 98
Shared Everything, 5
Shared intermediate memory, xviii, 4, 5, 13, 65, 98
Shared nothing, 5, 97–99
SIM, see Shared intermediate memory
Simulation
  discrete event, xviii, 19, 20, 50, 77, 95
  trace driven, 8–10, 33
Skewed access pattern, xix, 1, 3, 9, 41, 41–62
Snooping cache, 9
Steady state, 20, 43, 72
Store type instruction, 5
System instability, 20
Tightly coupled system, 5, 6, 20
Timestamp, 19
Transaction affinity, xviii, xix, 98, 100
Transaction and query environment, 102
Transient LRU analysis, 101
Transient phase, 21
Truncation error, 28
2PL, xix, 6, 10–12, 18, 18–20, 41, 42, 49, 50, 57, 60, 61, 95, 96
U policy, 17
UM policy, 11, 17, 96
UMR policy, 17
Update propagation, xix, 14, 100
UR policy, 17

Versioning scheme, 102

Weak lock, 19, 20
Working set, 38, 57
Workload characterization, 101
Workstation architecture, 4
The MIT Press, with Peter Denning as general consulting editor, publishes computer science books in the following series:

**ACL-MIT Press Series in Natural Language Processing**
Aravind K. Joshi, Karen Sparck Jones, and Mark Y. Liberman, editors

**ACM Doctoral Dissertation Award and Distinguished Dissertation Series**

**Artificial Intelligence**
Patrick Winston, founding editor
J. Michael Brady, Daniel G. Bobrow, and Randall Davis, editors

**Charles Babbage Institute Reprint Series for the History of Computing**
Martin Campbell-Kelly, editor

**Computer Systems**
Herb Schwetman, editor

**Explorations with Logo**
E. Paul Goldenberg, editor

**Foundations of Computing**
Michael Garey and Albert Meyer, editors

**History of Computing**
I. Bernard Cohen and William Aspray, editors

**Logic Programming**
Ehud Shapiro, editor; Fernando Pereira, Koichi Furukawa, Jean-Louis Lassez, and David H. D. Warren, associate editors

**The MIT Press Electrical Engineering and Computer Science Series**

**Research Monographs in Parallel and Distributed Processing**
Christopher Jesshope and David Klappholz, editors

**Scientific and Engineering Computation**
Janusz Kowalik, editor

**Technical Communication and Information Systems**
Edward Barrett, editor