
Using OpenMP
Portable Shared Memory Parallel Programming

Barbara Chapman, Gabriele Jost, Ruud van der Pas

The MIT Press
Cambridge, Massachusetts
London, England

http://mitpress.mit.edu/0262533022

c© 2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in LATEX by the authors and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Chapman, Barbara, 1954-
Using OpenMP : portable shared memory parallel programming / Barbara Chapman, Gabriele

Jost, Ruud van der Pas.
p. cm. – (Scientific and engineering computation)

Includes bibliographical references and index.
ISBN-13: 978-0-262-53302-7 (paperback : alk. paper)
1. Parallel programming (Computer science) 2. Application program interfaces

(Computer software) I. Jost, Gabriele. II. Pas, Ruud van der. III. Title.
QA76.642.C49 2007
005.2’75–dc22

2007026656

1 Introduction

OpenMP enables the creation of shared-memory parallel programs. In this chapter,
we describe the evolution of computers that has led to the specification of OpenMP
and that has made it relevant to mainstream computing. We put our subject matter
into a broader context by giving a brief overview of parallel computing and the main
approaches taken to create parallel programs. Our discussion of these topics is not
intended to be comprehensive.

1.1 Why Parallel Computers Are Here to Stay

No matter how fast computers are, technology is being developed to make them
even faster. Our appetite for compute power and memory seems insatiable. A more
powerful machine leads to new kinds of applications, which in turn fuel our demand
for yet more powerful systems. The result of this continued technological progress
is nothing short of breathtaking: the laptops a couple of us are using to type this
script would have been among the fastest machines on the planet just a decade ago,
if they had been around at the time.

In order to achieve their breakneck speed, today’s computer systems are highly
complex [85]. They are made up of multiple components, or functional units, that
may be able to operate simultaneously and have specific tasks, such as adding two
integer numbers or determining whether a value is greater than zero. As a result, a
computer might be able to fetch a datum from memory, multiply two floating-point
numbers, and evaluate a branch condition all at the same time. This is a very low
level of parallel processing and is often referred to as “instruction-level parallelism,”
or ILP. A processor that supports this is said to have a superscalar architecture.
Nowadays it is a common feature in general-purpose microprocessors, even those
used in laptops and PCs.

Careful reordering of these operations may keep the machine’s components busy.
The lion’s share of the work of finding such a suitable ordering of operations is
performed by the compiler (although it can be supported in hardware). To accom-
plish this, compiler writers developed techniques to determine dependences between
operations and to find an ordering that efficiently utilizes the instruction-level par-
allelism and keeps many functional units and paths to memory busy with useful
work. Modern compilers put considerable effort into this kind of instruction-level
optimization. For instance, software pipelining may modify the sequence of in-
structions in a loop nest, often overlapping instructions from different iterations to
ensure that as many instructions as possible complete every clock cycle. Unfortu-
nately, several studies [95] showed that typical applications are not likely to contain

2 Chapter 1

more than three or four different instructions that can be fed to the computer at a
time in this way. Thus, there is limited payoff for extending the hardware support
for this kind of instruction-level parallelism.

Back in the 1980s, several vendors produced computers that exploited another
kind of architectural parallelism.1 They built machines consisting of multiple com-
plete processors with a common shared memory. These shared-memory parallel, or
multiprocessor, machines could work on several jobs at once, simply by parceling
them out to the different processors. They could process programs with a variety
of memory needs, too, and were thus suitable for many different workloads. As a
result, they became popular in the server market, where they have remained impor-
tant ever since. Both small and large shared-memory parallel computers (in terms
of number of processors) have been built: at the time of writing, many of them have
two or four CPUs, but there also exist shared-memory systems with more than a
thousand CPUs in use, and the number that can be configured is growing. The
technology used to connect the processors and memory has improved significantly
since the early days [44]. Recent developments in hardware technology have made
architectural parallelism of this kind important for mainstream computing.

In the past few decades, the components used to build both high-end and desktop
machines have continually decreased in size. Shortly before 1990, Intel announced
that the company had put a million transistors onto a single chip (the i860). A
few years later, several companies had fit 10 million onto a chip. In the meantime,
technological progress has made it possible to put billions of transistors on a single
chip. As data paths became shorter, the rate at which instructions were issued
could be increased. Raising the clock speed became a major source of advances in
processor performance. This approach has inherent limitations, however, particu-
larly with respect to power consumption and heat emission, which is increasingly
hard to dissipate.

Recently, therefore, computer architects have begun to emphasize other strategies
for increasing hardware performance and making better use of the available space on
the chip. Given the limited usefulness of adding functional units, they have returned
to the ideas of the 1980s: multiple processors that share memory are configured in a
single machine and, increasingly, on a chip. This new generation of shared-memory
parallel computers is inexpensive and is intended for general-purpose usage.

