Index

Abortion, radiation-related, 86–88
Acid mine drainage, 320, 329–336
methods and costs of control, 332–336
 table, 334
from refuse banks, 325
from strip mines, 329–330
from underground mines, 330–331
Acidity, atmospheric, 297, 299, 302
in precipitation, 299
figure, 300
Acrolein, in smog, 278
Activation gases released from reactors, tables, 36, 115
Activation products in reactors, 25
Advisory Committee on Reactor Safeguards (ACRS), 31
Aerosols, atmospheric, effect on heat balance, 254–255, 260
Agriculture
effect on world climate, 254–255, 260–261
use of waste heat for, 358, 381–382, 407
Air. See Atmosphere
Air-water interface, energy transfer across
effect of oil pollution, 254–255
effect of thermal pollution, 375, 399
evaporation loss, 138, 145, 399, 404
Akosombo, 152
Alabama, 380
Albedo, and heat balance, 254–255, 260–261
Aldehydes, in smog, 275, 277–278
Algae, in thermally polluted water, 356
Algeria, oil exploration in, 228–229
Alkali salts in combustion gases, 203
figure, 203
 and MHD, 204, 217–218
Allen, Eric R., 263–288
Alpert, Seymour B., 228–245
Altamaha River, 349
American Fisheries Society, 357
Aminoil, 235
Ammonia (NH₃)
 atmospheric, 271, 297
 in smog, 275
 in stratosphere, 281
Ammonia turbine bottoming cycle, 406–407
Ankylosing spondylitis, 65
Anthracite mining
 refuse banks from, 323–326
 as fuel, 192
 photographs of, 324, 326–328
 subsidence from, 322–323
 photograph, 323
Antimony-125, 75
 bone dosage, 46–47
 maximum permissible concentration, 46
Appalachian Regional Commission, 330, 335
Aquaculture, with waste heat, 382, 407
Aquatic ecology
 need for research on, 360, 382
 and thermal pollution, 353–358
Aquatic nutrients in reservoirs, 139, 142–144
Aquatic plants in reservoirs, 144–146
and evapotranspiration, 138, 145
Area strip mining, 318. See also Strip mining
 photograph, 319
Arthur Kill power plant, 312
Ash. See also Fly ash
 fusion temperature, 14, 181–182, 191–192
 removal of
 in MHD generation, 218
 by scrubbing, 204
 sintering temperature, 191–192, 194–195, 199
 sodium content of, 203–204
 figure, 203
Aswan dam, 138, 143
Atlantic City Electric Company, 313
Atmosphere, 246–261
carbon dioxide content, 247–248
 thermal effects of, 251–254
 historical temperature change of, 253
 oxygen content, 261
Atmosphere (continued)
regions of, 264–265
polluted, 274–279
troposphere, 266–279
temperature and pressure of, figure, 265
thermal balance of, 248–249
Atmospheric chemistry, 263–285
of air pollution, 274–279
neutralization of acid and base, 297, 299
of nitrogen compounds, 271–274
of sulfur compounds, 268–271
Atmospheric pollution, 274–279
composition of, table, 275
daily variations in, figure, 276
gaseous reactor waste, tables, 29, 36, 115
nitrogen oxides, 294–295, 297–300
organic compounds, 273
polluted precipitation, 292–299
total excess acid and base in, figure, 300
sulfur, 302
sulfur dioxide, 289–299
Atomic Bomb Casualty Commission, 49
Aufwuchs, 144–146
Automobile exhaust, 274, 297
Avco- Everett Research Laboratory, 218
Background radiation, natural, 31, 95–96
biological effects of, 130
Baltimore Gas and Electric Company, 94, 313
Bandama Lake, 152
Barium-140, in liquid reactor waste, 28
Battelle Memorial Institute, 374
fluidized bed of, 204
BCURA Industrial Laboratories, 193–199, 218–219
high-pressure fluidized bed boiler figure, 193
photograph, 194
Bechtel Corporation, 233
Behnke, Wallace B., Jr., 11–19, 209
Bell, Earl J., 127
Belter, Walter G., 127–130, 365–386
Benedict, Manson, 214
Benthos, 144
growth in heated waters, 356
Berkowitz, David A. (coeditor), 158–172
Big Rock power plant
noble and activation gases from, table, 115
radioactive effluent from, tables, 36
Bilharziasis, 145
Binary cycle power plants, 405-407
Biological concentration
in food chain, 44, 47, 77
in tissue, 32–33
Biological effects of radiation
on birth rate, 85
on birth ratio (male-to-female), 56–57, 69–71, 85–91
table, 87
on disease, 49–52, 64–68
on fetus, 50–51, 53–58, 62–72, 85–87
on genetic, 54–58, 68–71, 96–99
from natural background, 130
on oocytes and oogonia, 71–83
on reproductive performance, 83–84
table, 87
superovulation, 83, 88
Bituminous mining waste, 323–326
Black, Sivalls, and Bryson, Inc., 219
Black River, East Fork, 169
Blue Coal Corporation, 192
Boiling water reactor (BWR). See
Nuclear reactors, boiling water
Bone, radiation exposure
from air near power plant, table, 111
cause of cancer, 50
from radionuclides in water, 32, 46–47
table, 46
discussion of table, 75–76
Boston Edison Company, 241
Boston-Washington megalopolis, energy requirements, 390
Bottoming cycles, 405-407
Breast cancer, radiation-induced, 50
Breeder reactor. See Nuclear reactors
British Coal Utilization Research Association. See BCURA Industrial Laboratories
British Esso, 207-208
Browns Ferry nuclear power plant, 380
Bureau of Mines. See under U.S. Government, Department of the Interior
Cadle, Richard D., 263-288
Calcination, for sulfur oxide removal in fluidized beds, 206-208, 218
in PF furnaces, 188
California Water Project, 163-164
Calvert Cliffs nuclear power plant, 94, 375
Cancer
doubling doses for, table, 50
discussion of, 64-66
radiation-caused, 49-52, 64-68
in young people, 50
risk of, tables, 98-99
compared with other risks, figure, 100
Carbon, earth resources of, figure, 248
Carbon-14, atmospheric, 120
dosage from, 120
Carbon dioxide (CO₂), 120, 246-259
atmospheric content, 120, 247-251, 283-284, 289
released by man, 247, 250
thermal and climatic effects of, 250-254, 284
yearly increase of, 247-248
in oceans, 251
partition in environment, 250
figure, 248
in smog, 275
in stratosphere and mesosphere, 283-284
Suess effect, 120
Carbon monoxide
in atmosphere, 273, 289
in smog, 275
reactions of, 278
in stratosphere and mesosphere, 283
Carcinogens from fuel combustion, 41
Carlson, Clarence A., Jr., 351-364
Carolina Power and Light Company, 348
Castaic reservoir, 164
Catalytic desulfurization, 230-234
figure, 232
Catalytic oxidation, 187
Cayuga Lake, 354
Central nervous system, radiation-induced tumors in, 51
CERCHAR (Centre d'Etudes et Recherches des Charbonnages de France), 200-203
Cesium-144, in reactor liquid waste, 28
Cesium-134, in reactor liquid waste, 28
Cesium-137
maximum permissible concentration, 46
reactor inventory of, 47, 77
in reactor liquid waste, 28, 76-77
Chemostratification, 139
Chesapeake Bay, 94, 375, 383
Chesapeake Bay Institute, 374
Chevron, 294
Chicago, water consumption, 388
