
Using OpenMP
Portable Shared Memory Parallel Programming

Barbara Chapman, Gabriele Jost, Ruud van der Pas

The MIT Press
Cambridge, Massachusetts
London, England

http://mitpress.mit.edu/0262533022


c© 2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in LATEX by the authors and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Chapman, Barbara, 1954-
Using OpenMP : portable shared memory parallel programming / Barbara Chapman, Gabriele

Jost, Ruud van der Pas.
p. cm. – (Scientific and engineering computation)

Includes bibliographical references and index.
ISBN-13: 978-0-262-53302-7 (paperback : alk. paper)
1. Parallel programming (Computer science) 2. Application program interfaces

(Computer software) I. Jost, Gabriele. II. Pas, Ruud van der. III. Title.
QA76.642.C49 2007
005.2’75–dc22

2007026656



Preface

At Supercomputing 1997, a major conference on High Performance Computing,
Networking, and Storage held in San Jose, California, a group of High Performance
Computing experts from industry and research laboratories used an informal “Birds
of a Feather” session to unveil a new, portable programming interface for shared-
memory parallel computers. They called it OpenMP. The proposers included repre-
sentatives from several hardware companies and from the software house Kuck and
Associates, as well as scientists from the Department of Energy who wanted a way
to write programs that could exploit the parallelism in shared memory machines
provided by several major hardware manufacturers.

This initiative could not have been more timely. A diversity of programming
models for those early shared-memory systems were in use. They were all different
enough to inhibit an easy port between them. It was good to end this undesirable
situation and propose a unified model.

A company was set up to own and maintain the new informal standard. It
was named the OpenMP Architecture Review Board (ARB). Since that time, the
number of vendors involved in the specification and maintenance of OpenMP has
steadily grown. There has been increased involvement of application developers,
compiler experts, and language specialists in the ARB too.

The original proposal provided directives, a user-level library, and several environ-
ment variables that could be used to turn Fortran 77 programs into shared-memory
parallel programs with minimal effort. Fairly soon after the first release, the speci-
fication was further developed to enable its use with C/C++ programs and to take
features of Fortran 90 more fully into account. Since then, the bindings for Fortran
and C/C++ have been merged, both for simplicity and to ensure that they are as
similar as possible. Over time, support for OpenMP has been added to more and
more compilers. So we can safely say that today OpenMP provides a compact,
yet flexible shared-memory programming model for Fortran, C, and C++ that is
widely available to application developers.

Many people collaborated in order to produce the first specification of OpenMP.
Since that time, many more have worked hard in the committees set up by the
ARB to clarify certain features of the language, to consider extensions, and to
make their implementations more compatible with each other. Proposals for a
standard means to support interactions between implementations and external tools
have been intensively debated. Ideas for new features have been implemented in
research prototypes. Other people have put considerable effort into promoting the
use of OpenMP and in teaching novices and experts alike how to utilize its features
to solve a variety of programming needs. One of the authors founded a not-for-



xx Preface

profit company called cOMPunity to help researchers participate more fully in the
evolution of OpenMP and to promote interactions between vendors, researchers,
and users. Many volunteers helped cOMPunity achieve its goals.

At the time of writing, hardware companies are poised to introduce a whole
new generation of computers. They are designing and building multicore platforms
capable of supporting the simultaneous execution of a growing number of threads
in a shared-memory system. Even laptops are already small parallel computers.
The question is when and how the software will be adapted to take advantage of
this trend. For a while, improved throughput is going to be the main benefit of
multicore technology. It is quite typical to deploy multiple independent activities
on a laptop or PC, but how many cores are needed for this? At some point, users
will expect individual applications to take advantage of the additional processing
power. To do so, a parallel programming model is required. We think OpenMP is
in a perfect position to satisfy this need — not only today, but also in the future.

Why a book on OpenMP? After all, the OpenMP specification can be downloaded
from the web. The answer lies in the fact that, although the specification has
been written in a relatively informal style and has numerous examples, it is still
not a particularly suitable starting point for learning how to write real programs.
Moreover, some of the factors that may influence a program’s performance are
not mentioned anywhere in that document. Despite its apparent simplicity, then,
additional information is needed. This book fills in those gaps.

Chapter 1 provides background information and explains where OpenMP is ap-
plicable, as well as how it differs from other programming interfaces.

Chapter 2 gives a brief overview of the features of OpenMP. It is intended as a
high-level introduction that can be read either before or after trying out OpenMP.
Among other topics, it explains how OpenMP deals with problems arising from the
complex memory hierarchy present on most modern computers.

Chapter 3 is an essential chapter for novice parallel programmers. It discusses a
complete OpenMP program (in both Fortran and C versions) that exploits a couple
of the most widely used features, and it explains the basics of the OpenMP syntax.