Some recent computer designs permit a single processor to execute multiple in-
struction streams in an interleaved way. Simultaneous multithreading, for example,
interleaves instructions from multiple applications in an attempt to use more of the

1Actually, the idea was older than that, but it didn’t take off until the 1980s.

Introduction 3

hardware components at any given time. For instance, the computer might add two
values from one set of instructions and, at the same time, fetch a value from memory
that is needed to perform an operation in a different set of instructions. An ex-
ample is Intel’s hyperthreadingTM technology. Other recent platforms (e.g., IBM’s
Power5, AMD’s Opteron and Sun’s UltraSPARC IV, IV+, and T1 processors) go
even further, replicating substantial parts of a processor’s logic on a single chip and
behaving much like shared-memory parallel machines. This approach is known as
multicore. Simultaneous multithreading platforms, multicore machines, and shared-
memory parallel computers all provide system support for the execution of multiple
independent instruction streams, or threads. Moreover, these technologies may be
combined to create computers that can execute high numbers of threads.

Given the limitations of alternative strategies for creating more powerful com-
puters, the use of parallelism in general-purpose hardware is likely to be more
pronounced in the near future. Some PCs and laptops are already multicore or
multithreaded. Soon, processors will routinely have many cores and possibly the
ability to execute multiple instruction streams within each core. In other words,
multicore technology is going mainstream [159]. It is vital that application soft-
ware be able to make effective use of the parallelism that is present in our hardware
[171]. But despite major strides in compiler technology, the programmer will need
to help, by describing the concurrency that is contained in application codes. In
this book, we will discuss one of the easiest ways in which this can be done.

1.2 Shared-Memory Parallel Computers

Throughout this book, we will refer to shared-memory parallel computers as SMPs.
Early SMPs included computers produced by Alliant, Convex, Sequent [146], En-
core, and Synapse [10] in the 1980s. Larger shared-memory machines included
IBM’s RP3 research computer [149] and commercial systems such as the BBN But-
terfly [23]. Later SGI’s Power Challenge [65] and Sun Microsystem’s Enterprise
servers entered the market, followed by a variety of desktop SMPs.

The term SMP was originally coined to designate a symmetric multiprocessor sys-
tem, a shared-memory parallel computer whose individual processors share memory
(and I/O) in such a way that each of them can access any memory location with
the same speed; that is, they have a uniform memory access (UMA) time. Many
small shared-memory machines are symmetric in this sense. Larger shared-memory
machines, however, usually do not satisfy this definition; even though the differ-
ence may be relatively small, some memory may be “nearer to” one or more of
the processors and thus accessed faster by them. We say that such machines have

4 Chapter 1

cache-coherent non-uniform memory access (cc-NUMA). Early innovative attempts
to build cc-NUMA shared-memory machines were undertaken by Kendall Square
Research (KSR1 [62]) and Denelcor (the Denelcor HEP). More recent examples
of large NUMA platforms with cache coherency are SGI’s Origin and Altix series,
HP’s Exemplar, and Sun Fire E25K.

Today, the major hardware vendors all offer some form of shared-memory parallel
computer, with sizes ranging from two to hundreds – and, in a few cases, thousands
– of processors.

Conveniently, the acronym SMP can also stand for “shared-memory parallel
computer,” and we will use it to refer to all shared-memory systems, including
cc-NUMA platforms. By and large, the programmer can ignore this difference,
although techniques that we will explore in later parts of the book can help take
cc-NUMA characteristics into account.

1.2.1 Cache Memory Is Not Shared

Somewhat confusing is the fact that even SMPs have some memory that is not
shared. To explain why this is the case and what the implications for applications
programming are, we present some background information. One of the major
challenges facing computer architects today is the growing discrepancy in processor
and memory speed. Processors have been consistently getting faster. But the more
rapidly they can perform instructions, the quicker they need to receive the values
of operands from memory. Unfortunately, the speed with which data can be read
from and written to memory has not increased at the same rate. In response,
the vendors have built computers with hierarchical memory systems, in which a
small, expensive, and very fast memory called cache memory, or “cache” for short,
supplies the processor with data and instructions at high rates [74]. Each processor
of an SMP needs its own private cache if it is to be fed quickly; hence, not all
memory is shared.

Figure 1.1 shows an example of a generic, cache-based dual-core processor. There
are two levels of cache. The term level is used to denote how far away (in terms
of access time) a cache is from the CPU, or core. The higher the level, the longer
it takes to access the cache(s) at that level. At level 1 we distinguish a cache for
data (“Data Cache”), one for instructions (“Instr. Cache”), and the “Translation-
Lookaside Buffer” (or TLB for short). The last of these is an address cache. It
is discussed in Section 5.2.2. These three caches are all private to a core: other
core(s) cannot access them. Our figure shows only one cache at the second level. It

Introduction 5

is most likely bigger than each of the level-1 caches, and it is shared by both cores.
It is also unified, which means that it contains instructions as well as data.