Chlorine, in cooling towers, 404
Chromosomes, radiation damage in, 55-58, 68-72, 83-91
Cities Service, 234-235
City College of New York, The, 207-208, 238-239
Claus-Chance process, 207-209
Climate, 246-261
effect of carbon dioxide on, 250-254
and landscape change, 254-255, 260-261
and man, 253
need for global study of, 257-259
observed changes in, 252-255
Coal
energy and chemicals from, 11, 17, 209
new emphasis on, 213-217
Coal (continued)
oil and gas conversion from, 15, 209–213, 215
radioactive fly ash content of, table, 108
sulfur content of, 307
effect on precipitators, 183
figure, 186
low-sulfur reserves, 14
Coal consumption
global, 249
in U.S., 13, 317
Coal-fired power generation
history of, 177–182
projected increase of, 16
Coal-fired power plants, 10–18, 177–182, 213–217
power and chemicals from, 17, 209
radioactivity from, compared with nuclear, 107–123
tables, 111, 118, 120
stack height and radiation exposure, 119–120
Coal-firing techniques
fluidized bed, 189–195
high-pressure, 193–202
gas temperature, 181, 191–192, 195, 199–201
history of, 177–182
in molten iron, 219
pulverized fuel (PF), 177–189
Szikla-Rozinek, 203
Coal gasification, 205
Coal mining, environmental aspects, 317–338
acid mine drainage, 320, 329–336
mine fires, 329
refuse banks, 323–326
photographs, 324, 326–328
strip mining, 319–322, 326–329
photographs, 319–321
subsidence, 322–323
photograph, 322
Coal production, 250
from strip mines, 317–318
from underground mines, 323
Coal reserves, 14–15, 250
low-sulfur, 14
Coalplex, 209–213
figures, 210, 212
Cobalt-58, in reactor liquid waste, 28
Cobalt-60, in reactor liquid waste, 28, 75
Code of Federal Regulations, radiation standards, 44, 46–49
Coke
from coal desulfurization, 210–211
historical use and production, 179
Colorado River, 388
Columbia River, 349, 373, 379, 382
Combustion Engineering, Inc., 188–189, 241
Commonwealth Edison Company, 11–12, 14–15, 110, 241
Concentration of radionuclides, biological
in food chain, 44, 47, 77
in tissue, 32–33
Connecticut River, 163
flow-rate, 167, 352
Connecticut Yankee power plant, 118
noble and activation gases from, table, 115
radioactive effluent from, tables, 36
Conowingo dam, 164, 167
Consolidated Edison Company of New York, 161, 182–186, 228–229, 312, 408
Consolidated Coal Company, 206, 208, 210, 331
Consumers Power Company, 348
Contour mining, 318–319. See also Strip mining
photograph, 320
Coolant disposal, reactor, 27
Cooling
once-through, 346, 348–349, 353, 369–370, 399–400
alternatives to, 400–401
of power plants, 341–350, 352, 368
chemical pollution from, 404–405
investment costs of systems for, tables, 370, 403
water flow rates required, 398
Cooling ponds, 348, 358, 370, 400–404
Cooling ponds (continued)
flow diagram, 402
investment cost, tables, 370, 403
Cooling towers, 348, 358, 370-371, 400-407
dry, advantages of, 405-407
dry, cost vs. heat transfer in, 405
figure, 406
flow diagram, 402
investment cost, tables, 370, 403
photograph of, 313
wet, environmental effects of, 371, 388, 404
Cooling water, 344-346, 352, 368, 394, 399-400
tables, 345, 398, 403
used by U.S. industry, table, 345
Cornell University, 354
Cornwall pumped storage project, 161
Corrosion products from reactors, table, 36
COWAR. See International Council of Scientific Unions
Cracking, to remove sulfur from oil, 239-240
Crude oil. See Oil
Cryogenic sampling, 266, 283-284
Curry, James A., 320
Cycle heat. See Waste heat

Dabob Bay, 382
Dams, 133-154. See also Dams, effects of
economic, social, ecological effects of, 137
generating capacity of, 159
hydroelectric potential of U.S., 159, 161
and national pride, 135
photographs, 134, 140-141
purposes for, 135
reservoirs and lakes compared, 135
Dams, effects of. See also Dams
atmospheric, 139, 141
biological, 141-147
on aquatic ecosystem, 144-147
on terrestrial ecosystem, 142-143
economic, 148-150
geological, 141
on humans, 147-152
disease, 145-146, 149
industrialization, 149
psychological, 147-148
social, 147
hydrologic, 136-139
on transportation and communication, 147-152
photographs, 143, 151
Davis, Billy, 319, 321
Davis, H. L., 5
Deerfield River, 374
Deforestation, effect on climate, 260-261
DeHaan, Robert L., 95
Del value for sulfur, 303
in fuel oil, table, 309
table, 304
Delaware River, 160, 163
Delmarva Power and Light Company, 313
Delta-Mendota canal, 164
Denmark, precipitation, 292-299
nitrites in, figure, 298
sulfur in, figures, 293, 296
total excess acid and base in, figure, 300
Desulfurization of oil, 230-242
cost of equipment for, 249
plants for, table, 235
at power plant, 235-242
at refinery, 231-235
Detroit Edison Company, 188
Diagnostic use of x rays, 50-52, 69
Diamond, Earl L., 69-71, 82-93
Diseases caused by radiation, 49-51, 64-68
genetic hazards, 55, 85
risk of, tables, 98-99
compared with other risks, figure, 100
in young people, 50
Distillate, percent in oils, 231
Distillation of acid mine water, 334
Dolomite sulfur oxide removal
in fluidized bed, 206-208, 218-219
in oil combustion, 238
Dolomite sulfur oxide removal (continued)
in pulverized fuel furnace, 188
Dose, radiation, 54, 67
to bone and lung from air near power plant, table, 111
to bone from radionuclides in water, 46–47, 75–76
table, 46
lethal, for oocytes, 84
threshold, 53–54, 68, 79
Doubling dose, 52–53
discussion on use of, 64–66, 80
table, 50
Dow Chemical Company, 381
Dresden Nuclear Power Station, 11, 110, 118
noble and activation gases from, 115
radioactive effluent, 113–115
tables of, 36, 114, 115
site characteristics, 110
whole body dose rate in plume from, 115
Dry cooling towers, 405–406. See also Cooling towers
DuBridge, Lee, 11
Dunster, H. J., 103n
Dust, effect on climate, 254–255, 260
Dust-collection equipment. See Electrostatic precipitators
Dutch Shell, 240
Earth, energy balance for, figure, 256
Ecology
aquatic, and thermal pollution, 353–358
need for research in, 360
riverine and lacustrine, 136–139, 145
Edington, Charles W., 63–74
Edison Electric Institute, 409
Efficiency of heat rejection cycles, 396–397
Efficiency of power generation
with bottoming cycles, 406–407
figure, 391
with gas turbine or MHD topping, 217
nuclear, 213–214, 398
nuclear and fossil compared, 344n, 353, 358–359, 397–398
pumped storage, 159
relation to cooling cycle, 396
and siting requirements, 387–388
Eisenbud, Merrill, 23–43, 75–77, 80–81, 126
Electric power. See Power production
Electrodialysis for acid mine water, 334–335
Electrostatic precipitators, 13, 185–186
