Index

Abstracting algorithms, 424
Abstracting services
 computerization of, 191
 costs of, 191
Access selectivity, 92
Accountants, 135
Accounting, model building and use of
 principles of, 297
Acoustical coupling, 353–355
Acoustic pattern recognition, 142
Adler, Mortimer, 192
Adult education, 179, 184
Advanced Research Projects Agency.
 See ARPA
Advanced technology, nature of, 165
Advertisers, use of computers by, 12
Advertising, 10
 computers’ effect on, 12
 effect of knowledge-based home com-
 puters on, 53
Advertising mailing lists, 269
Advice-giving services, fact retrieval
 and, 15
Aerodynamic designs, simulation in
 evaluation of, 99
Age of Discontinuity, The, 233
Aiken, H. H., 338
Air defense, 94
Air traffic control, 104–105
 output warning signals and, 158
Airline reservations, 60, 69, 168, 218–
 220
Airlines, 134
Airplane cities, 200
Alert capability, 386
Alerting, research on, 388–389
Alexandrian Library, 190–193
Algebra of logic, definition of, 170
ALGOL, 392
ALGOL 60, 427, 435
ALGOL 68, 426
Algorithm invention, techniques for, 435
Algorithms, 46
 computer programs and, 167
 computer science research and study
 of, 424
 importance to computer science of re-
 search on, 434
 optimal, 433–434
 proof of correctness and, 426
 resource requirements of, 424
 serial, 430
 theory of, 425
All Application Digital Computer, 96
Allocations of resources, two categories
 of, 313
Alphanumeric keyboard, 346
Altshuler, Alan, 201
American banking abroad, 235
Analog, line-switched plant, 111
Analog simulations, scale models and,
 293–294
Analog voice, 89, 111, 357
Analogy, artificial intelligence and,
 454–455
Analytical geometry, 192
Analytical mode, 168
Anderla, Georges, 189
Angular position encoders, 45
Antiballistic missile, 225
Antibiotics, social change and four
 stages of effects of, 231–232
Antitank weapons, electronic, 246–247
Antitrust action, 257
Antitrust Division, 280
Antitrust policy, 259
APL, 392, 427, 431, 435
Apparel, custom-made, 9
Appliances, automatic control, 8–9
Applications programs, 387
Approximation processes, 314–315
Arab-Israeli October war, 238, 239, 246
Arab petroleum boycott, 238–239
Architectural designs, 160
Architectural styles, 149, 150
Arp, Jean, 34
Arp, Sophie Taeuber, 34
ARPA, 99, 198, 370, 373, 376, 389
five-year program on problem of continuous speech understanding of, 379–380
growth of, 374
time-sharing concept and, 373
ARPA network, 11, 109, 430
first implementation of, 373–374
imitation of philosophy of, 375
important value of, 374–375
users of, 374
ARPA network experiment, 390
ARPANET
Interface Message Processor, 117
research and development program, 116–117
services, 112–113
Arrow, Kenneth, 173
Ars Signorum, 192
Art
automata and metaphors for, 25
computers and common metaphors of, 22, 25
joint venture of computer and artist in production of, 32–34
major impact of computers on, 22
Art in America, 29–30
Art News, 27
Arthur D. Little, Inc., 346
Artificial intelligence, 61, 89, 144, 218, 375–380
analogy and metaphor and, 454–455
basic goal of research in, 375
cognitive psychology and, 62
computer graphics and, 22
expectations of, 453–454
goals of, 61
issues important in, 409–413
major thrust of research in, 62
original ideas and, 454
origins of, 375
programming systems for, 429
research in, 400–409
Artificial intelligence research
current goal of, 412
debate on, 380
ethical questions raised by goals of, 432–433
four major centers of, 376
pattern-matching-based systems in, 414
progress in, 376
reasoning computers and, 377
regression in, 404–405
specific objective of, 376
ASCII code, 346
Assembly language coding, 389
AT&T, 176, 191, 195, 257, 258, 274, 278, 354
antitrust action against, 275, 280
Bunker Ramo case and, 274–275
Comstat and, 205
Atomic and molecular theories of meaning, 412
Atomic Energy Commission, 197
Attachment policies, 353
Attorneys, 135
Audit trails, 100, 101
Auditing, 135–136
Auditor, internal, 135
Authorization channels, 101
Autistic children
use of LOGO turtles by, 83
Automated factory, 49
Automated home office, 16
Automated patient monitoring, 108
Automated robot, 41
Automated vision, 45
Automated bank teller terminals, 347
Automated controllers, 54
Automated decision system, 221
Automated information systems, 191
Automatic control systems
difference between programmable robot and, 45
future prospects of, 45–47
Automatic programming research, 96
Automation
artificial intelligence and, 391
decaying industries and, 52, 54
definition of, 38
direct cost of using, 51–52
expansion of information economy and, 184
job market and, 122
manufacturing and, 123
obstacles to future progress of, 54–55
production process and, 38
standardization and, 429
tactile sensing uses in, 45
two essential components in future development of, 47–49
Automobile industry, 47
Autonomy, 215–216
Aviation maintenance, 386
Babbage, Charles, 338
Baker, William C., 197
Balance of power, 231
Ball, George, 237, 238
Ballistic missiles, 94
Bandwidths, 9, 11, 91
Bank teller-assisting terminals, 347
Banking laws, American, 235
Banking operations, 235
BASIC, 77–80, 392
Basic research, 174–175
Basic research scientist, 287–288
Batch mode operation, 66
Batch processing, 91, 92
Battlefield surveillance, 94
Bauhaus, 31
British Broadcasting Corporation, 12
Becker, Joseph, 198
Behavioral sciences, 286
Bell, Alexander Graham, 164, 338
Bell, Daniel, 431, 443, 445, 446
Bell System, 89, 111, 256, 274
Bell Telephone Laboratories, 67, 197, 338, 372
Bentham, Jeremy, 312
Bernoulli, Daniel, 307
Bibliographic data bases, 191
Bibliothèque Nationale (Paris), 191
Bill-paying service, electronic, 10–11
Bipolar transistors, 331
BIZMAC, 367
Bobrow, Daniel, 404, 407
Bolt, Beranek, and Newman, 371, 373, 377, 379
Boolean algebra, 335, 344
Borges, Jorge Luis, 198
Boulding, Kenneth, 230
Bower, 257
Brancusi, 22
Britannica 3, 192
British industrial technology, 240
British Museum, 191
Broadband communication link, 217
Bronowski, J., 165
Brownian motion, 165
Bunker Ramo, 274–275
Burck, Gilbert, 179
Bureau of the Census, 201
Burglar alarm devices, 45
Burroughs parallel processor, 150
Burroughs B6700, 374
Business
data use by line managers in, 137–138
economic impact of mechanization of
knowledge on, 134, 142
growth of computer use in, 144–145
lack of computer programming knowl-
edge and, 131
long-term trend toward centralization
of decision making in, 226–227
specialized carriers in, 176
Business functions
costs of computers in, 130
mechanization of interfaces and, 141
mechanization of knowledge work in,
134
Business organizations, 218
Business transactions, 234
Cable systems and government, 112
Cable TV, 11, 14, 112, 175, 179
CAI. See Computer Assisted Instruction
Calcomp 563 platter, 28
Calcomp (Corporation) contest, 21
Calculators
hand-held, 147, 152, 157
programmable, 152
Calder, Alexander, 31
California Institute of Technology, 41
Cambridge University, 340
Capacitance charging time, 329
Capacitors, 46
Capital export, 236
Capitalism, crisis of, 178
Capitalist economy, 314
Cardwell, D. S. L., 206
Carlyle, Thomas, 187
Carnao, 192
Carnegie Institute of Technology, 371
Carnegie-Mellon University, 375, 376, 379
Carrier transit time, 329
Carterfone, 277
CAS, 191
Cassette tape, 14
Cathode-ray tubes (CRT), 158
CATV, 357
CDC STAR, 148, 150
CDC 3600, 372
CDC 6600, 374
Census, 90, 93, 114, 140, 168, 266
Central knowledge system, 198–199
Central processing unit (CPU), 153
Centralization
central computer memories and,
218–219
corporate planning and, 221
decision premises and, 213–214
definition of, 213
economies of scale and, 219, 220
feasibility of, 216
functions of, 213
computer and effect on motives favor-
ing, 226–227
medical diagnosis and, 219
middle-management decisions and, 220
of processors and data, 155
Chamberlin, Edward H., 256
Charge-coupled devices (CCDs), 326–327
Check processing, 60
Chemical Abstract Service (CAS), 191
Chemical Registry Service, 191
Chemistry projects, and minicomputers, 148
Chess, 61, 368, 376, 409, 410
CHIPS, 235–236
Chunking, 444
Churchman, C. West, 133
CIA, 93, 94
Circuit elements, individual, 327
Circuits
complexity, 323, 327
delay time, 329
densities, 329
design, 332–333
Cities, location of
economic geography and, 200
infrastructure created by merging technology and, 199–200
in a service economy, 199–200
Civil Aeronautics Board, 255
Civil defense, 243
Clark, Colin, 177–178
Classified information, 101
Clearinghouse Interbank Payments System. See CHIPS
Clerk-Maxwell theoretical equations, 164
Climate control, 160
Closed-circuit television, 175
Club of Rome, 287, 303, 446, 448
CMOS circuits, 331
COASTI (Committee on Scientific and Technical Information), 197
Coaxial cables, 91, 175
nets, 112, 123
COBOL, 90, 98
Codes
breaking, 120
compaction, 431
writing, 430–431
Coding and information theory, 170
Cognitive processes, computational, 412
Cognitive psychology
artificial intelligence and, 62
issues important in, 409–413
Cohen, Harold, 30
Coking process, 164
Cold War, 247
Color raster scan display system, 29
COM, 158
Combinatorial analysis, 294
Command systems, 248
Commerce, computerized, 100, 110, 123
Commercial revolution, 234
Commission on the Year 2000, 461
Committee on Scientific and Technical Communication. See SATCOM
Committee on Scientific and Technical Information. See COASTI
Common carrier facilities, 348–349
Common carriers, 354, 355
specialized, 259
Commonsense knowledge, 408–410
Commonsense reasoning, 405, 416
Communication, 93
as key to transitions between stages of society, 169
computer-to-computer, 105
computers and, 216–219
dispersed and concentrated communicators and problem of, 111
explanation systems and, 68–69
FCC definition of boundary between computer services and, 276–277
home computers and, 9
major social changes due to reorganization of modes of, 195
research in natural language and, 63–66
spoken, 66–68
two distinct realms of, 175
Communication carriers, 355
Communication devices, 294
Communication facilities, terrestrial, 357
Communication line, 331
Communications
as infrastructure of society, 194
blurring of distinction between computer sciences and, 275–276
computerized, 100
integration of subsidiaries of multinational corporations and, 236
intellectual foundations of revolution in, 169–177
legal and economic questions, 176
lowering of transaction costs and improvements in, 234–235
micro- and minicomputers and growth of, 363
new infrastructure for, 205
reasons for merger of computers and, 340, 344
social changes due to, 195
Communications Act of 1934, 277
Communications between chips, 331
Communications common carriers
computer services and monopoly of, 276
enforcement of own policies by, 275
limited regulatory protection and, 273–274
Communications grid, national digital, 123
Communications networks, 4, 9
Communications revolution and information theory, 169
Communications satellites, 357–361
Communications services
alternatives to existing types of, 9
price discrimination and resale of, 277
Communications systems
European, 353
and information filtering, 217
Communications systems designer, 353–354
Communications technology
effects of, 216–217
five major problem areas in, 175–176
government involvement in, 176
growth of political organization and advances in, 230
Compatible Time-Sharing System (CTSS), 370–371
Competition
computer services and, 271–279
computer services regulation and, 254, 255
reversing trend toward reduction of, 279–280
unfair, 270–279
Competitive equilibria allocations, 313, 314
Complementary technologies, 187
Complex organizations, 310
Complexity, 166
Complexity theory, 434–435
Component assembly, 323
Component technology, 321
Composite analysis, 383
Computation, 338
Computational abilities, 294
Computational linguistics, science of, 407
Computational metaphor, 62
Computational services and FCC rulings, 277
Computer
abilities of, 232
analytic approach to problems and, 218
as a new medium of art, 25
as agent for acculturation, 85
as automated teacher, 74–75
as data processor, 60–61
as knowledge processor, 61
as manager of mass society, 172
as number processor, 60
as transformer of second half of twentieth century, 171
relevant variables and, 218
Computer-aided design, 32
Computer-aided education, 374
Computer-aided instruction, 67, 74
Computer-aided visual arts, 36
Computer art
interaction between viewer and, 31
products of, 22
Computer assembly language, 96
Computer Assisted Instruction (CAI), 106–107