Level 1

������
�	
�
��
��
��

��
	
������

Level 2

����
�	����

��
��
���

����
��
��

����
����

��
��

���

�	����
��
��

Processor

Figure 1.1: Block diagram of a generic, cache-based dual core processor
– In this imaginary processor, there are two levels of cache. Those closest to the core are
called “level 1.” The higher the level, the farther away from the CPU (measured in access
time) the cache is. The level-1 cache is private to the core, but the cache at the second
level is shared. Both cores can use it to store and retrieve instructions, as well as data.

Data is copied into cache from main memory: blocks of consecutive memory
locations are transferred at a time. Since the cache is very small in comparison
to main memory, a new block may displace data that was previously copied in.
An operation can be (almost) immediately performed if the values it needs are
available in cache. But if they are not, there will be a delay while the corresponding
data is retrieved from main memory. Hence, it is important to manage cache
carefully. Since neither the programmer nor the compiler can directly put data
into—or remove data from—cache, it is useful to learn how to structure program
code to indirectly make sure that cache is utilized well.2

2The techniques developed to accomplish this task are useful for sequential programming, too.
They are briefly covered in Section 5.2.3

6 Chapter 1

1.2.2 Implications of Private Cache Memory

In a uniprocessor system, new values computed by the processor are written back
to cache, where they remain until their space is required for other data. At that
point, any new values that have not already been copied back to main memory are
stored back there. This strategy does not work for SMP systems. When a processor
of an SMP stores results of local computations in its private cache, the new values
are accessible only to code executing on that processor. If no extra precautions are
taken, they will not be available to instructions executing elsewhere on an SMP
machine until after the corresponding block of data is displaced from cache. But it
may not be clear when this will happen. In fact, since the old values might still be
in other private caches, code executing on other processors might continue to use
them even then.

This is known as the memory consistency problem. A number of strategies have
been developed to help overcome it. Their purpose is to ensure that updates to data
that have taken place on one processor are made known to the program running on
other processors, and to make the modified values available to them if needed. A
system that provides this functionality transparently is said to be cache coherent.

Fortunately, the OpenMP application developer does not need to understand how
cache coherency works on a given computer. Indeed, OpenMP can be implemented
on a computer that does not provide cache coherency, since it has its own set of rules
on how data is shared among the threads running on different processors. Instead,
the programmer must be aware of the OpenMP memory model, which provides for
shared and private data and specifies when updated shared values are guaranteed
to be available to all of the code in an OpenMP program.

1.3 Programming SMPs and the Origin of OpenMP

Once the vendors had the technology to build moderately priced SMPs, they needed
to ensure that their compute power could be exploited by individual applications.
This is where things got sticky. Compilers had always been responsible for adapting
a program to make best use of a machine’s internal parallelism. Unfortunately, it is
very hard for them to do so for a computer with multiple processors or cores. The
reason is that the compilers must then identify independent streams of instructions
that can be executed in parallel. Techniques to extract such instruction streams
from a sequential program do exist; and, for simple programs, it may be worthwhile
trying out a compiler’s automatic (shared-memory) parallelization options. How-
ever, the compiler often does not have enough information to decide whether it is

Introduction 7

possible to split up a program in this way. It also cannot make large-scale changes
to code, such as replacing an algorithm that is not suitable for parallelization. Thus,
most of the time the compiler will need some help from the user.

1.3.1 What Are the Needs?

To understand how programmers might express a code’s parallelism, the hardware
manufacturers looked carefully at existing technology. Beginning in the 1980s,
scientists engaged in solving particularly tough computational problems attempted
to exploit the SMPs of the day to speed up their code and to perform much larger
computations than were possible on a uniprocessor. To get the multiple processors
to collaborate to execute a single application, they looked for regions of code whose
instructions could be shared among the processors. Much of the time, they focused
on distributing the work in loop nests to the processors.

In most programs, code executed on one processor required results that had been
calculated on another one. In principle, this was not a problem because a value
produced by one processor could be stored in main memory and retrieved from
there by code running on other processors as needed. However, the programmer
needed to ensure that the value was retrieved after it had been produced, that is,
that the accesses occurred in the required order. Since the processors operated
independently of one another, this was a nontrivial difficulty: their clocks were not
synchronized, and they could and did execute their portions of the code at slightly
different speeds.

Accordingly, the vendors of SMPs in the 1980s provided special notation to spec-
ify how the work of a program was to be parceled out to the individual processors of
an SMP, as well as to enforce an ordering of accesses by different threads to shared
data. The notation mainly took the form of special instructions, or directives, that
could be added to programs written in sequential languages, especially Fortran.
The compiler used this information to create the actual code for execution by each
processor. Although this strategy worked, it had the obvious deficiency that a
program written for one SMP did not necessarily execute on another one.