cost of, figure, 186
design curves, figure, 185
operating temperature, 183
performance for low-sulfur coal, 183
photograph, 184
size, figure, 183
Elk River power plant, radioactive effluent, tables, 36
and air-water energy transfer, 254–255
effect of carbon dioxide, 251–254
effect of gaseous pollutants, 248–249
figure, 256
need for study of, 257–259
perturbed by man, 255–257
Energy production
atmospheric heating from, 254–257
cooling water requirement, 344–346, 352, 368, 394, 399–400
table, 345, 398, 403
dependence of society on, 7–10
global, 249
per capita, 256–257, 366
large vs. small plants, 12
U.S., 3, 12, 16, 249, 351, 366–367
in Boston-Washington megalopolis, 390
figures, 390, 395
installed capacity, 394–395
and national policy, 7–10, 391–392
skyscraper requirement, 391
tables 344, 366
Energy resources
coal or nuclear, 213–216
global consumption, 248–251
importance of competition among, 16
management and public policy, 391–392
U.S., 317
wasteful use of, 392
Energy transfer, air-water
evaporation loss, 138, 145, 399, 404
and oil pollution, 254–255
and waste heat dispersal, 375, 399
England, sulfur in precipitation, 294
figures, 295, 296, 300
English Station power plant, photograph, 312
Environment
man’s interaction with, 166, 170–171, 253
man’s value toward, 3–5, 350, 360, 365, 408–409
Environmental alteration, program for study of, 257–259
Environmental degradation
a polluted atmosphere, 274–279
cost of cleanup, 8
cost-benefit of improvements, 336–337
Environmental monitoring near reactors, 31, 33
Environmental quality
and power policy, 10, 387–388, 391–392
and societal conflicts, 8, 343
Environmental radioactivity, 31, 95–96
in soil, 110
Eriksson, Erik, 289–301
Erosion
caused by strip mining, 319–320
photograph, 321
related to dams, 138, 146, 152
Esso Research and Engineering, 234
Europe, atmospheric pollution from nitrates, 297
figures, 298, 300
from sulfur, 292–294
figures, 293, 295–296, 300
Eutrophication and thermal pollution, 355–356, 400
Evans, Robley D., 79
Evaporation loss, 138, 145, 399
from cooling ponds and towers, 404
Evaporative cooling. See Cooling ponds; Cooling towers
Evapotranspiration, 138, 145
Exhaust, automobile, 274, 297
and photochemical smog, 274–276
Eye irritation from smog, 278
Fallout from weapons tests, 35, 76
Fanning, Delvin S., 261
Farmer, Robert E., Jr., 337
Fast-breeder nuclear reactor
projected use, 15–16
uncertainties, 214
Fay, James A., 3–6
Feather River, 163
Federal Radiation Council (FRC). See under U.S. Government
Federal Water Quality Administration (FWQA). See under U.S. Government, Department of the Interior
Fetal death, radiation-related, 86–88
Fetal germ cells, radiation effects, 56, 82–83
Fetus, radiation effects, 66, 68–69
Filtration of reactor coolant, 27
Finger Lakes, 354
Fish aquaculture in heated water, 358
proposed study of, 382
Fish migration, effect of dams and pumped storage on, 146–147, 168
Fish populations
effect of flood control on, 146
effect of thermal pollution on, 346–347, 355–357
in reservoirs
behind dams, 144
pumped storage, 164–166, 168
Index

Fish populations (continued)
in tailwaters, 139
Fish and Wildlife Service. See under
U.S. Government, Department of the Interior
Fission products, 25, 27
released from reactors, table, 36
Florida, 375
Florida Power and Light Company, 109, 382
Fluidized-bed combustion, 189–213
carbon-lean ash-agglomerating, 204
carbon-lean (BCURA) high-pressure,
figure, 193–199
carbon-rich, 198–199, 207–209
figure, 199
carbon-rich ash-agglomerating, 200–203
figures, 200, 202
CERCHAR, 200–203
figure, 200
circulating (Lurgi), 201–203
in Coalplex, 209–213
cost reductions from, 195–196
figure, 190
with gas turbine for combustion
gases, 193–198
Ignifluid boiler for, 191–193
figures, 191–192
of low-sulfur coke, 211
multiple-zone, 211–212
Szikla-Rozinék, 205–206
Fluidized bed for absorption of SO₂
from coal combustion, 206–208
from oil combustion, 238
Fly ash, 107–123
biological availability, 111
effect of combustion temperature on,
191–192
electrical resistivity, 183
quantities produced, 109–110, 112, 181
radioactivity of, 116
table, 108
Fly ash removal
cost of control equipment, figure, 186
electrostatic precipitator for, 183–186
figure, 183
photograph, 184
by scrubbing, 189, 204 (See also
Scrubbing)
FMC Corporation, 208, 210
Foerster, J. W., 95
Fontana dam, photograph, 134
Formaldehyde in smog, 278–279
Fossil fuel. See Fuels
FPC. See under U.S. Government
Franklin Institute Research Laboratories, 405–406
Freezing for acid mine water, 334–335
Fuels. See also Coal; Gas; Oil
carbon dioxide from combustion of,
247
consumed for energy production,
249
in U.S., 228–229
nitrates from combustion of, 293–300
nuclear, 23–24, 75
future availability of, 214
Maryland policy regarding, 95
reprocessing of, 47
radioactive fly ash content of, table,
108
selection of, 18
sulfur content of, 228, 307–309
New Jersey regulation on, 175, 206, 228
standards on, 228
table, 309
Furnace types for coal combustion,
181
Gas
produced from coal, 209–213
replacement for coal, 15
Gas turbine
and coal gasification, 205–206
for expansion of combustion gases,
195–196
input gas temperature of, 197–198
and oil desulfurization at power plant, 238–240
Gas turbine (continued)
for peaking capacity, 158, 162, 196
Gas turbine topping in steam plants,
196–198
cost reductions from, 195–196
Gaseous reactor waste
activation and noble gases, tables,
115
radioactive nuclides released, table, 29, 36
Gasification
of coke, 179
Lurgi gasifiers, 205–206
Generators, useful life of, 12–13
Genes, radiation damage to, 54–58,
68–71, 96–99
tables, 98–99
Genetic death, 97–99
Genetic handicap, order of risk of,
99–101
compared with other risks, figure,
100
Geological Survey. See under U.S.
Government, Department of the
Interior
Georgia Power Company, 348
Germ cells, female, 82–83
Gestation, effect of radiation on, 83–
85
Ghana, 143, 151–152
Godel, Albert, 191–193, 199–200
Gofman, John W., 53
Gonads, female fetal, 82
Great Lakes, 383
Greenhouse effect, 251–252, 284
Ground water near reservoirs, 138,
142, 146
of pumped storage type, 168–169
Guidelines for radiation protection.
See Radiation protection stan-
dards
Gulf Oil Company, 234–235
H-3. See Tritium
H-Oil process, 234
Half-life, of reactor gaseous wastes,
table, 29
Halogens, in gaseous reactor waste,
table, 36
Harward, Ernest D., 107–125
Heat balance. See Energy balance,
earth
Heat pollution, atmospheric, 254–257.