Computer-based automation, 52–53
Computer-based controllers, 49
Computer-based education, 18, 106–107
Computer-based information systems, 445
Computer-based learning environment, 81
Computer-based message services, 110
Computer-based traffic control, 104–105
Computer communication networks, 91
Computer communication security, 101
Computer communications, 89, 141
government regulation of, 106
problems of, 348–363
Computer communications systems
growth of, 344
international differences and, 351–352
Computer consoles, 91
Computer CPU performance, 151
Computer data banks, 268
Computer designers, 357, 361
Computer development in defense sector, 99–100
Computer-driven cutting, 41
Computer-driven theorem proving, 435–436
Computer experts, priorities of, 62
Computer-generated output, 158
Computer graphics, 21, 22, 27, 28, 83, 372
Computer hardware
cost savings from increase in complexity and, 324
education and cost-effectiveness of, 107
<table>
<thead>
<tr>
<th>Computer hardware (cont.)</th>
<th>Computer services</th>
</tr>
</thead>
<tbody>
<tr>
<td>interconnections as major cost in, 322</td>
<td>blurring of distinction between communications and, 275–276</td>
</tr>
<tr>
<td>Computer industry</td>
<td>costs of, 271</td>
</tr>
<tr>
<td>absence of regulation in, 176</td>
<td>FCC policy and, 274–279</td>
</tr>
<tr>
<td>effects of microprocessors on, 336</td>
<td>Computer services industry</td>
</tr>
<tr>
<td>Computer information, accountability for use of, 449</td>
<td>Bower’s study of costs and profitability of, 257</td>
</tr>
<tr>
<td>Computer languages</td>
<td>competition in, 257</td>
</tr>
<tr>
<td>MULTICS project and, 372</td>
<td>competition versus regulation in efficiency of, 260–261</td>
</tr>
<tr>
<td>ordinary language and, 289</td>
<td>principal inputs to, 271</td>
</tr>
<tr>
<td>two approaches to solution of proliferation of, 384</td>
<td>proponents of regulation of, 254</td>
</tr>
<tr>
<td>Computer networking, 361–362</td>
<td>rationale for economic regulation of, 271</td>
</tr>
<tr>
<td>Computer networks, 122, 430, 443</td>
<td>ruinous competition in, 271–279</td>
</tr>
<tr>
<td>interactive, 198</td>
<td>two advantages of regulation of, 256</td>
</tr>
<tr>
<td>national, 116–117</td>
<td>two possible industry structures for, 256–257</td>
</tr>
<tr>
<td>Computer-operating systems, 101–102</td>
<td>unanticipated advances in knowledge and, 271</td>
</tr>
<tr>
<td>Computer organization, 435</td>
<td>Computer services regulation, 254</td>
</tr>
<tr>
<td>Computer output microfilm (COM), 158</td>
<td>Computer simulation, 294–295</td>
</tr>
<tr>
<td>Computer output recording, TV-supported, 158–159</td>
<td>Computer systems, 153</td>
</tr>
<tr>
<td>Computer programs</td>
<td>architectural styles of, 149, 150</td>
</tr>
<tr>
<td>ability to operate in qualitative areas and, 405–406</td>
<td>as type of network, 152</td>
</tr>
<tr>
<td>advances in performance of, 340</td>
<td>deficiencies in, 381</td>
</tr>
<tr>
<td>algorithms and, 167</td>
<td>design of, 451</td>
</tr>
<tr>
<td>copyrighting of, 106</td>
<td>educable, 122</td>
</tr>
<tr>
<td>future productivity in, 130</td>
<td>evaluation of, 381–382</td>
</tr>
<tr>
<td>self-knowledge in, 418–419</td>
<td>future use of parallelism in, 150</td>
</tr>
<tr>
<td>Computer-readable copy, 13</td>
<td>major goal in design of, 70</td>
</tr>
<tr>
<td>Computer-readable structure records, 191</td>
<td>meshing of telephone and, 175</td>
</tr>
<tr>
<td>Computer-related services, particularized, 258</td>
<td>poorly understood control structure of, 451</td>
</tr>
<tr>
<td>Computer research community and military projects, 96</td>
<td>problem dealing with large data base in, 381</td>
</tr>
<tr>
<td>Computer science</td>
<td>problem of incomprehensibility of, 452</td>
</tr>
<tr>
<td>as a new subject, 400</td>
<td>two current specialized forms of communication with, 62–63</td>
</tr>
<tr>
<td>as an applied activity, 424</td>
<td>Computer Technique Group (CTG), 28</td>
</tr>
<tr>
<td>descriptions of processes introduced by, 396–397</td>
<td>Computer technology</td>
</tr>
<tr>
<td>effect on society of, 422–423</td>
<td>centralization-decentralization and, 223</td>
</tr>
<tr>
<td>growth of, 423</td>
<td>computer cost and performance and, 321</td>
</tr>
<tr>
<td>process-describing capacities of, 397</td>
<td>defense sector support for, 95</td>
</tr>
<tr>
<td>programming as central concern of, 425</td>
<td>developments in, 389–390</td>
</tr>
<tr>
<td>relationship to other subjects of, 400–401</td>
<td>export of, 105–106, 118</td>
</tr>
<tr>
<td>theorem proving and, 435</td>
<td>government initiative and future of, 123</td>
</tr>
<tr>
<td>two views of, 424</td>
<td>indirect consequences of distrust of government on, 120</td>
</tr>
<tr>
<td>Computer science education, 160</td>
<td>large file systems and, 385</td>
</tr>
<tr>
<td>Computer science research</td>
<td>research in, 440</td>
</tr>
<tr>
<td>formalization as one goal of, 424</td>
<td></td>
</tr>
<tr>
<td>stages of development of, 425</td>
<td></td>
</tr>
<tr>
<td>study of algorithms and, 424, 433</td>
<td></td>
</tr>
<tr>
<td>Computer security technology, 119</td>
<td></td>
</tr>
</tbody>
</table>
future projection for development of, 156–157
government access to information on, 93
government regulatory functions and, 103–106
highly parallel, 430
history of, 59–62
impact on organizations of, 220–222
limitation on interacting with, 66
lower level management and, 139–140
magnification of errors by, 448
manufacturers of, 151
mathematical jobs for, 153–154
metaphors for, 59–62
military planning and, 206
modeling of complex systems and, 218
models of energy systems and, 218
need for building capability of, 159
original thought and, 154
political questions and export of, 206
potential impact on education of, 73
present-day top performers in, 148–149
primary use of, 54
privacy and, 263–266
privacy, public policy, and, 266–270
programmable robots and future use of, 46
reasoning and, 377
rote learning and, 75
service functions of government and, 110–114
size spectrum of, 147–152
some unrealistic forecasts for, 367–370
special, 96
speech understanding by, 99
speech-using, 66–67
theory of knowledge underlying use of, 76
two areas of greatest impact of, 233
two fields of research to enlarge capabilities of, 218
used as switching devices, 176
vested interests in mystification of, 70
viable alternative to schools provided by, 85–86
vocal inputs and, 152
voiceprint identification and, 103
weapon systems and, 95–96
Computers and Automation, 28
Comstat, 205
Concept learning, 418
Conceptual dependency, 412
Conceptual representations, 409–413
Concorde, 194
Debureaucratization, 139–140
DEC PDP-10, 372, 374
Decentralization, 212–216
Decentralized facilities, 155
Decentralized knowledge system, 198–199
Decision making
centralization/decentralization and, 222, 236
components of, 214
economies of scale and, 213
internalization of goals and autonomy in, 215
major contributions of computer to, 226–227
payoff-relevant dimensions of, 307
probability theory relevant to, 307
signals and, 307
under uncertainty, 307–308
Decision-supporting systems, 387
Decision theory, 166, 306
Decision variable, 309
Decisions, high-level, 217
Default frames, 412–413
Defect densities, 326
Defense budget, U.S., 95
Defense Communications Agency, 113, 198, 374
Defense sector
as main government developer of computer science, 94
computer technology and changes in, 94–95
computers and, 94–100
emphasis on short-term optimization of, 94, 95
software and, 98, 121
Delacroix, Eugène, 25
Demographic structure, 230, 232–233
DENDRAL, 122
Department of Defense (U.S.), 90, 93, 98, 197, 374, 375
basic research and role of, 119
extensive use of computers by, 116
Department of Energy (U.S.), 148, 160
Descartes, René, 192, 193
Developing countries, 124
Dewey, John, 83, 193, 440
Diagrammatic models, 291–292
Difference networks, 413
Difference-reduction concept of goal, 401
Differential equations, 99
Differential productivity, 177, 178
Digital computers
communication networks, 91
PDP-1, 371
stored program, 340
Digital computer systems, 348
Digital data, 89
Digital electronics, 330
Digital image processing, 91
Digital information, 13
Digital PDP-1 computer, 371
Digital signal transmission, 111
Digital speech-compression techniques, 112
Digital transmission, 89, 91, 110–111
Dijkstra, E., 429
Direct-coupled transistor logic (DCTL), 327
Direct investment, 236
Discrete transistors, 327
Diseconomies of scope, 266
Dispersed communication services, 111–112
Display devices, 41, 130
Distant Early Warning Line (DEW line), 243, 244
Distributed data bases, 125
Distributed intelligence, maturation of, 364
Distribution system, 47–49, 111
Division of labor, 213, 231, 310
international, 233, 241
Documenting, 98
Doxiades, C. A., 200
Draper Laboratory, 41
 Drill and practice model of education, 75–76
Drucker, Peter, 233, 241
DTL, 327
Dual processors, 150
duplex rates, full, 353
Durkheim, Émile, 171–172
Dynamic graphics, 30
Dynamic programming, 435
Eames, Charles, 34
Eames, Ray, 34
Early warning
computer and, 248
research on, 388
ECL, 327
Economic activity
addition of two sectors to, 178
impact of technological advances on, 230–231, 232–233
three sectors of, 177
Economic affairs, 233–241
Economic development, Western, 234
Economic efficiency and territorial expansion, 249
Economic geography, 200
Economic models, 302–303
Economic organization, 309–316
Economic policies, 202
Economic power
decrease in transaction costs and redistribution of, 240
definition of, 239
international politics and, 249–250
Economic processes, 302
Economic sectors, 178–179
Economic theory, 173–175
Economic transformations, 199–206
Economics of information, 261, 308–309
Economics of privacy, 261–263
Economies of scale, 256
Edge Act, 235
Edison, Thomas Alva, 164
Education
computer-assisted instruction and, 176, 195
computer technology and, 440
current computer use in, 107
management information systems and, 139
management information systems and effects of, 139
networking computer programs in, 107
potential impact of computers on, 73
programmed aids in, 107
programming and, 131–139
personal computer and, 79, 85
rote learning and use of computers in, 75
simulation uses of computers in, 74, 76
social implications of current use of computers in, 73
Education, computer-based, 6–8, 106–107, 123
Education, scientific, 155
Educational hardware, 80
EDVAC, 87
Effective algorithm, definition of, 424
Egalitarianism and knowledge elite, 204
Elections, 93, 224–225
Electrical communications, 338
Electricity, 171
Electromechanical devices, 41, 130
Electron-beam technology, 89
Electronic banking, 175
Electronic bill-paying service, 11
Electronic calculators, 8, 327
Electronic components, 46
Electronic computer systems development, 338–340, 344
Electronic computers, 60, 340
Electronic computing theory, 172
Electronic control systems, 46, 47, 52
Electronic cybernetic models, 47
Electronic data processing, 239–240
Electronic funds transfer, 11–12, 90–91, 123
possibility of misuse of records of, 103
security in, 100
Electronic library, 12–14
Electronic mail, 4, 9, 10–12
Electronic message systems, 91, 112
Electronic microcircuit industry, 42–43
Electronic snooping, 18–19
Electronic voting devices in the home, 223–224
Electronic warfare, 98
Electronics, computer-aided design of, 134–135
Electronics manufacturers, 134
Empire and Communications, 230
Employment, 164
Encryption codes, 19
Encyclopaedia Britannica, 170
Energy
developments in printing industry and increased use of, 187–188
research and development in, 195
networks and computer science, 194
technology and natural sources of, 194
Energy consumption, 8–9
Energy resources, 122–123
Energy systems models, 218
Energy utilities, 194–195
Engineering projects, 148
English Morse code messages, 44
English sentence communication, 386
English text processing, 379–380
Enterprise-integrated networks, 362
Environment
applications to, 91
computer monitoring of, 106, 202
computer science, 225
applications to, 91
computer monitoring of, 106, 202
political process and issues concerning, 225
Environmental systems models, 218
Equilibrium theory and information, 173
Erlang’s traffic theory, 344
Ervin, Sam, 202–203
Euclid’s algorithm, 433
Eurodollar, 235
European telecommunication, 89–90
Evans, B. O., 441–442, 443
Evans Analogy Program, 405–406
Index