1.3.2 A Brief History of Saving Time

Toward the end of the 1980s, vendors began to collaborate to improve this state of
affairs. An informal industry group called the Parallel Computing Forum (PCF)
agreed on a set of directives for specifying loop parallelism in Fortran programs;
their work was published in 1991 [59]. An official ANSI subcommittee called X3H5
was set up to develop an ANSI standard based on PCF. A document for the new

8 Chapter 1

standard was drafted in 1994 [19], but it was never formally adopted. Interest in
PCF and X3H5 had dwindled with the rise of other kinds of parallel computers that
promised a scalable and more cost-effective approach to parallel programming. The
X3H5 standardization effort had missed its window of opportunity.

But this proved to be a temporary setback. OpenMP was defined by the OpenMP
Architecture Review Board (ARB), a group of vendors who joined forces during the
latter half of the 1990s to provide a common means for programming a broad
range of SMP architectures. OpenMP was based on the earlier PCF work. The
first version, consisting of a set of directives that could be used with Fortran, was
introduced to the public in late 1997. OpenMP compilers began to appear shortly
thereafter. Since that time, bindings for C and C++ have been introduced, and the
set of features has been extended. Compilers are now available for virtually all SMP
platforms. The number of vendors involved in maintaining and further developing
its features has grown. Today, almost all the major computer manufacturers, major
compiler companies, several government laboratories, and groups of researchers
belong to the ARB.

One of the biggest advantages of OpenMP is that the ARB continues to work to
ensure that OpenMP remains relevant as computer technology evolves. OpenMP
is under cautious, but active, development; and features continue to be proposed
for inclusion into the application programming interface. Applications live vastly
longer than computer architectures and hardware technologies; and, in general, ap-
plication developers are careful to use programming languages that they believe will
be supported for many years to come. The same is true for parallel programming
interfaces.

1.4 What Is OpenMP?

OpenMP is a shared-memory application programming interface (API) whose fea-
tures, as we have just seen, are based on prior efforts to facilitate shared-memory
parallel programming. Rather than an officially sanctioned standard, it is an
agreement reached between the members of the ARB, who share an interest in a
portable, user-friendly, and efficient approach to shared-memory parallel program-
ming. OpenMP is intended to be suitable for implementation on a broad range of
SMP architectures. As multicore machines and multithreading processors spread in
the marketplace, it might be increasingly used to create programs for uniprocessor
computers also.

Like its predecessors, OpenMP is not a new programming language. Rather, it
is notation that can be added to a sequential program in Fortran, C, or C++ to

Introduction 9

describe how the work is to be shared among threads that will execute on different
processors or cores and to order accesses to shared data as needed. The appropriate
insertion of OpenMP features into a sequential program will allow many, perhaps
most, applications to benefit from shared-memory parallel architectures—often with
minimal modification to the code. In practice, many applications have considerable
parallelism that can be exploited.

The success of OpenMP can be attributed to a number of factors. One is its
strong emphasis on structured parallel programming. Another is that OpenMP is
comparatively simple to use, since the burden of working out the details of the
parallel program is up to the compiler. It has the major advantage of being widely
adopted, so that an OpenMP application will run on many different platforms.

But above all, OpenMP is timely. With the strong growth in deployment of
both small and large SMPs and other multithreading hardware, the need for a
shared-memory programming standard that is easy to learn and apply is accepted
throughout the industry. The vendors behind OpenMP collectively deliver a large
fraction of the SMPs in use today. Their involvement with this de facto standard
ensures its continued applicability to their architectures.

1.5 Creating an OpenMP Program

OpenMP’s directives let the user tell the compiler which instructions to execute
in parallel and how to distribute them among the threads that will run the code.
An OpenMP directive is an instruction in a special format that is understood by
OpenMP compilers only. In fact, it looks like a comment to a regular Fortran
compiler or a pragma to a C/C++ compiler, so that the program may run just
as it did beforehand if a compiler is not OpenMP-aware. The API does not have
many different directives, but they are powerful enough to cover a variety of needs.
In the chapters that follow, we will introduce the basic idea of OpenMP and then
each of the directives in turn, giving examples and discussing their main uses.

The first step in creating an OpenMP program from a sequential one is to identify
the parallelism it contains. Basically, this means finding instructions, sequences of
instructions, or even large regions of code that may be executed concurrently by
different processors.

Sometimes, this is an easy task. Sometimes, however, the developer must reor-
ganize portions of a code to obtain independent instruction sequences. It may even
be necessary to replace an algorithm with an alternative one that accomplishes
the same task but offers more exploitable parallelism. This can be a challenging
problem. Fortunately, there are some typical kinds of parallelism in programs, and

10 Chapter 1

a variety of strategies for exploiting them have been developed. A good deal of
knowledge also exists about algorithms and their suitability for parallel execution.
A growing body of literature is being devoted to this topic [102, 60] and to the de-
sign of parallel programs [123, 152, 72, 34]. In this book, we will introduce some of
these strategies by way of examples and will describe typical approaches to creating
parallel code using OpenMP.