See also Waste heat
from power plants, table, 398
Heat rate. See Thermal efficiency of
power plants
Heat rejection methods, 399–405
flow diagrams, 402
table, 403
Hematopoietic organs, cancer induced
in, 50
Hemoglobin, fish, oxygen affinity in
heated water, 356
HEW. See under U.S. Government
Hickel, Walter J., 408
Hoover dam, 164
Hudson River, 161
Humble Oil, 235
Humboldt Bay power plant
noble and activation gases from,
table, 115
radioactive effluent, tables, 36
Hydrocarbon Research, Inc., 234–235
Hydroelectric power generation
dams, environmental effects, 133–154
figure, 137
photographs, 134, 140, 141, 143, 151
installed capacity, 159
potential capacity, U.S., 159, 161
pumped storage, 158–171
environmental effects, 164–169
photographs, 160, 165
size of equipment, 166
Hydrogen. See also Tritium
in smog, 275
in stratosphere and mesosphere, 280–
281
atmospheric reactions of, 269
conversion to sulfur, 207–209, 288
in reservoirs, 144
in stratosphere, 281
ICRP. See International Commission
on Radiological Protection
Idemitsu Kosan, 235
Ignifluid boiler, 191–193, 199–200
figures, 191–192
Illinois, 374
reclaimed parkland in, photograph, 332
strip mining in, 326
Illinois River, 374
Indian Point power plant, figure, 26
noble and activation gases from, table, 115
radioactive effluent from, tables, 36
Institut Français du Pétrole, 234
Insurance against nuclear accidents, 127–128
International Atomic Energy Agency (IAEA), 129
International Biological Program (IBP), 153
International Council of Scientific Unions (ICSU), 153
Iodine-131, 64, 109
buildup in milk, 32–33
in food chain, 64
in liquid reactor waste, 28
maximum permissible concentration in air, 33, 77
Ion exchange for acid mine water, 334–335
Isotope ratio method
sensitivity of, 304–305
for sulfur, 302–315
Isotope ratio of sulfur in fuel, table, 309
Ivory Coast, 152
Jaske, Robert T., 9, 387–393
Jéquier, L., 200–203
Jersey Central Power and Light Company, 160, 163, 313
Johns Hopkins University, The, 56–57, 69–70, 374
Joint Committee on Atomic Energy (JCAE). See under U.S. Government, Congress
Kansas Power and Light Company, 189, 241
Kashima, 235
Kellermann Power Station, 205
Kentucky, strip mining, 319, 326
photographs, 319, 321
Kentucky dam, photograph, 141
Keystone Generating Station, 311
photograph, 313
Kossou dam, 152
Krypton-85, 37, 109
atmospheric accumulation of, 37, 81
projected content, 121
half-life, 29
in reactor waste, 29
Krypton–87, in reactor waste, 29
Krypton–88, in reactor waste, 29
Kuwait crude oil, sulfur content, table, 309
Kuwait National Petroleum, 235
La Crosse power plant, radioactive effluent, tables, 36
Lagler, Karl F., 133–157
Lake Mead, 164
Lake Nasser, 138
Lakeside Station steam plant, 180
Land reclamation, 329–332
aerial seeding for, photograph, 330
of mine drainage areas, 332–336
cost, 334–336
of refuse banks, 325–326
of strip mines, 327–329
cost, 327–329
renewed area, photographs, 331–332
for wildlife habitat, 337–338
Landscape changes, effect on climate, 254–255, 260–261
Landscape pollution. See Pollution, landscape
Laster, Howard, 95
Laughnan, John R., 63–74
Lawrence Radiation Laboratory, 45
Lawrence Station power plant, 189, 241
Leukemia, radiation-induced, 50–52, 65–67, 130
in mice, 67
by neutrons, 68
Libya, low-sulfur oil exploration, 228–229
Licensing
of hydroelectric projects, 166
of nuclear reactors, 30–33, 77, 127–128, 372
Light water reactors. See Nuclear reactors, boiling water, pressurized water
Lignite, global consumption, 249
Limestone, for sulfur oxide removal in fluidized bed, 206–208
in PF furnace, 188, 241
Liquid natural gas (LNG), to replace coal, 15
Liquid reactor waste
in hypothetical river, 45–48
discussion of river, 75–76
radionuclides in, table, 28
Long Island Lighting Company (LILCO), 312, 314–315
Long Island Sound, 163
Los Angeles 274–276
Louisville Courier-Journal, 319, 321
Luce, Charles F., 365, 408
Lung radiation exposure
from air near power plant, table, 111
from atmospheric radon, 31–32
Lung cancer
radiation-induced, 50
smoking or radiation, 79
Lurgi circulating fluidized bed, 201–203
figure, 202
Lurgi gasifiers, 205–206
Lymphatic organs, radiation-induced cancer in, 50–51
McAllister, J., 143, 151
MacDonald, Gordon J. F., 246–262
MacLean, David, 128, 259
Magnetohydrodynamic (MHD) power generation, 204, 217–218
nitrogen oxides from, 217
Maine, 382
Malaria, 145
table, 87
Manganese-54, 75
maximum permissible concentration, 35
Manhattan District, 34
Man-made lakes, 135
Martin, James E., 107–125
Maryland, 94–95
Maryland Academy of Sciences, 94–106
Massachusetts, 374
Mauna Loa Observatory, 247
Maximum permissible concentration (MPC), 35
argument for consideration of, 80
buildup considered in setting, 63–64
buildup not considered in setting, 44
exceeded, 47
as secondary radiation standard, 44–48
Maximum permissible concentrations
antimony-125, 75
cesium-137, 46
iodine-131, 33, 77
manganese-54, 35
radium-226, 35
ruthenium-106, 46
strontium-90, 46–47
tritium (H-3), 35
Maximum permissible dose, 31–32
in United Kingdom, 103
Medical use of radiation, 49, 51–52, 96, 103
during pregnancy, 50, 69, 84–91
table, 87
lack of standards in U.S. for, 96
order of risk from, 101
Mekong River, 153
Meiosis, 83
Meramec Station power plant, 189, 241
Merz, Timothy, 69–71, 82–93
Mesosphere, 264, 279–284
Metabolism and thermal pollution, 346, 355–356
Methane, atmospheric, 273
in smog, 275
in stratosphere and mesosphere, 283–284
Metropolitan Edison Company, 187
Meyer, Mary B., 69–71, 82–93
MHD. See Magnetohydrodynamic power generation
Miami, University of, 376
Institute of Marine Science, 382
Michigan, 348, 381
Middle East oil, 231, 234–235
sulfur content of, table, 309
typical properties of, table, 231
Migration of fish
past dams, 146–147
past pumped storage plants, 168
and thermal pollution, 355–357, 373
Mines. See Coal mining
Mississippi River, 374, 389
Mizushima, 235
Monsanto Chemical Company, 187
Montana crude oil, sulfur content of, table, 309
Morgan, Karl Z., 103n
Morgantown power plant, 375
Muddy Run pumped storage plant, 164, 167–168
photograph, 165
pumping rate of, 167
Mutation frequency, 83–91
National Academy of Engineering, 241–242
National Academy of Sciences, 335
National Air Pollution control Administration (NAPCA). See under U.S. Government, Department of Health, Education, and Welfare
National Center for Atmospheric Research (NCAR), 266–267
National Coal Association, 332
National Council on Radiation Protection and Measurements (NCRP), 30, 32
National Technical Advisory Committee on Water Quality Criteria, 347, 359
National Technical Advisory Subcommittee for Fish, Other Aquatic Life, and Wildlife, 359
Natural background radiation
biological effects of, 130
dose levels from, 31, 95–96
Natural draft cooling tower, 400–403
Natural gas
converted from coal, 209–213
for replacing coal, 15
Neafra crude oil, sulfur content, table, 309
Neuroblastoma, radiation-induced, 51
Neutralization of acid mine waters, 333–334
New Haven, SO₂ pollution in, 311
photograph, 312
New Jersey standards on sulfur in fuel, 175, 206, 228
New York
Finger Lakes, 354
Rule 200 on sulfur in fuel, 228
Nickel, 231–232
in oils, table, 231
Nile River valley, 138, 143
Nitrogen compounds
atmospheric, 271–273, 297
fixation by fuel combustion, 297
in precipitation, 298
in stratosphere and mesosphere, 281
Nitrogen oxides
arranged by increasing valence
nitrous oxide (N₂O), 271–272, 281
nitric oxide (NO), 272, 276–278, 281
nitrogen dioxide (NO₂), 272–273, 276–279, 281
nitrogen pentoxide (N₂O₅), 273, 281
atmospheric, 294–295, 297–300