Evans, Thomas, 454
Expected-utility hypothesis, 307
Experimental facilities, 147–148

Fabrication economic sector, 178
Fact retrieval, computerized, 14–16
Fair Credit Reporting Act, 266
Fair-use concept, 199
Fano, Robert, 371
Faraday, Michael, 206, 338
Federal Aviation Administration, 158
Federal Aviation Agency, 267
Federal Bureau of Investigation, 93, 94, 100, 266
Federal Communications Commission, 255, 267, 268, 274, 275, 280
computer services and policy of, 274–279
decisions about specialized common carriers and, 259
definition of communications/computer services boundary by, 276–277
regulation by, 176
resale policy of, 277
rulings regarding computer services industry, 276–277
structural definition of competition of, 277–278
Federal Council on Science and Technology, 197
FEDNET, 119
Field theory, 206
First Amendment, 176
Fleming, Alexander, 231
Flow diagram, 295
Foldes, Peter, 28
Force feedback, 377
Foreign investment, 238
Foreign-language translation, 369
Forest Service, 215
Formal operations research, 220–221
Formalisms and informalisms, 412–413
Forrester, Jay, 303
FORTRAN, 90, 384, 392, 415, 428, 430
Fortune, 179
Forward error-correction techniques, 360
Fostering functions of government, 106–110
Fourdrinier process, 187
Frame-oriented theories, 413
Frames and scenarios, 412
Frequency division multiplexing, 348–349
Freudian theory, 415–416