The second step in creating an OpenMP program is to express, using OpenMP,
the parallelism that has been identified. A huge practical benefit of OpenMP is
that it can be applied to incrementally create a parallel program from an existing
sequential code. The developer can insert directives into a portion of the program
and leave the rest in its sequential form. Once the resulting program version has
been successfully compiled and tested, another portion of the code can be paral-
lelized. The programmer can terminate this process once the desired speedup has
been obtained.

Although creating an OpenMP program in this way can be easy, sometimes sim-
ply inserting directives is not enough. The resulting code may not deliver the
expected level of performance, and it may not be obvious how to remedy the situa-
tion. Later, we will introduce techniques that may help improve a parallel program,
and we will give insight into how to investigate performance problems. Armed with
this information, one may be able to take a simple OpenMP program and make it
run better, maybe even significantly better. It is essential that the resulting code be
correct, and thus we also discuss the perils and pitfalls of the process. Finding cer-
tain kinds of bugs in parallel programs can be difficult, so an application developer
should endeavor to prevent them by adopting best practices from the start.

Generally, one can quickly and easily create parallel programs by relying on the
implementation to work out the details of parallel execution. This is how OpenMP
directives work. Unfortunately, however, it is not always possible to obtain high
performance by a straightforward, incremental insertion of OpenMP directives into
a sequential program. To address this situation, OpenMP designers included several
features that enable the programmer to specify more details of the parallel code.
Later in the book, we will describe a completely different way of using OpenMP
to take advantage of these features. Although it requires quite a bit more work,
users may find that getting their hands downright dirty by creating the code for
each thread can be a lot of fun. And, this may be the ticket to getting OpenMP to
solve some very large problems on a very big machine.

Introduction 11

1.6 The Bigger Picture

Many kinds of computer architectures have been built that exploit parallelism [55].
In fact, parallel computing has been an indispensable technology in many cutting-
edge disciplines for several decades. One of the earliest kinds of parallel systems
were the powerful and expensive vector computers that used the idea of pipelining
instructions to apply the same operation to many data objects in turn (e.g., Cyber-
205 [114], CRAY-1 [155], Fujitsu Facom VP-200 [135]). These systems dominated
the high end of computing for several decades, and machines of this kind are still
deployed. Other platforms were built that simultaneously applied the same oper-
ation to many data objects (e.g. CM2 [80], MasPar [140]). Many systems have
been produced that connect multiple independent computers via a network; both
proprietary and off-the-shelf networks have been deployed. Early products based
on this approach include Intel’s iPSC series [28] and machines built by nCUBE
and Meiko [22]. Memory is associated with each of the individual computers in
the network and is thus distributed across the machine. These distributed-memory
parallel systems are often referred to as massively parallel computers (MPPs) be-
cause very large systems can be put together this way. Information on some of
the fastest machines built during the past decade and the technology used to build
them can be found at http://www.top500.org.

Many MPPs are in use today, especially for scientific computing. If distributed-
memory computers are designed with additional support that enables memory to be
shared between all the processors, they are also SMPs according to our definition.
Such platforms are often called distributed shared-memory computers (DSMs) to
emphasize the distinctive nature of this architecture (e.g., SGI Origin [106]). When
distributed-memory computers are constructed by using standard workstations or
PCs and an off-the-shelf network, they are usually called clusters [169]. Clusters,
which are often composed of SMPs, are much cheaper to build than proprietary
MPPs. This technology has matured in recent years, so that clusters are common
in universities and laboratories as well as in some companies. Thus, although SMPs
are the most widespread kind of parallel computer in use, there are many other kinds
of parallel machines in the marketplace, particularly for high-end applications.

Figure 1.2 shows the difference in these architectures: in (a) we see a shared-
memory system where processors share main memory but have their own private
cache; (b) depicts an MPP in which memory is distributed among the processors,
or nodes, of the system. The platform in (c) is identical to (b) except for the fact
that the distributed memories are accessible to all processors. The cluster in (d)
consists of a set of independent computers linked by a network.

12 Chapter 1

P

Shared Memory

Cache
… …

PP

PP PCache Cache

(a)

(c)

(b)

Memory Memory Memory

(d)

…

Cache-Coherent Interconnect

PP P

Memory Memory Memory

Network

…

Cache-Coherent Interconnect

Distributed Shared Memory

Non-Cache-Coherent Interconnect

Figure 1.2: Distributed- and shared-memory computers – The machine in
(a) has physically shared memory, whereas the others have distributed memory. However,
the memory in (c) is accessible to all processors.