in MHD power generation, 217
in photochemical smog, 275
daily variation of, figure, 276
Noble gases released from reactors, 113
tables, 36, 115
whole body exposure from, 114
Nondegradation, water quality standard, 347
Nondisjunction, 71, 89-90
Norris dam, photograph, 140
North African low-sulfur oil, 232
exploration for, 228-229
Northeast Utilities Service Company, 161
Northfield Mountain Pumped Storage Project, 161-163, 166-167
pumping rate for, 167
Northport power plant, 311-315
photograph, 314
stack gas plume measurements
figure, 314
table, 315
Norway, precipitation, 292-299
nitrates in, figure, 298
sulfur in, figures, 293, 296
total excess acid and base in, figure, 300
Nuclear fuel, future availability, 213-214
Nuclear fuel-reprocessing plant, 47
Krypton-85 released from, 121
Maryland policy regarding, 95
Nuclear power plants. See also Nuclear power plants, radioactive effluents; Power plants, nuclear accident probability, 127-128
cooling water needs, 344-346, 352-353, 368-369
efficiency of, 213-214, 344n, 353, 368-369, 398
fast breeder reactor for
projected use, 15-16
uncertainties of, 214
generating capacity, growth of, 366-367
figure, 395
siting of, 127-128
Nuclear power plants, radioactive effluents, 25-29, 34-38, 40, 75-77, 112-123
accidental release of, 24
BWR and PWR compared, 116-120
tables, 118, 120
compared with fossil plants, 107-123
from Dresden 1, dose rates, table, 114
gaseous activation and noble gases in, tables of, 36, 115
radionuclides in, table, 29
limits on radioactivity of, 30-33 (see also Standards for radiation protection)
liquid in hypothetical river, 45-48, 75-76
radionuclides in, table, 28
purification of, 27
storage of
permanent, 27
temporary, 29, 116, 120
Nuclear reactors
boiling water (BWR), figure, 27
cesium-137, inventory of, 47, 77
fast breeder, 15-16, 214
fuel composition and assembly, 23-24
licensing, 30-33, 77, 127-128, 372
number in use, 23
present-day devices inefficient, 213-214
pressurized water (PWR), 25
exploded view, figure, 26
regulations for exporting, 128-130
temperature coefficient of reactivity of, 24
Nuclear weapons, radioactivity released from, 35, 76
Oak Ridge National Laboratory (ORNL), 23
Oakley, Donald T., 107-125
Oceans
carbon content of, 247-248, 251
figure, 248
oil pollution of, 254-255
sulfur content of, 290
and use of waste heat for upwelling, 407
Ohio, strip mining in, 326
reclaimed land, photograph, 331
Ohio River, 389
Oil consumed for energy production, 249-250
conversion from coal, 209-213, 215
depletion allowance, 231
low-sulfur exploration for, 228
use in replacing coal, 15
market for high sulfur content, 228
radioactive fly ash content of, table, 108
reserves of, 250
sulfur content of, table, 309
and cost factors, 233-237
standards for, 175, 206
Oil desulfurization
in combustion complete, 237-238
partial, 238-239
cost of, figure, 236
by cracking, 239-240
figure, 239
at power plant, 235-242
at refinery, 231-235
Oil pollution, oceans, 254-255
Oklahoma crude oil, sulfur content of, table, 309
Olefins, in smog, 275, 277-279
Olympic peninsula, 382
Once-through cooling, 346, 348-349, 353, 369-370
alternatives to, 400-401
reducing effects of the discharge, 399-400
Onchocerciasis, 146
Oocytes, radiation damage to, 71, 83
Oogonia, radiation damage to, 83
Oregon, 349
Eugene Water and Electric Board, 382
Oroville dam, 163
Oxygen atmospheric, man-induced changes in, 261
in cooling waters and streams, 346, 355-356
reactions of in stratosphere and mesosphere, 279-284
in troposphere, 266, 269-279
in reservoirs and tailwater, 139, 144, 166
Ozone, 269, 272
in photochemical smog, 269, 275-278
daily changes in, figure, 276
radiation absorption of, 248, 266
in stratosphere and mesosphere, 279-284
PAN, in smog, 278-279
Pancreas cancer, radiation-induced, 50
Paraffins, atmospheric, 273
in smog, 275
Particulates released from reactors, table, 36
Paulson, Glenn L., 18, 130
Peach Bottom Atomic Power Station, 164
radioactive effluent, 36
Pelvimetry, during pregnancy, 50, 69, 84-91
and reproductive performance, 82-91
table, 87
Pennsylvania cleanup of acid mine drainage, 335-336
refuse banks in, 323-326
photographs, 324, 326-327
strip mining, 326
subsidence in, 322-323
photograph, 322
Pennsylvania Power and Light Company, 313
Periphyton, 144
Peroxy compounds and radicals in smog, 277-279
Perry, Harry, 317-339
Petroleos Mexicanos, 235
Petroleum, global reserves, 250. See also Fuels; Oil
PF. See Pulverized-fuel combustion
Philadelphia Electric Company, 165, 313
Phillips, Owen, 95
Photochemical reactions, 264–266, 268, 272, 290
in polluted air, 274, 276
in stratosphere and mesosphere, 279–284
Photochemical smog, 269, 272, 274
typical composition of, table, 275
daily variations in, figure, 276
Photochemical yield, 270
Photolysis, 279–281
Photosynthesis, role of carbon dioxide in, 247, 251
figure, 248
Phytoplankton, 144
and agricultural nutrient in oceans, 251
Pintsch-Bamag, 208
Plankton, 144
Pole Station, 247
Pollution. See also Pollution, atmospheric; Pollution, landscape; Pollution, radioactive; Pollution, thermal; Pollution, water
approaches for abatement, 4
control through regulation and subsidy, 9–10
perception of, by man, 8
Pollution, atmospheric, 274–279
composition of, table, 275
daily variations in, figure, 276
nitrogen oxides in, 294–295, 297–300
organic compounds in, 273
polluted precipitation, 292–299
total excess acid and base in, figure, 300
sulfur in, 302
sulfur dioxide in, 289–299
Pollution, landscape, 317–338
acid mine drainage, 320, 329–336
agricultural, 254–255, 260–261
deforestation, 260–261
erosion related to dams, 138, 146, 152
mine fires, 323
reclamation of, 329–332 (see also Reclamation)
refuse banks, 323–326
photographs, 324, 326–328
strip mining, 319–322, 326–329
photographs, 319–321
subsidence, 322–323
photograph, 322
accidental, 24
from Dresden 1, dose rates, table of, 114
effects of (see Biological effects of radiation)
effects of storage time on, 29, 116, 120
gaseous reactor waste
activation and noble gases in, tables, 36, 115
radionuclides in, table, 29
limits on, 31–33 (see also Standards for radiation protection)
liquid reactor waste
in hypothetical river, 45–48, 75–76
radionuclides in, table, 28
nuclear and fossil plant releases
compared, 107–123
pathways to man, 45, 113
permanent storage of, 27
Pollution, thermal
atmospheric, 398
control of, 348–350
table of costs, 349
cooling water requirements, 344–346, 352, 368, 394–404
tables, 345, 398, 403
effects of, 346–347, 357–358
on aquatic ecology, 355–358
on fish, 355–357, 373–374
evaporation losses, 138, 145, 399
modeling and prediction, 374–375, 389
from nuclear and fossil plants, compared, 344n, 352–353, 368–369, 397–398
table, 398
and power plant size, 345, 353, 394, 396–399
and public power policy, 388–389
reduction of, 217

Index
Pollution (continued)
temperature rise from, 346, 349, 353–354
uses for, 348, 358, 381–382, 388, 405–408
water quality standards for, 347–348, 359–360, 372
Pollution, water
by acid mine drainage, 320, 329–332
by chemicals in cooling water, 404–405
Pope, Evans, and Robbins, 193
Portland General Electric Company, 349
Potassium-40, 29
Potomac Electric Power Company, 349
Potomac estuary, 375
Pour point for oils, table, 231
Power companies
Atlantic City Electric, 313
Baltimore Gas and Electric, 94, 313
Boston Edison, 241
Carolina Power and Light, 348
Commonwealth Edison, 11–12, 14–15, 110, 241
Consolidated Edison of New York, 161, 182–186, 228–229, 312, 408
Consumers Power, 348
Delmarva Power and Light, 313
Detroit Edison, 188