Galbraith, J. K., 182
Galileo, 206
Game playing, 376
Game theory, 166, 291
GE Mark 111 network system, 390
GE 635, 372
General Electric Company, 290, 372
General Problem Solver system, 401
G20 computer, 371
Glass Bead Game, The, 290
Global models, 303
GNP, 38, 52, 130, 180, 182, 183
God and Golem, 462
Goddard Institute for Space Studies, 451
Godel’s theorem, 399
Goethe, Johann Wolfgang von, 169
Goldstein, I. P., 418
Graphic arts, 22–27, 29–30, 83
Graphics terminals, 347
Greenberger, Martin, 197
Grosch’s Law, 255
GUS system, 64
Gutenberg, Johann, 187
Guzman, Adolfo, 406, 407
Government
abuses of private information by, 269
as largest computer consumer, 148
as stimulator of dynamic development, 120–121
cable systems and, 112
computer aid to the handicapped and, 108–109
computer health monitoring and, 108
computer use in research sponsored by, 148
computerized information service as basis for planning by, 201
computers and functions of, 114–118
and information collection of, 265
and issues and problems pertaining to, 124
and philosophy of, 110
and regulatory functions of, 103–106
and service functions of, 110–114
definition of metafunctions of, 115
definition of role of computers and involvement of, 125
everal protective functions of, 94
functions of, 87–89, 106–110
future of computer technology and initiative of, 123
internal protective functions of, 94, 100–103
law enforcement sector of, 92
Government (cont.)
limits on use of census responses by, 266
metafunctions of, 88
modeling and environmental policy decisions of, 221
possibility of misuse of surveillance by, 102–103
scheduling and resources operated by, 113
telecommunications research and development and, 197
Government agencies
data banks assembled by, 177
self-imposed regulations on data usage by, 266
Government contracts, 200
H & R Block, 16
Hardware
cost of, 124, 391, 439
decreasing size of, 439
future changes in, 328–330
future lessening of distinction between software and, 304
interconnections as problem in, 322–327
random-access storage and, 91
Hardware centralization, decentralized decision points and, 219
Hardware developments, 144
Hardware-software devices, 382
Hardware technology, 333–336
Harvard University, 338, 443
Health monitoring, computer-based, 106, 108
Heuristics tree search, 402–403
Hewlett Packard, 370
High-bandwidth communications services, 357, 363
High-density LSI circuit technology, 327
Higher-order languages, 389
Hilferding, Rudolf, 239
Hobson, John, 240
Holographic memory devices, 155
Hollerith, Herman, 60
Home computers
communication and, 9
dream and reality of benefits of, 442–443
social impact of, 18–20
Home entertainment/information centers, 125
Home uses of computer terminals, 366, 369
Honeywell H 645, 374
Hoover, Herbert, 442
House of Representatives (U.S.), Communications Subcommittee, 280
Hughes Aircraft, 205
Human-to-human communications, 374–375
Hybrid services, growth of, 277, 278
Hydrogen bomb, 242, 243
Hymer, Stephen, 237
Hymer’s two laws of development, 237
I Am a Mathematician, 165
IBM antitrust case, 280
IBM 360, 374
IBM 360/40, 91
IBM 360/67, 372
IBM 360/75, 374
IBM 370, 374
IBM 7090, 28, 370, 371
IBM 7094, 370
Illiac IV, 148, 430
Illich, Ivan, 85
Image processing research, 120
Independent systems, 217–218
Indexing, 112, 191
Indexing/classification system, computerized, 383–388
Industrial automation research, 380
Industrial data collection terminals, 348
Industrial revolution, 55, 88, 206, 237
Industrial society, 164, 167, 168
Industrial systems security, 430
Industry
five major knowledge classes of, 179
modeling in, 286–287
Information
and reduction of uncertainty, 173
as collective good, 174
as central to economic transactions, 173
as value and as cost, 306–309
coercive collection of, 270
definition of, 167–168, 171
economics of, 173–175
lack of national policy on, 193
limited capacity of individual for acquisition of, 309–310
policy question of, 193–207
statistical concept of, 171
Information activities, 178, 180–182
Information economy, 179–180, 183, 184, 188, 191
Information processing, 233, 432
Information revolution, 38, 55
Information retrieval, 187–193, 218–219
Information society, 177–184, 443–445
Index

Information storage and retrieval systems, 175–176, 218, 219
Information systems, 267, 315
Information theory, 166, 169–170
Innis, Harold, 169, 230
Input-output system, 172
Institute of Advanced Study, 340
Institute of Contemporary Arts (London), 25
Integrated automation systems, 47–55
Integrated circuit technology, 321–322
Integrated circuits
benefits of complexity of, 324
changes in minimum average dimension of, 325–326
complexity of large computers and solution of, 322
defect density in production of, 326
elimination of resolution limitations in production of, 332–333
limits to complexity of, 325
line widths and, 325
new devices and forms of, 326–327
performance improvement in, 327
redundancy and acceleration of access time in, 333
two basic elements of production costs and, 322
Integrated injection logic (I2L), 326–327
Intellectual technology, 163, 167
Intelligence, 396–400
Intelsat, 205
Interaction programs, 107
Interactive decision system, 387
Interactive modeling, 123
Interactive systems, 66–68
Interactive systems controllers, 347
Interconnection problems, 274, 275–276, 322–327
Interface message processors (IMPs), 373
Internal auditors, 135–136
Internal Revenue (IRS), 90, 140, 430
International affairs, 233–234
International communication network, 91, 216
International Consultative Committee for Telegraphy and Telephony (CCITT), 355
International distribution of power, 238–241
International Encyclopedia of the Social Sciences, 229
International finance, 235
International networking, 117–118
International politics, 249–250
International regulations, 353–355
International relations
effect of weapons innovations on, 231
future impact of computer on, 242
perspective for analysis of computer impact on, 232
three questions concerning effects of computers on, 232
International stability, 246
International systems, 353–354
International telecommunications, 118
Internetting, 117–118
Interstate Commerce Commission, 255, 277
ISP, 431, 432
Inventory control operations, 379
Jackendoff, Ray S., 410
Japan, 90, 116, 125, 344
Japan Economic Research Center, 248
Jastrow, Robert, 451–452
Jencks, Christopher, 80, 85, 86
Jewish Museum (New York), 25
Johnniac, 371
Johns Hopkins University, 188, 197
Jotto, 4
Journal des savants, 188
Junk mail, 9, 53
Kantorovich, Leonid, 202
Kaufman, Herbert, 215
Keyboard printers, 346–347
Keynesian model of economic processes, 302
Kinetic art works, 31
Kissinger, Henry, 247
Korean War, 244
Knowledge
as part of social overhead, 168
as source of value, 168
atomistic theory of, 76
Bell’s definition of, 443–444
commonsense, 64
contrast of industrial commodities with, 174
definition of, 168, 460
economic-political policy problems raised by upheaval in, 195–196
five major classes of, 179
about knowledge, 409–410
measurement of, 179–180
old and new concepts of, 396–400
organization into FRAMES of, 379
problems of patent and copyright and, 174
Index

