Index

Absorption, 9
Activation energy, 170
Activity coefficient, 61
Adsorption, kinetics of, 163
Analysis, economic, see Economic evaluation
Approximations, 86
Arrhenius correlation, 9, 41, 161

Batch reaction, 35
Bench-scale experimentation, 4, 19, 76
Bleed stream, 87, 89
Boiler design, 88

Calculations, iterative, 66
Calculations, tabulation of reactor-design, 80, 172
Calculus of variations, 11
Capital cost estimation, 131
Catalyst, activity of, 97
kinetics on, 9
porosity of, 159
properties of, 158-160
surface area of, 159
Catalyst pellets, 9, 98, 162, 166
Censorship, 7
Chemical equilibrium, effect of temperature on, 85
Chemical reaction, see Reaction
Chilton-Colburn equations, 9, 163
Chlorination, chemical kinetics of, 22
Chlorobenzenes, production of, 22
Clausius-Clapeyron equation, 9, 132, 143
Computer, classroom use of, 2

Computer program flow sheet, 147, 180
Computer programming, 146, 178
Consecutive reactions, 22
Control, production, 8
quality, 8
Conversion of a chemical reaction, 85, 97, 152, 192
Conveyor belt, 103, 194
Continuous stirred-tank reactor (CSTR), 11, 24
Cooling water, cost of, 58
temperature rise of, 43
Corrosion, 106
Cost, capital, 38, 57, 58, 181, 195
conversion, 73
operating, 73
optimization of, 28, 39, 70, 116, 142, 183
raw-material, 38, 178
Cost accounting, 12, 13
Cost correlations, 57
Counter-current staged process, 69
Crystallization, 9
Cyclohexane production, 97

Data, consistency of, 6
correlation of, 9, 60
extrapolation of, 9, 60
Data analysis, 8, 22
Data processing, 8
Data reduction, 8
Depreciation, 122
Design, industrial practice of, 1-17
Design parameters, 8
Design results, extrapolation of, 95
Design strategy, 10, 11
Desorption, 162
Engineer i Jig

Gibbs-Duhem equation, 7, 9
Gilliland correlation, 135

Heat exchanger, 141
Heat of solution, 7
Heat transfer, boiling, 9
 fluids of, 88
 indirect, 132
Heat transfer to buried pipes, 111
Heat transfer coefficients, 43
Heat transfer of condensation, 9
Heat transfer in reactors, 171
Henry's law, 9
Hoop stress, 110
Hydraulics, distillation-tray, 140
Hydrogen, industrial sources of, 87
Hydrogenation, catalytic, 77

Incentive, financial, 10
Integration, numerical, 84
Investment, return on, 13, 196
Isothermal reaction, 39
Iterative calculation, 66

Kinetic data, analysis of, 22, 80, 161
Kinetic data, correction for diffusion effects on, 170

Lennard-Jones force constants, 165
Lewis-Matheson method, 136, 148
Limiting case analysis, 4, 95
Linearization, 93, 177
Liquid-liquid extraction, 9
 equilibrium data for, 9, 54, 60
 process-design for, 64
Literature, methods for searching, 6
Market demand, 13
Market information, 5
Market price, 13
Market research, 5
Mass transfer to catalyst pellets, 9, 98, 163
Mass transfer to gas bubbles, 9
Mass transfer in packed beds, 162, 165
Mass transfer in slurry reactors, 9
Mass transfer in sparged reactors, 9
McCabe-Thiele diagram, 136
Mean free path, 168
Mixer-settler design, 58, 64
Murphree efficiency, 9

Difference equations, 174
Differential equations, derivation of, 81, 172
 numerical integration of, 173
Diffusion within catalyst pellets, 9, 98, 162, 166
Diffusivity, binary, 164
 effective, 166
Knudsen, 167
Distillation, see Fractionation
Distribution coefficient, 9, 61
Dynamic programming, 11

Economic evaluation, 2, 38, 71, 72, 96, 98, 115, 181
 terminology of, 12
Effectiveness factor, 9, 166, 169, 174
Efficiency, trav, 9
 mixer-settler, 69
Enthalpy of formation, 42, 77
Enthalpy of reaction, 42, 80, 82
Equilibrium, chemical, 77, 85, 86, 169
 liquid-liquid, 9, 54, 60
 vapor-liquid, 9, 57, 132
Erbar and Maddox correlation, 134
Error, experimental, 162
 probable, 8
Error analysis, 8
Experimental variables, selection of, 60
Experiments, in-plant, 8
 statistically designed, 8, 54, 59
Extrapolation of design results, 95