Florida Power and Light, 109, 382
Georgia Power, 348
Jersey Central Power and Light, 160, 163, 313
Kansas Power and Light, 189, 241
Long Island Lighting, 312, 314–315
Metropolitan Edison, 187
Northeast Utilities Service, 161
Pennsylvania Power and Light, 313
Philadelphia Electric, 165, 313
Portland General Electric, 349
Potomac Electric Power, 349
Public Service Electric and Gas, 160, 163, 313
UGI, 192, 326
Union Electric, 169, 189, 241
United Illuminating, 312
West Texas Utilities, 196
Power plants. See also Power plants, fossil fuel; Power plants, hydroelectric dams; Power plants, nuclear; Power plants, pumped storage; Power plants, siting coal-fired, 10–18, 177–182, 213–217
power and chemicals from, 17, 209
radioactivity from, compared with nuclear, 107–123
tables of, 111, 118, 120
stack height and radiation exposure, 119–120
cooling water requirements, 344–346, 352, 368, 398
efficiency of (see Efficiency of power generation)
gas turbines, 195–198
generators for
size of, 345, 367, 396–397
useful life of, 12–13
oil-fired, 228–242
Power plants, fossil fuel
Arthur Kill, 312
English Station, photograph, 312
Kellermann, 205
Keystone Generating Station, 311
photograph, 313
Lakeside Station, 180
Lawrence Station, 189, 241
Meramec Station, 189, 241
Morgantown, 375
Northport, 311–315
photograph, 314
stack gas plume measurements
figure, 314
table, 315
Ravenswood Station, 182–186
figures, 182–183
photograph, 184
San Angelo Station, 196
Turkey Point, 109, 111, 116, 375, 382
Widows Creek, 110–111, 113, 116
bone and lung dose rates from, 114
fly ash and particulates from, 116
radioactive releases and dose rates,
table, 111
site characteristics, 116
Power plants, hydroelectric dams. See also Dams
Aswan, 138, 143
Conowingo, 164, 167
Fontana, photograph, 134
Hoover, 164
Kentucky, photograph, 141
Kossou, 152
Norris, photograph, 140
Oroville, 165
Rampart, 153
Thermalito, 163
Turners Falls, 167
Wheeler, 380
Power plants, nuclear. See also Nuclear power plants
Big Rock, radioactive effluent, tables, 36, 115
Browns Ferry, 380
Calvert Cliffs, 94, 375
Connecticut Yankee, radioactive effluent, tables, 36, 115
Dresden, 11, 110, 113–115
radioactive effluent, tables, 36, 114, 115
site characteristics, 110
Elk River, radioactive effluent, tables, 36
Humboldt Bay, radioactive effluent, tables, 36, 115
Indian Point, figure, 26
radioactive effluent, tables, 36, 115
La Crosse, radioactive effluent, tables, 36
San Onofre, radioactive effluent, tables, 36, 115
Saxton, radioactive effluent, tables, 36
Shippingport, 215
Shoreham, 120
Trojan, 349
Turkey Point, 109, 111, 116, 375, 382
Yankee, 109
radioactive effluent, tables, 36, 115
Power plants, pumped storage, 158–171
Cornwall, 161
Muddy Run, 164, 167–168
photograph, 165
Northfield Mountain, 161–163, 166–167
San Luis, 163
Taum Sauk, 169
Thermalito, 163
Tocks Island, 160, 163
Yards Creek, 163
photograph, 160
Power plants, siting, 18–19, 367, 371, 387, 397
and cooling method, 401–405
of dams and pumped storage, 161–162, 166
of nuclear plants, 127–128
required for future, 395, 397
Power production
atmospheric heating from, 254–257
cooling water requirement, 344–346, 352
table, 345
dependence of society on, 7–10
economic factors, 7–10
cost of thermal pollution control, 349–350
table, 349
investment cost for cooling, 370–371, 401–404
tables, 370, 403
rates, 7–10
global, 249
per capita, 256–257, 366
large vs. small plants, 12
and national policy, 391–392
in Boston-Washington megalopolis, 390
figures, 390, 395
installed capacity, 394–395
skyscraper requirement, 391
tables, 344, 366
Precipitation, 292–299
nitrates in, figures, 298
sulfur in, figures, 293, 296
total excess acid and base in, figure, 300
Precipitators, electrostatic, 13, 183–186
 cost of, figure, 186
 design curves for, figure, 185
 operating temperature, 183
 performance for low-sulfur coal, 183
 size of
 figure, 183
 photograph, 184
Pressurized water reactor (PWR). See
 Nuclear reactors, pressurized water
Price-Anderson Act, 127–128
Primary standard for radiation dosage, 44, 48. See also Standards for
 radiation protection
Producer gas, historical use and production, 179, 205
Public Service Electric and Gas Company, 160, 163, 313
Pulverized-fuel (PF) combustion boilers for, 181
 schematic views, 182–183
 history of, 177–182
 time for a change from, 183–191
Pumped storage, 158–171
 advantages of, 161–163
 cost of, 162
 efficiency of, 159
 environmental effects of, 164, 166–169
 installed capacity of, 161
 for peak-load requirements, 158
 photographs, 160, 165
 pumping rates, 167–168
 and water management, 162–164
Purification of reactor coolant, 27
Quabbin reservoir, 163
Radiation
 biological effects of
 on birth rate, 85
 disease, 49–52, 64–68
 on fetus, 50–51, 53–58, 62–72, 85–87
 genetic, 54–58, 68–71, 96–99
 on oocytes and oogonia, 71, 83
 on reproductive performance, 83–84
 table, 87
 superovulation, 83, 88
 doubling dose, 50–52
 discussion on use of, 64–66, 80
 proposed values for, table, 53
 table, 50
 natural background
 biological effects of, 130
 dose levels from, 31, 95–96
Radiation balance for earth, 255–257, 260–261
 effect of gaseous pollutants on, 248–249
 figure, 256
 need for further study of, 257–259
Radiation damage
 repair of, 68
 risk of, compared to other risks, 97–101
Radiation dose
 to bone from radionuclides in water, 46–47, 75–76
 table, 46
 to bone and lung from air near power plant, table, 111
 lethal, for oocytes, 84
 from medical exposure, 49, 96
 from natural sources, 31, 95–96
 threshold, 53–54, 68, 79
 voluntary and involuntary, 96–97, 101
Radiation protection, safety record, 33–34
Radiation protection standards, 31, 44, 95, 97, 102–103
 criticized, 44–48
 favored, 63–65, 78–79
 federal or state, 126
 genetic effects not overlooked in setting, 71–72
 genetic effects overlooked in setting, 55
 maximum permissible concentrations (MPC), 35, 44–48, 80
 buildup factors considered in setting, 63–64
Radiation protection standards, maximum permissible concentrations (continued)
builtup factors not considered in setting, 44
for occupational exposure, 34, 78
proposed reductions of, 58, 102–103
effect of power plants, 126
accidental, 24
from Dresden 1, dose rates, table of, 114
effect of storage time on, 29, 116, 120
as gaseous reactor waste
activation and noble gases, tables of, 36, 115
radionuclides in, table, 29
limits on, 31–33 (see also Standards for radiation protection)
as liquid reactor waste
into hypothetical river, 45–48, 75–76
radionuclides in, table, 28
nuclear and fossil releases compared, 107–123
pathways to man, 45, 113
permanent storage of, 27
Radium-226, 29, 35n
in air near power plant, table, 111
in fly ash, 108–109
maximum permissible concentration, 35
power plant release rate, 112
Radium-228, 29
in fly ash, 108
power plant release rate, 112
Radon, 31–32
Rampart dam, 153
Rate structure, economic factors, 7–10
cost of thermal pollution control, 349–350
table, 349
investment cost for cooling, 370–371, 401–404
tables, 370, 403
Ravenswood Station power plant, 182–186
figures, 182, 183
photograph, 184
Reactor. See Nuclear reactors
Reclamation, 329–332
aerial seeding for, photograph, 330
of mine drainage areas, 332–336, cost, 334–336
of refuse banks, 325–326
and rehabilitation, 329
photographs, 331–332
of strip mines, 327–329
cost, 327–329
renewed areas, photographs, 331–332
for wildlife habitat, 337–338
Refuse banks, 323–326
on fire, 325
photographs, 327–328
photographs, 324, 326
reclamation of, 325–326
Regulatory agencies for nuclear safety, 50–53
Rejected heat. See Waste heat