<table>
<thead>
<tr>
<th>Knowledge (cont.)</th>
<th>Learning and computers, 307, 408–409</th>
</tr>
</thead>
<tbody>
<tr>
<td>production of, 168</td>
<td>Learning machines, 376</td>
</tr>
<tr>
<td>theory of, 78, 445–446, 447</td>
<td>Leased telephone lines, 352</td>
</tr>
<tr>
<td>understanding of, 459</td>
<td>LED, 356</td>
</tr>
<tr>
<td>Knowledge-based programs</td>
<td>Leibniz, Gottfried Wilhelm, 25</td>
</tr>
<tr>
<td>home computers and, 53</td>
<td>Lenin, Nikolai, 239, 240</td>
</tr>
<tr>
<td>research in, 44, 45</td>
<td>Leontief, Wassily, 172, 202</td>
</tr>
<tr>
<td>Knowledge-based systems, 61, 89</td>
<td>input-output analysis, 302</td>
</tr>
<tr>
<td>computer, 91, 120</td>
<td>Liar’s paradox, 399</td>
</tr>
<tr>
<td>Knowledge bases, 61, 122</td>
<td>Libraries, 113, 177</td>
</tr>
<tr>
<td>Knowledge elite, 204–205</td>
<td>Library, electronic, 12–14</td>
</tr>
<tr>
<td>Knowledge explosion, 188</td>
<td>Library field research, 387–388</td>
</tr>
<tr>
<td>Knowledge-free theories, 401</td>
<td>Library of Congress, 12–13, 155, 191, 198</td>
</tr>
<tr>
<td>Knowledge industries, 179</td>
<td>Licensing, 93</td>
</tr>
<tr>
<td>Knowledge networks, 195</td>
<td>as vehicle for serving licensed group interests, 268</td>
</tr>
<tr>
<td>Knowledge-packaging programs, 107</td>
<td>economic research on, 268</td>
</tr>
<tr>
<td>Knowledge representation</td>
<td>history of, 268</td>
</tr>
<tr>
<td>artificial intelligence and, 62</td>
<td>Life-cycle costing, 381</td>
</tr>
<tr>
<td>issues involved in, 412–413</td>
<td>Light-interconnection technology (LIT), 355–357</td>
</tr>
<tr>
<td>methodologies for, 385–386</td>
<td>Light-Space Modulator (artwork), 31</td>
</tr>
<tr>
<td>Knowledge storage, 378</td>
<td>Limit switches, 45</td>
</tr>
<tr>
<td>Knowledge theory of value, 167–168, 178</td>
<td>Limits to Growth, 303, 446</td>
</tr>
<tr>
<td>Knowledge work, 133–136, 138</td>
<td>Lincoln Laboratory, 373</td>
</tr>
<tr>
<td>Labor force, 164</td>
<td>Line switching, 110</td>
</tr>
<tr>
<td>Labor theory of value, 168</td>
<td>Linear cities, 200</td>
</tr>
<tr>
<td>Laboratory for Computer Sciences (MIT), 387</td>
<td>Linear differential equations, 46</td>
</tr>
<tr>
<td>Laplacean universe, 173</td>
<td>Linear programming, 166, 294</td>
</tr>
<tr>
<td>Language</td>
<td>Linguistics, 409–413</td>
</tr>
<tr>
<td>acquisition of, 84–85</td>
<td>Linotype, 187</td>
</tr>
<tr>
<td>ambiguities of, 192</td>
<td>LISP, 427, 430, 431</td>
</tr>
<tr>
<td>computer intelligence and, 406–408</td>
<td>Lissajous figures, 21</td>
</tr>
<tr>
<td>computers and understanding of, 62</td>
<td>Little Science, Big Science, 188</td>
</tr>
<tr>
<td>future development of, 427</td>
<td>Local communication lines, 152</td>
</tr>
<tr>
<td>model specification and importance of</td>
<td>Local distribution and long-haul transmission, 110–111</td>
</tr>
<tr>
<td>choice of, 298</td>
<td>Local government, 222–223</td>
</tr>
<tr>
<td>statistical structure of, 170</td>
<td>Local loop transmission, 350, 351</td>
</tr>
<tr>
<td>translation of, 192</td>
<td>Lockheed Information Systems, 191</td>
</tr>
<tr>
<td>Language inventions, 425–426</td>
<td>Logic circuits, 335</td>
</tr>
<tr>
<td>Language labs, 80</td>
<td>Logical and procedural structures, 411, 412</td>
</tr>
<tr>
<td>Language programming, 434–435</td>
<td>LOGO, 81–86</td>
</tr>
<tr>
<td>Language translation, 376</td>
<td>Long-haul transmission, 110–111, 350, 351</td>
</tr>
<tr>
<td>Large data base research objectives, 385–386</td>
<td>LSI, 335, 356, 389</td>
</tr>
<tr>
<td>Large file systems, 385–389</td>
<td>McCarthy era, 266</td>
</tr>
<tr>
<td>Large-scale decision-making systems, 366–387</td>
<td>McCarthy, John, 371, 375</td>
</tr>
<tr>
<td>Large-scale integration, 364</td>
<td>McGraw-Hill, Inc., 201</td>
</tr>
<tr>
<td>Large-scale models, 301</td>
<td>MacKinder, Halford, 247, 248</td>
</tr>
<tr>
<td>Large-scale simulation, 295</td>
<td>McLuhan, Marshall, 27</td>
</tr>
<tr>
<td>Laser-guided bombs, 246–247</td>
<td>McNamara, Robert, 94</td>
</tr>
<tr>
<td>Laser recording, 158</td>
<td>Machine assembly language, 431–432</td>
</tr>
<tr>
<td>Law enforcement networks, 100–101</td>
<td>Machine intelligence, 35</td>
</tr>
<tr>
<td>Lawrence Livermore Laboratory, 151</td>
<td></td>
</tr>
</tbody>
</table>
Machine learning, 418
Machine-readable information, 131–132
Machine recognition of elemental visual objects, 44
Machine vision research, 376
Machlup, Fritz, 179, 181
MACSYMA, 122
Mahan, Alfred Thayer, 289
Mail service, 88, 112, 175
Man-computer interaction, 22
Man-machine symbiosis, 436
Management applications, 217
Management control, 227
Management decision process, 382
Management information systems, 227
Management information systems, 227
chief problem in design of, 136–137
debureaucratization and, 139–140
disappointing performance of, 221
market for, 138
Management support systems, 387–388
Manipulators, machine, 377
Mansfield amendment, 95, 119
Manufacturing automation of, 123
decision models for, 387
operations in, 217
Marconi, G., 338
Marcuse, Herbert, 233
Market socialism, 314
Markov chain applications, 166
Markov-like production systems, 430
Marschak, Jacob, 179, 311
Marx, Karl, 178, 239
Marxist theory, 168
of Western economic development, 234
social change and, 229, 230
Mass media, 223
Mass society
major sociopolitical question facing, 172
model building and needs of, 303–304
Mathematical abstraction, 431
Mathematical logic, 424
Mathematical processors, specialized, 154
Mathematical theorems, 61
Mathematics, 75–76, 397
Meaning, 406–408
Mechanical assembly, 377
Mechanical digital calculator, 338
Mechanical translation, 406–407
Mechanization, 130–131
Medical advice services, 16
Medical diagnosis, computer-based, 106, 108, 219, 368
Medicare, 232
Medlars system, 198
medical information and, 198
Memory device, archival, 155
Memory record, 63
Memory systems, large, 333
Mental organization theories, 413–419
Mergenthaler, Ottmar, 187
Merton, Robert, 174
Message services, computer-based, 110, 112–114, 123
Message switching terminals, 347
Message transmission, 11
Metallurgical processes, 164
Metaphor and artificial intelligence, 454–455
Meteorology, 147
Microcoded program, 153
Microcomputer-based controller, 47
Microcomputers, 8, 108, 390
cost-performance of, 362, 363
ground traffic control and, 105
minicomputers and, 362–363
multisensor home and plant security systems and use of, 103
prosthesis technology and, 108
Microprocessors, 85, 147
and problems in weapon system software, 96
as forerunner of future machines, 148
control system, 47
cost of mass production of, 130
growing availability of, 151
impact on future computing systems of, 335–336
improved performance of, 151
LSI and concept of, 335
programming requirements of, 157
replacement of minicomputers by, 151–152
special-purpose multiple-processor retina machines and, 44
system-wide provision of intelligence by, 364
Microwave Communications, 111
Microwave relay, 175
Middle-management decisions, 220–221
Military computers, general purpose, 95–96
Military operations, 241–242
Military policy and deterrence, 244
Military power, 246
Military problems and model building, 302
Military security, 430
Military techniques, 230, 231, 232–233
Minicomputer, 147, 148, 219–220, 390
cost-performance of, 362, 363
costs of, 152
experimental research and, 157
flexibility of, 151
future development of, 154
microcomputers and, 362–363
similarities in, 151
time sharing and, 157
Minirobot vision system, 376
Minisystem, definition of, 148
Minimax strategies, 166
Minsky, Marvin, 375, 379, 450–451
MIT, 25, 44, 63, 201, 370–372, 375, 377, 387, 417, 446
MIT Children’s Learning Lab, 81
MIT robotics project, 378
MIT time-sharing research project, 370–372
Model building
accounting principles used in, 297
advent of computer and communications technology and scope of, 287
directions of society and influence of, 302
importance of questioning basic assumptions in, 290
importance of making role of time clear in, 298
major trend in, 294
military problems and use of, 302
needs of society and, 303–304
need for specificity in, 288
process of, 286
question seeking and, 287
requirements of, 303–304
sensitivity analysis as most important test in, 300–301
Model-creating systems, 304
Model-diagnostic systems, 304
Modeling
assumption of competition/cooperation in some problems of, 298
corporate decisions and use of, 22
decision making and, 227
defense sector use of, 99
explicitness and, 297–298
five broad aspects of, 297–301
four overall concerns in, 296
iterative process and, 288
parsimony and relevance in, 298
process of, 288
process of specification and, 297–298
solution of practical problems and, 295