Factorial experimental design, 54
Fanning equation, 9, 109
Fenske equation, 134
Financial evaluation, see Economic evaluation
Financial incentive, 10
Finite difference techniques, 173
First law of thermodynamics, 82
Flooding velocity, 141
Flow sheet, process, 63, 69, 97, 131, 138, 147
Fluid mechanics, 110
FORTRAN, 146, 180
Fractionator, design of, 9, 67, 132, 140
 optimization of, 142
 tray design for, 146
 vacuum, 138
Fractionator column, diameter of, 140
Fugacity, 61
Nernst's law, 9, 61

Optimization, 3, 70, 80, 113, 116, 140, 182, 193, 194
Oral presentations, 14

Partition coefficient, 9, 61, 62
Parallel reactors, 35, 197
Petrochemical industry, 196
Phase diagram, 62
Pipeline, pressure drop in, 109
thermal expansion in, 105
transportation by, 102
Plug-flow reactor, 38
Pneumatic conveyance, 102
Pore radius, 167
Pressure drop in fractionators, 137-139
Pressure drop in packed bed reactors, 98
Pressure drop in pipelines, 109
Pressure-enthalpy diagram, 141
Process economics, 11
Process engineering fundamentals 1-17
Process flow sheet, see Flow sheet, process
Production control, 8
Programming, discussion of, 146
dynamic, 11
FORTRAN, 146
linear, 10

Quality control, 8

Raoult's law, 7, 9
Raw material costs, 39
Reaction, adiabatic, 87
catalytic, 162
equilibrium, 9
isothermal, 39, 87
kinetics of, 9
temperature of, 39
yield of, 40, 152, 192
Reaction conversion, 80, 85, 97, 152, 192
Reaction, bench-scale, 152
catalytic fixed-bed, 9, 38, 80, 171
continuous stirred-tank, 11, 24
parallel, 35, 197
pressure drop in, 98
shell-and-tube, 171
slurry, 9
sparged, 9

Reactor control, 42-48
Reactor design, 24, 41, 81, 86, 171
Reactor flow sheet, 25, 89, 171
Reactor stability, 42-48
Recycle, 38, 87, 97
Reflux ratio, 134
Residence times, 38, 58
Resistances to catalytic reactions, 162
Results, presentation of, 14
Return on investment, 13, 196
Risk analysis, 13

Safety, 43
Sales forecast, 5
Scale-up, 87, 95
Selling price, 13
Simpson's rule, 84
Simulation, 3, 8
Slurry, pumping of, 102
Slurry reactor, 9
Smoker equations, 147
Solubility, gas in liquid, 9
liquid in liquid, 9, 54
solid in liquid, 9
Solubility data, 7, 9
Solution, heat of, 7
Sparged reactor, 9
Stability, reactor, 42-48
Stability of finite difference equations, 175
Staged process, economic evaluation of, 72
Statistically designed experiments, 8, 60
Steam costs, 58
Steepest ascent, method of, 11
Stoichiometry, 80, 172
Stripper design, 67
Styrene, industrial manufacture of, 126, 129, 146, 197
Suboptimization, 69
Sulfur, mining and production of, 101
properties of, 106
Supersolubility, 9
Surfactant, 73

Temperature of reaction, 39-41
Thermal expansion, 105
Thermodynamics, first-law balance of, 82
Thiele modulus, 9, 166-168
Tortuosity, 167
Transportation costs, 123
Transportation of liquids, 101
Triangular phase diagram, 62
<table>
<thead>
<tr>
<th>Underwood equations, 147</th>
<th>Viscosity of gases, estimation of, 164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum distillation, 138</td>
<td>Visual aids, 14</td>
</tr>
<tr>
<td>Van Heerdon criterion, 45</td>
<td>Volatility, relative, 9, 134</td>
</tr>
<tr>
<td>van't Hoff relationship, 9</td>
<td>Writing, technical, 14</td>
</tr>
<tr>
<td>Vapor-liquid equilibrium, 9, 57, 132</td>
<td></td>
</tr>
<tr>
<td>Variables, critical, 10</td>
<td>Yield, reaction, 40, 152, 192</td>
</tr>
<tr>
<td>selection of, 60</td>
<td></td>
</tr>
<tr>
<td>Venture analysis, 12</td>
<td></td>
</tr>
</tbody>
</table>