Reproductive performance, effect of radiation on, 83–91
Reservoirs, 135, 138–139, 142–145, 150
pumped storage, 163–169
Residence time, atmospheric of sulfur, 289–290
of nitrogen oxides, 297
Residual fuel oil, 228–242. See also Oil
Reverse osmosis for acid mine waters, 334
Rheumatoid spondylitis, 49
Rich, Robert P., 95
River Bend crude oil, sulfur content, table, 309
River blindness, 146
Rivers
damming of, 136, 138
flooding stage, 146, 150
flow rates and pumped storage, 167–168
flow stabilization, 138, 146
Index

Rivers (continued)
and liquid reactor waste, 45–48, 75–76
table of radionuclides, 28
Roberts, Mary C., 260
Ruthenium-106, 75
maximum permissible concentration, 46

Safoniya crude oil, sulfur content of, table, 309
San Angelo Station power plant, 196
San Joaquin valley, 163
San Luis dam, 163
San Onofre power plant
noble and activation gases from, table, 115
radioactive effluent, tables of, 36
Sand oil, 250
Saudi Arabia crude oil, sulfur content, table, 309
Saxton nuclear power plant, radioactive effluent, tables, 36
Scandinavia, precipitation, 292–299
nitrates in, figure, 298
sulfur in, figures, 293, 296
total excess acid and base in, figure, 300
Schistosomiasis, 145
Scrubbing, 14, 187, 240–241
with calcined stone in water, 188–189, 241
of fuel gas for hydrogen sulfide removal, 207–209
need for alternatives to, 187, 240–242
for fly ash removal, 189, 204
for sulfur oxide removal
from fluidized bed gases, 207
from stack gases, 188–189, 240–241
Seaborg, Glenn, 4
Secondary radiation standards, 44
Sedimentation in reservoirs, 138
Seismic effects of dams, 141
Seliger, Howard H., 95
Settling basin, reservoir acting as, 138
Sex ratio at birth, radiation effects on, 56–57, 69–71, 82–91
table, 87
Shale oil, 250
Shippingport nuclear power plant, 215
Shoreham nuclear power plant, 120
Sho-Vel-Tum crude oil, sulfur content of, table, 309
Signal Oil Company, 225
Singer, S. Fred, 341–350
Site selection for power plants, 18–19, 367, 371, 387, 397
and cooling method, 401–405
dams and pumped storage, 161–162, 166
nuclear, 127–128
number required, 367, 395
Smith, Frederick E., 7–10
Smog, 268–269, 274–275
photochemical, 269, 272
daily variation in, figure, 276
typical composition of, table, 275
Socolar, Sidney J., 130
Soil stabilization, 328
Solar constant, 256
Solar radiation, 266
and photochemistry, 272, 274, 276
in stratosphere and mesosphere, 279–284
spectral intensity distribution, figure, 268
Somatic effects of radiation, 65–66, 68, 101
Spawning in heated waters, 356–357
Specific gravity of oils, table, 231
Spondylitis, 49, 65
Spray ponds, 348, 400–404
flow diagram, 402
investment costs, table, 403
Squires, Arthur M. (coeditor), 175–245
See also Scrubbing
Standards for radiation protection, 31, 44, 95, 102–103
criticized, 44–48
favored, 63–65, 78–79
federal or state, 126
genetic effects not overlooked in setting, 71–72
genetic effects overlooked, 55
Index

Subsidies for pollution control, 9
Suess effect, 120
Sulfur
atmospheric, 268–271, 289–300, 302
reactions of, 269–271
sources of, 268, 289
as by-product of stack gas, 187
in fuel, 228
coil, 307
cost factors of, 233–237
New Jersey regulations on content of, 175, 206, 228
oil, 307–308
table, 231, 309
as hydrogen sulfide from incomplete combustion, 179–180, 192, 207–215, 237–238
isotope composition, table, 303
isotope ratio, in fuels, 309
del values for, table, 303
natural circulation of, 290
figure, 291
in precipitation, 290–294
figures, 293, 295–296, 300
recovered from calcium sulfide, 207–209, 238
recovered in Coalplex, 209–213
released by man, 290
removal at power plant, 187–189, 235–242
cost alternatives, 236
removal at refinery, 231–234
catalytic hydrodesulfurization, figure, 252
plants for desulfurization, table of, 235
in stratosphere and mesosphere, 281, 283
Sulfur dioxide (SO₂)
atmospheric, 289–299
in combustion gases, 186
conversion to sulfur trioxide in atmosphere, 271, 283, 308–315
cost of control, 175–176
environmental effects of, 41, 302
reaction with half-calcined dolomite, 218

Standards for radiation protection
(continued)
maximum permissible concentrations (MPC), 35, 44–48, 80
buildup factors considered in setting, 63–64
buildup factors not considered, 44
for occupational exposure, 34, 78
proposed reductions of, 58, 102–103
effect on power plants, 126
Standards for thermal pollution of water, 347–348, 359–360, 372
Stapleton, George E., 63–74
Starr, Chauncey, 126
Steigelmann, William H., 394–411
Steinberg, Meyer, 302–316
Steinkohlen-Elektrizität AG, 205
Sterility in irradiated animals, 83
Stewart, O. W., 18
Stomach cancer, radiation-induced, 50, 65
Storage of reactor waste
permanent, 27
temporary, 29, 116, 120
Storm King, 161
Stratopause, 264, 266
Stratosphere, 264–265, 269, 271–272, 279–284, 289
Strip mining, 319–322, 326–329
and acid mine drainage, 329–330
coal production from, 317–318
sulfur content of, 318
cost of reclamation, 327–329
photographs, 319, 320, 321
Strontium-89, in liquid reactor waste, table, 28
Strontium-90
from reactors, 38
in liquid waste, 75–77
table, 28
maximum permissible concentration, 46–47
from weapons tests, 35, 38
Study Panel on Nuclear Plants, Maryland Academy of Sciences, 94–106
Subsidence in coal mine regions, 322–323
Sulfur dioxide (continued)
removal (see also Scrubbing)
in fluidized bed, 206-208, 218-219, 238
in oil combustion, 238
from stack gas, 14, 187-189, 240-241
in stratosphere, 281, 283
yearly discharge of, 175
Sulfur hexafluoride, as tracer, 312, 315
Superovulation, radiation-induced, 88, 88
Susquehanna River, 164, 167
Sweden, precipitation, 292-299
nitrates in, figure, 298
sulfur in, figures, 293, 296
total excess acid and base in, figure, 300
Swimmer's itch, 145
Tamplin, Arthur, 44-60, 63-72, 75-77, 79-80, 82, 90
Taum Sauk pumped storage project, 169
Temperature
atmospheric, 264
figure, 265
historical changes in, 253
in estuaries and coastal zones, prediction of, 374-375
Temperature of cooling water, 346, 349, 353-354
effects on aquatic ecosystems, 354-357
fish, 355-357, 373-374
other effects of, 357-358
Tennessee, contour strip mining, photograph, 320
Tennessee River, 140-141
Thermal balance, 255-257, 260-261
and air-water energy transfer, 254-255
effect of carbon dioxide, 251-254
effect of gaseous pollutants, 248-249
figure, 256
need for study of, 257-259
perturbed by man, 255-257
Thermal effects in water, U.S. Government research programs on, 376-383
biological effects, 378-380
nontreatment solutions, 381-382
plant site selection, 383
transport and behavior of heat in water, 377-378
treatment processes, 380-381
Thermal efficiency of power plants with bottoming cycles, 406-407
figure, 391
with gas turbine or MHD topping, 217
nuclear, 213-214, 398
nuclear and fossil compared, 344n, 353, 368-369, 397-398
pumped storage, 159
relation to cooling cycle, 396
and siting requirements, 387-388
Thermal energy released by man, 249
effect on heat balance, 254-257
Thermal pollution
atmospheric, 398
control of, 348-350
table of costs, 349
cooling water requirements, 344-346, 352, 368, 394-404
tables, 345, 398, 403
effects of, 346-347, 357-358
on aquatic ecology, 353-358
on fish, 355-357, 373-374
evaporation losses, 138, 145, 399
modeling and prediction, 374-375, 389
from nuclear and fossil power plants, compared, 344n, 352-353, 368-369, 397-398
table, 398
and power plant size, 345, 353, 394, 396-399
and public power policy, 388-389
reduction of, 217
temperature rise from, 346, 349, 353-354
uses for, 348, 358, 381-382, 388, 405-408
Thermal pollution (continued)