Index

Minicomputer, 147, 148, 219–220, 390
changes in, 150–151
cost-performance of, 362, 363
costs of, 152
experimental research and, 157
flexibility of, 151
future development of, 154
microcomputers and, 362–363
similarities in, 151
time sharing and, 157
Minirobot vision system, 376
Minisystem, definition of, 148
Minimax strategies, 166
Minsky, Marvin, 375, 379, 450–451
MIT, 25, 44, 63, 201, 370–372, 375, 377, 387, 417, 446
MIT Children’s Learning Lab, 81
MIT robotics project, 378
MIT time-sharing research project, 370–372
Model building
accounting principles used in, 297
advent of computer and communications technology and scope of, 287
directions of society and influence of, 302
importance of questioning basic assumptions in, 290
importance of making role of time clear in, 298
major trend in, 294
military problems and use of, 302
needs of society and, 303–304
need for specificity in, 288
process of, 286
question seeking and, 287
requirements of, 303–304
sensitivity analysis as most important test in, 300–301
Model-creating systems, 304
Model-diagnostic systems, 304
Modeling
assumption of competition/cooperation in some problems of, 298
corporate decisions and use of, 22
decision making and, 227
defense sector use of, 99
explicitness and, 297–298
five broad aspects of, 297–301
four overall concerns in, 296
iterative process and, 288
parsimony and relevance in, 298
process of, 288
process of specification and, 297–298
solution of practical problems and, 295

techniques of, 296–300
use of symmetry in some problems of, 298–299
Models
computer-based, 107
definition of, 287
four major types of, 289–293
mathematical, 290–291
mathematical and logical, 289–291
techniques for consistency checking of, 299–300
use of, 171–173
Modem, 9, 353
Moholy-Nagy, Laszlo, 31
Monopoly
computer services regulation and, 254
factors working against, 256–261
factors limiting regulators in control of, 259–260
natural, 255–261
strategies placing limits on, 258–259
Monte Carlo randomization, 166
Montesquieu, Charles de Secondat de, 249–250
Montessori, Maria, 85, 440
Moore, Wilbur, 229
Moorer, Admiral, 448, 457
Moral codes, 463
Moral problems and technology, 460–461
Morgenstern, Iskar, 307
Morse, Samuel F. B., 338
MOS transistors, 325, 326
Mueller, Robert, 29
MULTICS, 372
Multidimensional sight and sound, 158–159
Multinational corporations, 125
characteristics of, 236
corporate-based planning and, 123
controversy over, 237
increase in global economic interdependence and, 237
government regulation of, 106
international distribution of power and impact of, 238–241
lowered transaction costs as major factor in growth of, 234
MULTINET, 19, 91–92, 123
Multipart decisions, 308
Multiplexed Information and Computing Service. See MULTICS
Multiprocessors, 150, 154
Multiprocessing, 160
Multisensor home security systems, 103
Museum of Modern Art (New York), 25
Mystification, 70, 71
Index

NASA, 123, 376, 451
Nation states, 237, 238
National Academy of Engineering, 197
National Academy of Science, 193, 197
National Aeronautic and Space Agency, 197
National Association of Regulatory Utility Commissioners, 279
National Bureau of Standards, 109
National computer network, 19–20
National computing service, 196
National economic power, 239–240
National goals and government planning, 202
National Income Accounts, 180
National information policy, 193, 197
National planning, 201–202
National power and technology advantage, 242
National product, 168
National Science Foundation, 29, 193, 197
National security, 94, 95
National Software Works, 99
National telecommunications, 118
NATO, 100, 248
Natural communication, 64–65
Natural language, 68, 82–83, 89
building program to use, 63–64
computer systems using, 91
education and computer processing of, 107
models for processing, 432
programs using, 15, 44–45
research in communication and, 63–66, 433
robot block manipulation in response to, 56, 63
rules of language and computer use of, 63, 64
understanding of, 115, 377, 404, 407
Natural-language capability, 386
Natural-language systems, 378–379
Navigation systems, 45
Negative feedback, 401
Ness, Georg, 31
Network communication, interactive, 176
Network distribution, 110
Network information services, 124
Network security, 101–102
computer-based politics and importance of, 115
need for research in, 99
Network standardization, 109–110
Networking, 89, 93, 109, 116–118, 123, 152

computer industry and complex questions raised by, 362
concerns regarding inherent dangers of, 390–391
definition of, 373
future focus of research in, 375
future growth of, 390
security problems in, 430
time sharing and, 370–375
Networks, 47–55
international competition and, 118
potential use to scientists of, 152
two modes of development of, 117
New computer designs, 427
New process sources, 416–417
New York Institute of Technology, 28
New York World, 187
New York World’s Fair (1939), 143
New York Times, 27, 198
Newell, Alan, 375, 401, 403, 430, 431
News, customized, 100
Nixon, Richard, 223
NOAA, 160
Noll, A. Michael, 27–28
Noniterated circuits, 333–334
Nonstandardized computing environment, 384
North, Douglas C., 234
Nuclear arms race, 243–244
Nuclear disarmament, 244
Nuclear physics, 147
Nuclear-powered aircraft, 94
Nuclear Regulatory Commission, 267
Nuclear weapons, tactical, 248
Number crunching, 147, 150
Numeric bases problem solving, 155
Numerical analysis, 434
Oak Ridge National Laboratory, 197
Objective knowledge, 460
Occupational licensing, 268
OECD survey of studies of growth in scientific knowledge, 189
Oettinger, Anthony, 171, 176, 180, 195
Off-chip communications, 331
Off-premises communications, 363
Office of Consumer Affairs, 106
Office of Naval Research, 370, 385, 389
Office of Science and Technology, 197
Office of Science Information, 193
Ogburn, William F., 230–231
Oil multinationals, 240
Okita, Saburo, 248
Okun, Arthur, 196
On-board computer system, 47
Index

On-line computer systems, 302
On-line control systems, 302
On-line data entry/interactive display terminals, 347
On-line interaction, 98, 104
On-premises communication, 363
On-line terminals, 198
OPEC, 239–240
Open-hearth process, 164
Operating voltages, 328
Operations research, 218, 220
Oppenheimer, J. Robert, 242
Optical character recognition terminals, 348
Optical fibers, 91
Optical pattern recognition, 143
Oral communications, 153
Orwell, George, 380
Organic chemical synthesis, 433
Organization, 309–310
Organization design, optimal, 311–312
Organization model, 312–315
Organizations
impact of computers on, 220–222
incentives for mutually optimal decisions in, 315–316
need for cooperation in, 310–311
Organized complexity, 166
Output, computer-generated, 158
Overseas transport, 94
Packet carriers, 354
Packet Communications case, 277, 278
Packet-switched services, 89
Packet switching, 110–111
PAINT experiment, 29–30
Panama Canal, 169
Paper industry, 187
Paperwork mechanization, 131–133, 140
Parallel processors, 149, 156
Parallel/vector techniques, 160
Paraplegics and computer aid, 109
Pareto, Vilfredo, 312
Pareto optimal allocations, 313, 314
Participatory democracy, 223–225
PASCAL, 338, 426
Pattern recognition and cybernetics, 401
Pentagon, 448
Perceptrons, 376
Perceptrons, 402
Performance measurement research, 380–382
Perl, Alan, 450
Permutations (artwork), 28
Personal computers, 79, 85
Personal freedom, 286–287
Personal identification techniques, 90
Personal information allocation of property rights to, 261–262
conflict of rights and, 268–269
costliness of enforcing rights to, 262
decision makers and use of, 261–262
economic value of, 261–262
effect of computers on collection of, 264
enforcement and use of, 270
equity issues and, 263
legislation of use of, 269–270
regulatory agency to control use of, 267
statistical purposes and, 262–263
Supreme Court and rulings on, 267
Personalized computers, 157, 158
Petroleum boycott, Arab, 238, 239
Philosophical Transactions of the Royal Society, 188
Photochromic storage, 389
Photocomposition, 12
Photographic technologies, 187
Photolithography, 332
Physical sciences, and modeling, 298
Physics and minicomputers, 148
unified theory of human behavior and, 170
use of computer in teaching of, 76
Picasso, Pablo, 22
Pictorial images, 112
Pictorial models, 291–293
Plannina, 201–202
computer-based, 116, 123
indicative, 202
Plant security systems, 103, 110
PLATO system, 7
p-n junction isolation, 327
Pocket calculators, 370
Pocket computers, 91, 110
Point-of-sale terminals, 347–348
Polanyi, Michael, 459
Policy networks, 100
Political campaigns and computers, 114
Political organization, 230, 232–233
Political philosophy, American, 110
Political power, and knowledge elite, 204
Political problems, and communications satellites, 360
Political specialties, 415–416
Political system, 222–226
Politics, computer-based, 114–115