An equally broad range of applications makes use of parallel computers [61].
Very early adopters of this technology came from such disciplines as aeronautics,
aerospace, and chemistry, where vehicles were designed, materials tested, and their
properties evaluated long before they were constructed. Scientists in many dis-
ciplines have achieved monumental insights into our universe by running parallel
programs that model real-world phenomena with high levels of accuracy. Theoret-
ical results were confirmed in ways that could not be done via experimentation.
Parallel computers have been used to improve the design and production of goods
from automobiles to packaging for refrigerators and to ensure that the designs com-
ply with pricing and behavioral constraints, including regulations. They have been
used to study natural phenomena that we are unable to fully observe, such as the
formation of galaxies and the interactions of molecules. But they are also rou-
tinely used in weather forecasting, and improvements in the accuracy of our daily
forecasts are mainly the result of deploying increasingly fast (and large) parallel
computers. More recently, they have been widely used in Hollywood and elsewhere

Introduction 13

to generate highly realistic film sequences and special effects. In this context, too,
the ability to build bigger parallel computers has led to higher-quality results, here
in the form of more realistic imagery. Of course, parallel computers are also used
to digitally remaster old film and to perform many other tasks involving image
processing. Other areas using substantial parallel computing include drug design,
financial and economic forecasting, climate modeling, surveillance, and medical
imaging. It is routine in many areas of engineering, chemistry, and physics, and
almost all commercial databases are able to exploit parallel machines.

1.7 Parallel Programming Models

Just as there are several different classes of parallel hardware, so too are there
several distinct models of parallel programming. Each of them has a number of
concrete realizations. OpenMP realizes a shared-memory (or shared address space)
programming model. This model assumes, as its name implies, that programs
will be executed on one or more processors that share some or all of the available
memory. Shared-memory programs are typically executed by multiple independent
threads (execution states that are able to process an instruction stream); the threads
share data but may also have some additional, private data. Shared-memory ap-
proaches to parallel programming must provide, in addition to a normal range of
instructions, a means for starting up threads, assigning work to them, and coordi-
nating their accesses to shared data, including ensuring that certain operations are
performed by only one thread at a time [15].

A different programming model has been proposed for distributed-memory sys-
tems. Generically referred to as “message passing,” this model assumes that pro-
grams will be executed by one or more processes, each of which has its own pri-
vate address space [69]. Message-passing approaches to parallel programming must
provide a means to initiate and manage the participating processes, along with
operations for sending and receiving messages, and possibly for performing special
operations across data distributed among the different processes. The pure message-
passing model assumes that processes cooperate to exchange messages whenever one
of them needs data produced by another one. However, some recent models are
based on “single-sided communication.” These assume that a process may inter-
act directly with memory across a network to read and write data anywhere on a
machine.

Various realizations of both shared- and distributed-memory programming mod-
els have been defined and deployed. An ideal API for parallel programming is
expressive enough to permit the specification of many parallel algorithms, is easy

14 Chapter 1

to use, and leads to efficient programs. Moreover, the more transparent its imple-
mentation is, the easier it is likely to be for the programmer to understand how to
obtain good performance. Unfortunately, there are trade-offs between these goals
and parallel programming APIs differ in the features provided and in the manner
and complexity of their implementation. Some are a collection of library routines
with which the programmer may specify some or all of the details of parallel execu-
tion (e.g., GA [141] and Pthreads [108] for shared-memory programming and MPI
for MPPs), while others such as OpenMP and HPF [101] take the form of addi-
tional instructions to the compiler, which is expected to utilize them to generate
the parallel code.

1.7.1 Realization of Shared- and Distributed-Memory Models

Initially, vendors of both MPPs and SMPs provided their own custom sets of in-
structions for exploiting the parallelism in their machines. Application developers
had to work hard to modify their codes when they were ported from one machine
to another. As the number of parallel machines grew and as more and more par-
allel programs were written, developers began to demand standards for parallel
programming. Fortunately, such standards now exist.

MPI, or the Message Passing Interface, was defined in the early 1990s by a
group of researchers and vendors who based their work on existing vendor APIs
[69, 137, 147]. It provides a comprehensive set of library routines for managing
processes and exchanging messages. MPI is widely used in high-end computing,
where problems are so large that many computers are needed to attack them. It
is comparatively easy to implement on a broad variety of platforms and therefore
provides excellent portability. However, the portability comes at a cost. Creating
a parallel program based on this API typically requires a major reorganization of
the original sequential code. The development effort can be large and complex
compared to a compiler-supported approach such as that offered by OpenMP.

One can also combine some programming APIs. In particular, MPI and OpenMP
may be used together in a program, which may be useful if a program is to be
executed on MPPs that consist of multiple SMPs (possibly with multiple cores
each). Reasons for doing so include exploiting a finer granularity of parallelism than
possible with MPI, reducing memory usage, or reducing network communication.
Various commercial codes have been programmed using both MPI and OpenMP.
Combining MPI and OpenMP effectively is nontrivial, however, and in Chapter 6
we return to this topic and to the challenge of creating OpenMP codes that will
work well on large systems.