water quality standards for, 347–348, 359–360, 372
Thermal stratification in reservoirs, 139
Thermalito dam, 163
Thermosphere, 264
Thomas, William A., 126
Thorium, 29, 107
Thorium-228, in fly ash, 108, 112
Thorium-232
in air near power plant, table, 111
in fly ash, 108–109
power plant release rate, 112
and reactor efficiency, 213–214
Threshold dose, 53, 68
cancept challenged, 54
explained, 79
Thymic enlargement, 49
Thyroid cancer, radiation-induced, 50, 66
order of risk, 97
Tittabawassee River, 348
Tocks Island, 160, 163
Tracer methods for sulfur, 302–315
Transmission lines, extra-high-voltage (EHV), and power plant siting, 18–19
Tritium
amount released from reactors, 28–29, 35–38, 81
table, 36
and genetic mutation, 38
half-life of, 29
in hydrosphere, 37–38
maximum permissible concentration, 35
Trojan nuclear power plant, 349
Tropopause, 264, 266
Troposphere, 264–279
polluted, 274–279
Tumors, 66
radiation-induced, tables, 50–51
Turkey Point power plants, 109, 111, 116, 375, 382
Turners Falls reservoir, 167
TVA. See under U.S. Government
UGI Corporation, 192, 326
Union Electric Company, 169, 189, 241
Union Oil Company, 234
United Aircraft, 206
United Illuminating Company, 312
United Kingdom Atomic Energy Authority, 103
United Nations, 129
U.N. Development Program (UNDP), 153
Food and Agriculture Organization (FAO), 153
Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 30, 77
United States Government Advisory Committee on Reactor Safeguards (ACRS), 31
Atomic Energy Commission, 4, 5, 48, 102, 378, 382–384, 409
dual role as developer and protector, 29–43, 62, 81
and export of nuclear technology, 128–130
licensing and regulation, 30–33, 77, 127–128, 372
Pacific Northwest Laboratory, 374
safety record, 33–34, 38–39
thermal pollution, position on regulation of, 372
waste heat research program, 372–376, 389
Congress
Joint Committee on Atomic Energy (JCAE), 11, 42, 127
Clean Water Restoration Act, 387
Federal Water Pollution Control Act, 347
Price-Anderson Act, 127–128
Department of Agriculture, 329
Department of Defense, 5
Department of Health, Education, and Welfare (HEW), 13, 15, 30
Bureau of Radiological Health, 31, 107, 110
United States Government, Department of Health, Education, and Welfare (continued)
National Air Pollution Control Administration (NAPCA), 206, 219
Public Health Service, 31
role in reactor regulation, 39
Department of the Interior, 335, 347, 351, 372-373
Bureau of Commercial Fisheries, 372, 382
Bureau of Land Management, 343
Bureau of Mines, 193, 208, 217-218, 323, 329, 343
Bureau of Outdoor Recreation, 343
Bureau of Reclamation, 343
conservation and development activities of, 343
Federal Water Quality Administration (FWQA), 329, 372, 378, 380-381, 409
Fish and Wildlife Service, 343
Geological Survey, 343
National Park Service, 343
Office of Coal Research, 193, 209, 217-218, 343, 406
Office of Saline Water, 343
Regional Power Administration, 343
Secretary of the Interior, 408
as protector of nation's water, 347
Department of Justice, 372
Federal Power Commission (FPC), 159, 161, 170, 349, 383, 409
licensing of hydroelectric projects, 166
Federal Radiation Council (FRC), 30, 40, 48-49, 95-96, 102
National Academy of Engineering, 241-242
National Academy of Sciences, 335
Oak Ridge National Laboratory, 23
Office of Science and Technology, Committee on Water Resources Research, 377
Tennessee Valley Authority (TVA), 110, 188, 320, 380
photographs, 134, 140, 141
trials of limestone injection for SO2 removal, 188, 241
Water Resources Council, 368
United States Government policies
power policy, 387-388, 391-392
program in global energy balance, 257-259
response to conflicting demands, 343
role in pollution control, 9-10
United States Government research
program on thermal effects in water, 370-383
biological effects, 378-380
nontreatment solutions, 381-382
plant site selection, 383
transport and behavior of heat in water, 377-378
treatment processes, 380-381
Universal Oil Products, 234-235
Upwelling, use of waste heat for, 407
Uranium, 24, 29, 107
Uranium-235, and reactor efficiency, 213-214
Uranium-238
in air near power plant, table, 111
and reactor efficiency, 213-214
release rate, 112
Uranium oxide, reactor fuel, 23-24, 75
Utility companies. See Power Companies
Vanadium, 231-232
in oils, table, 231
Venezuelan oil
metals content of, 231-232
typical properties, table, 231
use in U.S., 229-231, 233-234
Vermont, 352
Volcanic dust, effect on climate, 260
Volta Lake, 152
photographs, 143, 151
Warren, Shields, 78-81
Washington (state), 373, 382
Waste, from nuclear reactors
accidental release of, 24
BWR and PWR compared, 116-120
tables, 118, 120
compared with fossil plants, 107-123
from Dresden I, dose rates, table, 114
gaseous
activation and noble gases, tables, 36, 115
radionuclides released, table, 29
limits on radioactivity of, 30-33 (see also Standards for radiation protection)
liquid
in hypothetical river, 45-48, 75-76
radionuclides released in, table, 28
purification of, 27
storage of
permanent, 27
temporary, 29, 116, 120
Waste heat
to atmosphere, 398
control of, 348-350
table of costs, 349
and cooling water requirements, 344-346, 352, 368, 394-404
tables, 345, 398, 403
effects of, 346-347, 357-358
on aquatic ecology, 353-358
on fish, 355-357, 373-374
evaporation losses, 138, 145, 399
modeling and prediction, 374-375, 389
from nuclear and fossil power plants, compared, 344n, 352-355, 368-369, 397-398
table, 398
and power plant size, 345, 353, 394, 396-399
and public power policy, 388-389
reduction of, 217
temperature rise from, 346, 349, 353-354
uses for, 348, 358, 381-382, 388, 405-408
water quality standards for, 347-348, 359-360, 372

Water
for cooling, 344-346, 352, 360, 394, 406 (see also Cooling)
tables, 345, 403
recreational use, 351
Water chemistry, in reservoirs, 139-140
Water management
in California, 163-164
flow stabilization, 138, 146
use of pumped storage for, 162-164
Water pollution
by acid mine drainage, 320, 329-332
methods and costs of control, 332-336
table, 334
by chemicals in cooling water, 404-405
Water quality
in pumped-storage reservoirs, 168-169
standards for thermal pollution, 347-348, 359-360, 372
Water-soil relationship
near dams, 138, 142-143
at pumped-storage reservoirs, 168-169
Water vapor, radiation absorption, 248, 252
Weapons tests, fallout, 35, 76
West European Atmospheric Chemistry Network, map of, 292
West Texas Utilities Company, 196
West Virginia, strip mining, 326
reclamation techniques, photograph, 330
West Virginia Surface Mining Association, 330
Westinghouse Electric Company, 206, 217
Wheeler reservoir, 380
White, Gilbert F., 137
Widows Creek power plant, 110-111, 113, 116
bone and lung dose rates from, 114
fly ash and particulates from, 116
radioactive releases and dose rates, table, 111
Index

Widows Creek power plant (continued)
 site characteristics, 116
Wilms’ tumor, radiation-induced, 51
Wilson, Daniel W., 63–74
Winkler, F., 189–190
Wolff, Nigel O’C., 95
Wolk, Ronald H., 228–245
Woodrow crude oil, sulfur content of,
 table, 309
Wyoming crude oil, sulfur content of,
 table, 309

Xenon-133, 29
Xenon-135, 29, 37
Xenon-138, 29
X rays
 dose from diagnostic use of, 51–52, 96, 103
 lack of standards for, 96
 order of risk from, 101
 during pregnancy, 50, 69, 84–91
 table, 87
 repair of damage from, 67
 and reproductive performance, 82–91

Yankee Atomic power plant, 109
 noble and activation gases from,
 table, 115
 radioactive effluent from, tables, 36
Yards Creek Pumped Storage Generating Station, 163
 photograph, 160
Yukon River, 153