Chapter 4 provides an extensive overview of the OpenMP programming model,
with many examples. First, the most widely used features are introduced, with
a focus on those that enable work to be shared among multiple threads. Then,
some important additional elements of the API are presented. Finally, we de-
scribe some of OpenMP’s lesser-used parts. In the early sections, our examples are
straightforward. Later, we give solutions to some more challenging programming
problems.



Preface xxi

Chapters 5 and 6 discuss how to get good performance with OpenMP. We in-
clude a number of programming tips, along with an extended example that gives
insight into the process of investigating performance problems. With the growing
number of threads available on new platforms, the strategies given in Chapter 6 for
achieving higher levels of scalability are likely to be important for many application
developers.

Chapter 7 discusses problems of program correctness. Troubleshooting any ap-
plication can be hard, but shared-memory parallel programming adds another di-
mension to this effort. In particular, certain kinds of bugs are nondeterministic.
Whether they manifest themselves may depend on one or more external factors,
such as the number of threads used, the load on the system, the compiler, and the
OpenMP library implementation.

Chapter 8 shows how the compiler translates an OpenMP program to turn it into
an application capable of parallel execution. Since OpenMP provides a fairly high
level programming model, knowledge of what happens behind the scenes may help
the reader understand the impact of its translation and the workings of OpenMP-
aware compilers, performance tools, and debuggers. It may also give deeper insight
into techniques and strategies for obtaining high levels of performance.

Chapter 9 describes some of the trends that are likely to influence extensions to
the OpenMP specification. Included are comments on language features we expect
to be included in the reasonably near future.

Acknowledgments

A number of people have worked very hard to help maintain OpenMP, provide
feedback to users, debate and develop syntax for new language features, implement
those features, and teach others how to use them. It is their work that we present
here. We also acknowledge here the continuous efforts of many colleagues on the
various committees of the OpenMP Architecture Review Board. We particularly
mention Mark Bull, from the University of Edinburgh, without whom progress on
the language front is difficult to conceive.

We thank our colleagues who have contributed to the activities of cOMPunity,
which enables the participation of researchers and application developers in the
work of the ARB. These include Eduard Ayguade, Rudi Eigenmann, Dieter an
Mey, Mark Bull, Guy Robinson, and Mitsuhisa Sato.

We thank Michael Resch and colleagues at the High Performance Computing
Center (HLRS) of the University of Stuttgart, Germany, for providing logisitical
support for the creation of this manuscript and for offering a pleasant working



xxii Preface

environment and good company for one of us during a part of the writing phase.
We particularly thank Matthias Müller, originally from HLRS, but now at the
Dresden University of Technology, for his comments, encouragement, and support
and for getting us started with the publisher’s software.

Our sincere gratitude goes to the following organizations and individuals that
have helped us throughout the writing of this book: Lei Huang, Chunhua Liao,
and students in the HPC Tools lab at the University of Houston provided mate-
rial for some examples and criticized our efforts. We benefited from many helpful
discussions on OpenMP scalability issues with the staff of NASA Ames Research
Center. In particular, we thank Michael Aftosmis and Marsha Berger for the flow-
Cart example and Henry Jin for many interesting discussions of the NAS Parallel
Benchmarks and OpenMP in general. Our thanks go to colleagues at CEPBA (Eu-
ropean Center for Parallelism of Barcelona) and UPC (Universitat Politecnica de
Catalunya), especially Judit Gimenez and Jesus Labarta for fruitful collaborations
in performance analysis of large-scale OpenMP applications, and Eduard Ayguade,
Marc Gonzalez, and Xavier Martorell for sharing their experience in OpenMP com-
piler technology.

Nawal Copty, Eric Duncan, and Yuan Lin at Sun Microsystems gave their help
in answering a variety of questions on OpenMP in general and also on compiler and
library implementation issues.

We gratefully acknowledge copious feedback on draft versions of this book from
Tim Mattson (Intel Corporation) and Nawal Copty and Richard Friedman (both
at Sun Microsystems). They helped us find a number of mistakes and made many
suggestions for modifications and improvements. Remaining errors are, of course,
entirely our responsibility.

Last but not least, our gratitude goes to our families for their continued patience
and encouragement. Special thanks go to Dave Barker (a husband) for tolerating
awakening to the sound of a popcorn popper (the keyboard) in the wee hours and
for providing helpful feedback throughout the project; to Carola and Jonathan
(two children) for cheerfully putting up with drafts of book chapters lying around
in many likely, and some unlikely, places; and to Marion, Vincent, Stéphanie, and
Juliette, who never complained and who provided loving support throughout this
journey.


	0262533022forw1
	0262533022notes1
	Pages from Chapman_8x9-2.pdf

	Pages from Chapman_8x9-4.pdf