Introduction 15

1.8 Ways to Create Parallel Programs

In this section, we briefly compare OpenMP with the most important alternatives
for programming shared-memory machines. Some vendors also provide custom
APIs on their platforms. Although such APIs may be fast (this is, after all, the
purpose of a custom API), programs written using them may have to be substan-
tially rewritten to function on a different machine. We do not consider APIs that
were not designed for broad use.

Automatic parallelization: Many compilers provide a flag, or option, for auto-
matic program parallelization. When this is selected, the compiler analyzes the
program, searching for independent sets of instructions, and in particular for loops
whose iterations are independent of one another. It then uses this information to
generate explicitly parallel code. One of the ways in which this could be realized is
to generate OpenMP directives, which would enable the programmer to view and
possibly improve the resulting code. The difficulty with relying on the compiler to
detect and exploit parallelism in an application is that it may lack the necessary
information to do a good job. For instance, it may need to know the values that
will be assumed by loop bounds or the range of values of array subscripts: but this
is often unknown ahead of run time. In order to preserve correctness, the compiler
has to conservatively assume that a loop is not parallel whenever it cannot prove
the contrary. Needless to say, the more complex the code, the more likely it is that
this will occur. Moreover, it will in general not attempt to parallelize regions larger
than loop nests. For programs with a simple structure, it may be worth trying this
option.

MPI: The Message Passing Interface [137] was developed to facilitate portable
programming for distributed-memory architectures (MPPs), where multiple pro-
cesses execute independently and communicate data as needed by exchanging mes-
sages. The API was designed to be highly expressive and to enable the creation of
efficient parallel code, as well as to be broadly implementable. As a result of its suc-
cess in these respects, it is the most widely used API for parallel programming in the
high-end technical computing community, where MPPs and clusters are common.
Since most vendors of shared-memory systems also provide MPI implementations
that leverage the shared address space, we include it here.

Creating an MPI program can be tricky. The programmer must create the code
that will be executed by each process, and this implies a good deal of reprogram-
ming. The need to restructure the entire program does not allow for incremental
parallelization as does OpenMP. It can be difficult to create a single program ver-
sion that will run efficiently on many different systems, since the relative cost of

16 Chapter 1

communicating data and performing computations varies from one system to an-
other and may suggest different approaches to extracting parallelism. Care must
be taken to avoid certain programming errors, particularly deadlock where two or
more processes each wait in perpetuity for the other to send a message. A good
introduction to MPI programming is provided in [69] and [147].

Since many MPPs consist of a collection of SMPs, MPI is increasingly mixed
with OpenMP to create a program that directly matches the hardware. A recent
revision of the standard, MPI-2 ([58]), facilitates their integration.

Pthreads: This is a set of threading interfaces developed by the IEEE (Institute of
Electrical and Electronics Engineers) committees in charge of specifying a Portable
Operating System Interface (POSIX). It realizes the shared-memory programming
model via a collection of routines for creating, managing and coordinating a col-
lection of threads. Thus, like MPI, it is a library. Some features were primarily
designed for uniprocessors, where context switching enables a time-sliced execu-
tion of multiple threads, but it is also suitable for programming small SMPs. The
Pthreads library aims to be expressive as well as portable, and it provides a fairly
comprehensive set of features to create, terminate, and synchronize threads and to
prevent different threads from trying to modify the same values at the same time: it
includes mutexes, locks, condition variables, and semaphores. However, program-
ming with Pthreads is much more complex than with OpenMP, and the resulting
code is likely to differ substantially from a prior sequential program (if there is one).
Even simple tasks are performed via multiple steps, and thus a typical program will
contain many calls to the Pthreads library. For example, to execute a simple loop in
parallel, the programmer must declare threading structures, create and terminate
the threads individually, and compute the loop bounds for each thread. If interac-
tions occur within loop iterations, the amount of thread-specific code can increase
substantially. Compared to Pthreads, the OpenMP API directives make it easy to
specify parallel loop execution, to synchronize threads, and to specify whether or
not data is to be shared. For many applications, this is sufficient.

1.8.1 A Simple Comparison

The code snippets below demonstrate the implementation of a dot product in each
of the programming APIs MPI, Pthreads, and OpenMP. We do not explain in detail
the features used here, as our goal is simply to illustrate the flavor of each, although
we will introduce those used in the OpenMP code in later chapters.

Introduction 17

Sequential Dot-Product

int main(argc,argv)

int argc;

char *argv[];

{

double sum;

double a [256], b [256];

int n;

n = 256;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum = 0;

for (i = 1; i <= n; i++) {

sum = sum + a[i]*b[i];

}

printf ("sum = %f", sum);

}

The sequential program multiplies the individual elements of two arrays and saves
the result in the variable sum; sum is a so-called reduction variable.