484
Popper, Karl, 460
Porat, Marc, 180–181
six-sector economy, 181–182
Portable computer terminals, 347, 364
Position detectors, 45
Postal system, 12, 92, 93
Postindustrial services, 164
Postindustrial society
computer identification with coming of, 233
information and knowledge in, 167–168
intellectual technology as central feature of, 167
policy questions faced in, 194–207
technical elite in, 204
theoretical knowledge and, 164	hree dimensions of, 163–164
Power problems, 330–331
Prediction, and computers, 173
Preindustrial societies, 164
Pressure sensors, 45
Price, Derek J. de Solla, 188, 189
Price adjustment process paradigm, 314–315
Price structure, 259–260
Prices, as signal-conveying information, 196, 272
Primary information industries, 182
Primary information sector, 181–182, 183
Princeton University, 179
Printing, invention of, 234
Printing press, 187
Privacy, 118–119, 261–270
as an economic resource, 261–263
as serious public-policy issue, 267–268
centralization and, 202–203
computer services regulation and, 254
computers and, 263–266
covival computer systems and invasion of, 70–71
dilemmas of constructing legal definition of, 263
home computers and issue of, 18–19
implicit presumption about nature of problems of, 269
invasion of, 117
licensing and, 255
need for body of law on, 266
protection of, 114
public policy, computers, and, 266–270
two ways computerized data systems pose threat to, 265
Privacy Bill of Rights, 19
Private corporation data banks, 177
Private line services, 349
Privileged communications, 266
Probability model, 306–307
Problem-oriented languages (POLs), 389
Problem solving, 93, 155, 404–405
Procedural and logical structures, 411–412
Procedure-developing skills, 398
Process modeling technique, 386
Processing model, 427
Processing power, 52
inexpensive, 336
Processor structure, 427
Processors, cost-performance ratio of, 130
Production/inventory systems, 387
Production process automation, 38
Program for specifying machine properties, 431–432
Program-verification programs, 101
Programmable calculators, 157
Programmable controllers, 52
Programmable robots, 42–45, 51
cost-performance capabilities of, 52
difference between automatic control systems and, 45, 46
future evolution of, 54
similarities between automated control systems and, 46
Programmation, 88, 105
future effects of, 122
government procurement and, 110
military preparedness and, 97
of monitoring and regulation, 104–106
Programmers
poor training of, 159
responsibility of, 452
Programming, 98, 425
forces leading to change in, 427
growth of computer science and, 423
distinction between using programs and, 62–63
students’ use of BASIC language in, 77–80
use in creation of operating systems and compilers of, 426–427
Programming, automatic, 431–432
Programming knowledge and self-knowledge, 413–419
Programming languages, 62, 98
and Department of Defense, 98
research in, 96
standardized, 98–99
variety, 425–426
Programming methods, standardized, 98–99
Programming research, 425–426
 current emphasis on improving program engineering in, 428–429
 differences in research in theory of algorithms and, 425
 new area of, 431–432
Programming system types, 429
Programs, 46
 control structures and, 414–416
 distinction between programming and use of, 62–63
 proving, 383
 reproducibility of, 393
 ways to represent knowledge and processes in, 408–409
Project Charles, 243
Project Hartwell, 243
Project Vista, 243
Propaedia, 192
Propagation delays, 329
Proprietary commercial functions, 92
Proxima Centuri, The (artwork), 31
Public opinion, 223–226
Public policy, 218, 266–270
Public transportation, computer-monitored, 113
Public utilities, 88
Public utility regulation, classic, 254–255
Pythagoreans, 192
Qualitative areas, 405–406
Quantum chemistry, 147
Quasi-information industries, 183
Queueing models, 381
Q-32 computer, 373
Quillian, 412
QWERTY phenomenon, 79–80
Radar warfare, 98
Radio communication, 158
Radner, Roy, 311
Railroads, 232, 272
Rake's Progress, The, 303
Ramsey, Frank, 307
Rand Corporation, 244, 371
Random-access memory, 130, 144
Random-access storage hardware, 91
Random-walk theory, 173–174
Range, computer-controlled, 8
RCA, 367
Reactor physics, 147
Reading machines for the blind, 108
Real-valued utility function, 307–308
Reasoning and computers, 377
 by analogy, 405–406
Regulated competition, 271, 273
Regulated industry, 259
Regulation
 alternatives to, 266
 definition of, 254
 increase in prices and, 272
 increased total profits and, 274
 making a case for, 271–272
 need to know effects of, 196–197
 problem of defining boundaries of, 278–279
 short-term market conditions and demand for, 273
 technological innovation and, 196
Regulation planning, 202
Regulatory agencies
 concentration on a few indexes of performance by, 260
 conservative bias of, 259
 limited control over government agencies by, 268–269
 threat to financial viability of regulated firms and, 260
Regulatory functions, 87, 103–106
Regulatory proposals, 254–255
Relevant structure concept, 171
Remote access, 220
Remote batch controllers, 347
Remote communication lines, 152
Remote data bases, 363
Remote networks, 156
Research
 algorithms and, 433
 in artificial intelligence, 400–409
 in automatic programming, 96
 in computer aids, 32
 computer use in government sponsorship of, 148
 current interest in interactive systems in, 66
 Department of Defense and, 119
 and development, of software, 121–122
 explanation systems and, 68–69
 hardware/software devices and, 382
 in knowledge-based programs, 44–45
 in machine recognition of elemental visual objects, 44
 in natural language and communication, 63–66
 in performance measurement, 381–382
 in programming language, 96
 interactive network communications and, 176
 large file systems and, 385
 MULTICS project impact on, 372
networking and future focus of, 375
operational advances and, 380
performance measurement and, 382
programming convivial systems in, 69
universities and, 119
Research community, 90
Research laboratories, location of, 200
Reservations, general, 100
Reservations industry, 183
 Resistors, 46
Resources, government-operated, 113
Retina machines, 44
Revenue collection, 88, 114
Rise of the Western World, The, 234
Robot manipulation, 377
Robot vision, 377
Robot, general-purpose programmable, 43
Robotics, 61, 380
Robots, industrial, 42
Roberts, L.G., 198, 373
Rowan, Ford, 117
Rules of language, 64
Ruinous competition, 272
Russell’s paradox, 399
SAGE air defense system, 97
SAM, 65
Sartor Resartus, 187
SATCOM (Committee on Scientific and Technical Communication), 197
Satellite communications, 234, 361
Satellite communications systems, 89, 176, 442
Satellite network, packet-switched, 118
Satellite transmission, 175
Satellites, 14, 111
Scalar processing, 150
Scale models, and analogue simulation, 293–294
Scanners, 153
Scenarios, 412
Scheduling, 168
Schuck, Peter H., 447–448
Schumpeper, Joseph, 168
Schwartz, Lillian, 31
Science
as a collective good, 207
changing character of, 206–207
changing social organization of, 207
definition of, 165
future requirements of, 148–149
nature of change in, 165
use of models in, 301–302
using data banks of computer systems in, 154–155
Science Information Council, 197
Scientific application of electronic computers, 60
Scientific cooperation, 198
Scientific data analysis, 61
Scientific information
historical trends in growth of, 188–190
increase in volume of, 197–198
Scientific knowledge, 189
storage of, 155
Scientific revolution, 206
Scientific technology, 206–207
Scientists, 152–153, 157
Scope economies, 257
SDC, 373
SDS 940, 372
SEAC, 87
Search-space exploration, 404
Search strategies, 403
Search time, reduction of, 388
Searching services, computer-based, 191
Secondary information sector, 182–183
Security, computer system, 101–102
Security kernel, 101
Security research and development, 101–102
SEEK (artwork), 25, 27
Seismology, 147
Self-explanation facilities, 68–69
Self-knowledge and programming knowledge, 413–419
Self-programming machine, paradox of, 399
Self-service terminals, 364
Semantic networks, 412
Semiconductor devices, 89, 323
Semiconductor technology, 321
Senate Communications Subcommittee, 280
Sensitivity analysis, 300–301
Sentence translation, 406–407
Service pricing, 259
Service society, 163–164
Services
definition of, 164
classical economics and definition of, 178
SETL, 431
Shannon, Claude, 169
Shannon’s mathematical theory, 170
Shared communications systems, 198
Shoemaking scenario, 39–41, 52
Short-haul transmission, 350
SIGACT, 425
Signaling techniques, 429
Signal transmission, multipurpose, 110
Index

Signals, 308
SIGPLAN (Special Interest Group in Programming Languages), 425
Silicon chips
cost of, 322–323
fourth generation systems and use of, 59–60
increased reliability of, 324
Silicon gate technique, 332
Silicon Valley, 200
Simulation
as reinforcement of traditional teaching, 77
defense sector use of, 99
economy policy and, 202
features of use of computer in, 76
military engagements and, 97
Situation-actuated programming, 414
645 commercial time-sharing system, 372
Skinner, B. F., 200
Slagle, James, 404
Sloan School of Management, MIT, 387
Smith, Adam, 178, 213, 310, 312
Smith, Cyril Stanley, 164, 165, 171
Social change, 195, 229–233
Social costs, 196
Social exchange, 168
Social interaction, exponential acceleration of, 194
Social models, 303
Social questions and technology, 460–461
Social sciences, 229
Social Security, 90, 168
Social Security Administration, 266
Social studies, 76
Social transformations, 199–206
Socialist economy, 314
Society
problems in modeling of, 172–173
use of technology by, 460–461
Society for Worldwide Interbank Financial Telecommunications. See SWIFT
Socioeconomic models, 302–303
Socioeconomic processes, 302
Socioeconomic system, 123–124
Socioeconomic systems, computer-based, 103–106
Sociometric association nets, 115
Sociopolitical environment, 237
“Software” (art exhibit), 25
Software
central processing unit and, 153
cost reductions in, 382–383
critical requirements in, 381
defense sector and, 121
design of, 383–386
development of, 96, 98, 380–385
measures of performance for, 381
need for coordinated research and development, 121–122
production costs for, 152
research in, 98, 381
repetitiousness of preparation, 431
special computers and, 95
weapon system computers and problems of, 96
Software engineering education, 159
Software techniques performance measurement, 382
Software-to-hardware cost ratios, 391
Solid-state diffusion, 332
Solid-state physics, 166
Sombart, Werner, 168
Sonar warfare, 98
Sophie system, 7
Sorby, Henry Clifton, 164
Source-drain spacing, 332
Sovereignty at Bay, 238
Soviet planning, 202
Soviet Union, 125
armor superiority of, 248
as a major land power, 247
computer export to, 206
plans for nationwide network of planning and management use of computers and data bases by, 116
Specialized common carriers, 275
Specialized data bases, 138
Specialized information centers, 191
Specific function boxes, 156
Specific knowledge, 403–404
Specification, 98, 296
Speech, 66, 67, 68
Speech-understanding computer systems, 91
Sperry Rand Corporation, 367
Spinoza, B., 192
Spoken digit recognizer, 143
Spring Joint Computer Conference (1962), 371
Sputnik, 197
Spying, 120
SRI, 377, 379, 386, 388
SST, 225
Standard Industrial Classification, 180
Standard of living and technological innovations, 230–231
Standardization
automation and, 429
computer networks and, 109–110
duplication of programming efforts
due to lack of, 380–381
Stanford Research Institute, 373–374, 376
Stanford University, 41, 377
STAR, 430
STARAN, 430
State Department, 93
State government, 222–223
State of the world probability model,
306
State regulation, 278–279
Statistical analysis and validation, 297
Statistical decision theory, 166
Statistical information theory, 165
Steam engine metaphor, 25
Stibitz, G. R., 338
Stochastic learning, 401–402
Stochastic processing, 21, 28, 166, 170
Stock markets, 93, 173–174
Storage capacity, 52
Storage media, large, 155
Story comprehension program, 66
Strachey, C., 371
Strategic Air Command, 244–245
Strategic nuclear deterrence, 245
Strategic planning systems, 221
Strategy formulation, 221
Street traffic control, 104–105
Strobe lights, 31
Structured programming, 98, 382, 429
Subsidy, 196
Suez Canal, 169
Supersystem for automation, 47–49
Suppes, Patrick, 74
Supreme Court (U.S.), 267
Surface transportation and regulation,
273
Surveillance
centralization and, 202–203
possibility of government misuse of,
102–103
Surveillance photographs, 99
Surveillance photointerpreters, 91
Sussman, G. J., 418
Sustaining functions of government,
114–115
Sutherland, W. R., 97
SWAC, 87
SWIFT, 235–236
Switched services, 349
Switching circuits, 169
Switching delays, 327
Switching elements, 13
Symbolic processing development, 154
Symmetry, 298–299
Syntactic ambiguity, 407
Syntactic analysis, 406–407
Symbolic manipulations, 159
Synthetic polymers, 165–166
Syntopicon, 192
Systematic synergism, 165
System-building language, 427–430
System design, 430
Systems Development Corporation, 191,
198, 379
System security, 101–102
T-1 digital communication system, 351, 354
T-2 digital communication system, 351
Tactile sensing, 45
Tailing technology, 102–103
Target recognition, 99
Task control programs, 92
Taylor, Frederick W., 207
Teager, H. M., 371
Technical elite, 204
Technical issues and political questions, 204
Technical research, 463, 464
Technocratic rulers, 204
Technological complexity, 54–55
Technological development, 95
Technological innovation, 196
Technology
alternative modes of achieving individuality presented by, 207
as instrumental mode of rational action, 167
examples of four-stage sequence of impact of, 231–232
export of, 105–106
four areas of impact on society and advances in, 230
four-stage sequence of impact of,
231–232
human control of, 243
intellectual, 167
large-scale, 157
microprocessors and, 152
natural sources of energy and, 194
nature of change in, 165
negative consequences of diffusion of, 240
positive consequences of diffusion of, 240
society and ultimate effects of, 230
society’s use of, 460–461
two opposed effects of diffusion of, 240
Technological determinism, 169, 232
Technological displacement, 187
Technological developments, 439
Technological forces, 237
Technological opportunism, 463
Technostructure, 182
Telecommunications, 175
common carriers and history of competitive entry into, 257
dispersal of corporate headquarters and, 200
economic-political policy problems raised by upheaval in, 195–196
international communications as major area of growth in, 179
merging of teleprocessing and, 176
national land use and, 201
policy problems posed by upheaval in, 196–197
problems of creating a new infrastructure for, 205
problems of creating international organization for, 205
proposals for technical-economic organization needed in, 195–196
Teleconferences, 109
Telegames, 109
Telegraph, leased, 353
Telegraph service, 93
Telenet, 109, 117
Telephone companies, 134
Telephone industry regulation, 176
Telephone network, 9, 10–11, 12, 13, 14–15
Telephone system, 88, 92, 110–112
Telephone traffic, international, 205
Telephone transmission cost, 9
Teleprocessing, 175, 176
Television, 80, 110, 153, 169
crcomputer home terminals and, 175
dream and reality of benefits of, 442
Television, educational, 67
Telex network, 353, 354
Terminals, 344–345
Terrestrial facilities, 360
Territorial expansion, 249
Test costs, 323
Texas Instruments Incorporated, 370
Theoretical knowledge, 164
Theorem proving, 435
Theory of computation, modern, 393
Theory of teams, 311
Thermodynamics, 206
Thermonuclear bomb, 242
Third World, 238
Thomas, Robert Paul, 234
Three-space dimensional problems, 147
TI-ASC(4X), 148
Time-shared computer systems, 92, 147, 255–256, 264, 370–371
and networking, 370–375
Time sharing, 220
Tolstoy, L. N., 245
Tool technology, 169
Top-down programming, 383
Torrens, Robert, 240
Trade relations, 239
Traffic control computers, 104–105
Traffic control systems, 49, 51
Traffic flow, 68–69
Training devices, 294
Transaction costs, 233–234
Transistors, 46, 59, 340
Transmission and distribution system, line-switched, 110
Transmission facilities, 351–352
Transportation, 88, 164, 194
improvements in international communication and volume of, 216
lowering of transaction costs and improvements in, 234–235
substitution of telecommunication for, 175
Transportation, long-distance, 123–124
Transportation technology, 230
Tree-searching strategies, 402–403
Trial-and-error tapping, 193
Trotsky, Leon, 201
Truth points and military technology, 97
Tsai, Wen Ying, 31
TTL, 327
Turing machine, 424
“Twenty Questions,” 170
Two-space dimensional problems, 147
TWX, 349, 353, 354
TX-2 computer, 373
Typing machine, computerized, 80
UCLA, 373, 374
Ulrich’s International Periodicals Directory, 188
Uncertainty and decision theory, 306
Underdeveloped countries, 110, 176
UNESCO, 109, 188
Unfair competition, 270–279
United States Air Force, 448
United States Armed Services Committee, 448
United States National Academy of Science, 190
United States national policy, 116–117
United States Postal Service, 12
United States telephone system, 191
Univac, 367
Univac I, 391
UNIVAC 1108, 372
Universal conversion tool, 384
Universal ID system, 93
University of California, 151
University of California, Berkeley, 384
University of Illinois, 386
University of Michigan, 201, 384
University of Pennsylvania, 384, 387, 388
University of Utah, 373, 374
University research facilities, 200
Urban Dynamics, 303
Urbanism, 200–201
User-computer relationship, 159–160
Utilitarian ethics, 312
Utilities, 164
Utility file concept, 386
Utility theory, 166

Vacuum-tube machine, 367
Vacuum tubes, 59
Validation and modeling, 296
Value-added networks, 355
van Wijngaarden, A. A., 426
Variable capital, 178
Verbal models, 289–290
Vernon, Raymond, 238
Vector processors, 149, 150
Vectorization, 150, 156
Veterans Administration, 109
Video discs, 176, 179
Videophone, 175
Vietnam War, 94, 95, 233, 448, 449
decision process and, 214
new weapons development and, 246
Vision and artificial intelligence re-
search, 376
Vision-dependent general-purpose
programmable robot, 43–44
Visual arts, 21, 22, 35
Visual images, 44
Visual sensor, 43–44
Vocal inputs, 152
Voice-grade channels, 348–349
Voice-grade network, 353
Voice telephone network, 349
Voice traffic, 348
Voiceprint identification, 103
Voltage, 330
Voter behavior and modeling, 290

Wall Street Journal, 12, 27
Walras, Leon, 193, 312
War and Peace, 245
War games, 293–294
Warfare
conventional, 248
limited, 94
space, 94
twentieth-century, 248
Watergate, 94, 450
Waveguides, 91, 111
Weapons design, 60
Weapons development, 242–243, 246
Weapons evaluation
mathematical model for, 291
model building and, 302
Weapons innovation, 231
Weapons revolution, 244–245
Weapons-system computers, 95–96
Weapons technology, new, 246
Weather forecasting, 93, 172–173, 294
Webb, Sidney, 198
Weinberg, Alvin, 197
Welfare computer system, 444–445
Wells, H. G., 198
Western Europe, 247–248, 344
Western military power, 234
Western technology, 239
Western Union, 277
Western Union telex, 349
Wharton model, 302
Whitehead, Alfred North, 192
Whitney, John, 28
Wideband communication, 364
Wiener, Norbert, 46, 165, 170, 171, 462
Wilkes, John, 340
Winograd, Terry, 378
Winograd system for natural-language
understanding, 378–379, 407, 411
Winston, P. H., 418
Wirth, Louis, 200–201
Wirth, Niklaus, 426
Wohlstetter, Albert, 233, 244
World affairs, 233
World economy, 237, 238, 239
World models, 303
World War I, 240, 246
World War II, 247, 338
Worldwide knowledge data banks,
205–206
XDS 940, 373
XDS SIGMA-7, 374
Xerox, 199
color copier, 28
Yale University, 450
Yale University Library, 191
Zuckerman, Solly, 241, 248