Dot-Product in MPI

int main(argc,argv)

int argc;

char *argv[];

{

double sum, sum_local;

double a [256], b [256];

int n, numprocs, myid, my_first, my_last;

n = 256;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

18 Chapter 1

my_first = myid * n/numprocs;

my_last = (myid + 1) * n/numprocs;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum_local = 0;

for (i = my_first; i < my_last; i++) {

sum_local = sum_local + a[i]*b[i];

}

MPI_Allreduce(&sum_local, &sum, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

if (iam==0) printf ("sum = %f", sum);

}

Under MPI, all data is local. To implement the dot-product, each process builds
a partial sum, the sum of its local data. To do so, each executes a portion of the
original loop. Data and loop iterations are accordingly manually shared among
processors by the programmer. In a subsequent step, the partial sums have to be
communicated and combined to obtain the global result. MPI provides the global
communication routine MPI_Allreduce for this purpose.

Dot-Product in Pthreads

#define NUMTHRDS 4

double sum;

double a [256], b [256];

int status;

int n=256;

pthread_t thd[NUMTHRDS];

pthread_mutex_t mutexsum;

int main(argc,argv)

int argc;

char *argv[];

{

pthread_attr_t attr;

Introduction 19

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

thread_mutex_init(&mutexsum, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for(i=0;i<NUMTHRDS;i++)

{

pthread_create(&thds[i], &attr, dotprod, (void *)i);

}

pthread_attr_destroy(&attr);

for(i=0;i<NUMTHRDS;i++) {

pthread_join(thds[i], (void **)&status);

}

printf ("sum = %f \n", sum);

pthread_mutex_destroy(&mutexsum);

pthread_exit(NULL);

}

void *dotprod(void *arg)

{

int myid, i, my_first, my_last;

double sum_local;

myid = (int)arg;

my_first = myid * n/NUMTHRDS;

my_last = (myid + 1) * n/NUMTHRDS;

sum_local = 0;

for (i = my_first; i <= my_last; i++) {

20 Chapter 1

sum_local = sum_local + a [i]*b[i];

}

pthread_mutex_lock (&mutex_sum);

sum = sum + sum_local;

pthread_mutex_unlock (&mutex_sum);

pthread_exit((void*) 0);

}

In the Pthreads programming API, all data is shared but logically distributed
among the threads. Access to globally shared data needs to be explicitly synchro-
nized by the user. In the dot-product implementation shown, each thread builds a
partial sum and then adds its contribution to the global sum. Access to the global
sum is protected by a lock so that only one thread at a time updates this variable.
We note that the implementation effort in Pthreads is as high as, if not higher than,
in MPI.

Dot-Product in OpenMP

int main(argc,argv)

int argc; char *argv[];

{

double sum;

double a [256], b [256];

int status;

int n=256;

for (i = 0; i < n; i++) {

a [i] = i * 0.5;

b [i] = i * 2.0;

}

sum = 0;

#pragma omp for reduction(+:sum)

for (i = 1; i <= n; i++) {

sum = sum + a[i]*b[i];

}

printf ("sum = %f \n", sum);

}

Introduction 21

Under OpenMP, all data is shared by default. In this case, we are able to paral-
lelize the loop simply by inserting a directive that tells the compiler to parallelize it,
and identifying sum as a reduction variable. The details of assigning loop iterations
to threads, having the different threads build partial sums and their accumulation
into a global sum are left to the compiler. Since (apart from the usual variable dec-
larations and initializations) nothing else needs to be specified by the programmer,
this code fragment illustrates the simplicity that is possible with OpenMP.

1.9 A Final Word

Given the trend toward bigger SMPs and multithreading computers, it is vital that
strategies and techniques for creating shared-memory parallel programs become
widely known. Explaining how to use OpenMP in conjunction with the major
programming languages Fortran, C, and C++ to write such parallel programs is
the purpose of this book. Under OpenMP, one can easily introduce threading in
such a way that the same program may run sequentially as well as in parallel. The
application developer can rely on the compiler to work out the details of the parallel
code or may decide to explicitly assign work to threads. In short, OpenMP is a
very flexible medium for creating parallel code.

The discussion of language features in this book is based on the OpenMP 2.5
specification, which merges the previously separate specifications for Fortran and
C/C++. At the time of writing, the ARB is working on the OpenMP 3.0 specifica-
tion, which will expand the model to provide additional convenience and expressiv-
ity for the range of architectures that it supports. Further information on this, as
well as up-to-date news, can be found at the ARB website http://www.openmp.org
and at the website of its user community, http://www.compunity.org. The com-
plete OpenMP specification can also be downloaded from the ARB website.

	0262533022forw1
	0262533022notes1
	Pages from Chapman_8x9-2.pdf

	Pages from Chapman_8x9-5.pdf

