INDEX

Absolute instability, 5, 9-10
 criteria for, 20-21, 30-31
 criteria of Fainberg, Kurilko, and Shapiro for, 139-142
 physical interpretation of, 31-32
Acoustic power, 67-68
Adler, R. B., 183
Akhiezer, A. I., 3, 178, 179
Alexander, G. C., 115, 183
Alfvén speed (v_A), 82
Alfvén wave, 81
Alfvén wave instability, 81-83
Allen, M. A., 98, 180
Allis, W. P., 182
Amplification rate, general lower bound, 28
 general upper bound, 29
Amplifying waves, definition of, 5, 10-11
 connection with convective instability, 27-29
 criteria for, 19, 29
 Polovin's criteria for, 36
 in presence of absolute instabilities, 30-31, 38, 167
Backward-wave amplifier, 37-38
Backward-wave oscillator, 37, 41, 89, 182
 starting length for, 90, 96
 three-wave dispersion equation of, 89
Bailey, V. A., 3
Bers, A., 29, 182
Bessel function, small-argument expansions of, 99, 102
 Wronskian of, 100, 101, 106
Birdsall, C. K., 4, 179
Bobroff, D. L., 181
Bogdanov, E. V., 4, 180
Bohm, D., 3, 178
Boltzmann-Vlasov equation, 6, 48, 119, 148
Boyd, G. D., 3, 179
 Branch lines, of dispersion equation of warm plasma, 50, 143-147
 of $F(\omega, z)$, 18, 38
 of Green's function, 16
Brewer, G. R., 4, 179
Briggs, R. J., 182, 183
Buchsbaum, S. J., 182
Buneman, O., 36, 182
Chodorow, M., 89, 180
Chorney, P., 2, 4, 55, 120, 178, 180, 181
Chu, L. J., 4, 179, 183
 C contour, definition of, 18, 19
 poles merging through, 20
 C parameter, of backward-wave oscillator, 89
 in beam-plasma interactions, 89, 91-92, 101, 122-123
Circular polarization, 72, 150-151
Circularly polarized components, 72, 150-151
Convective instability, 5, 9-10
 connection with amplifying waves, 27-29
 criteria for, 20-21, 30-31
Coupling of modes, see Weak-coupling dispersion equations
Crawford, F. W., 179
Cyclotron damping, 73, 79
Cyclotron waves, of finite beam, 87
 of one-dimensional beam, 74-76
 of thin (filamentary) beam, 103
Dawson, J. M., 144, 183
Debye wavelength, definition of, 67
Debye wave number, 63, 120
Derfler, H., 21, 143, 145, 146, 182
Dispersion equation, for longitudinal waves, 50
 for transverse waves, 73
Distribution functions, nonrelativistic Maxwellian, 50
 resonance, 51
 square, 51
Distribution functions, relativistic Maxwellian, 70
Doppler-shifted frequency, 160, 162
Double-stream interaction of contraflowing beams, 42-46
 see also Longitudinal interactions,
 Reactive-medium amplification,
 Resistive-medium amplification
Easitron amplifier, 55
Eidson, J., 89, 180
Electrostatic instabilities, see Longitudinal interactions, Reactive-
medium interactions, Resistive-
medium amplification
Energy (negative small signal), 41
general condition for, 161
of transverse waves, 74-76
Essential singularity of F(ω, z), 22, 33
Evanescent waves, definition of, 5,
10, 11
criteria for, 19, 29
Fainberg, Ya. B., 3, 35, 139, 141,
178, 179, 181
Fano, R. M., 183
Feshbach, H., 182
Field, L. M., 3, 179
Fourier contour, definition of, 13
Fourier transformation, definition of, 13
Freire, G. F., 183
Frequency—wave-number transforma-
tion, 160
F(ω, z), definition of, 15, 18
analytic continuation of, 17-18
branch lines of, 18, 38
branch pole of, 21
essential singularity of, 22-23
F(ω, z), see F(ω, z)
Gerchberg, R., 5, 103, 181
Getty, W. D., 5, 180
Gould, R. W., 2, 3, 178, 179, 182
Green's function, general, 12
Gross, E. P., 3, 178
Group velocity, in unstable systems,
33-34
see also Propagation velocity of un-
stable waves
G(ω, k), definition of, 14
Haeff, A. V., 2, 4, 178, 179
Harrison, E. R., 181
Haus, H. A., 181
Hebenstreit, W. B., 178
Helmholtz equation, 85
solution in circular system, 86
Imre, K., 70, 182
Instability, definition of, 9
condition for in lossless systems,
158-159
Instability criteria, see Absolute insta-
bility, Amplifying waves, Convective
instability
Ion cyclotron frequency instability, in
finite systems, 94-95
in one-dimensional system, 76-81
Ion plasma frequency instability in hot
plasmas, in finite systems, 118-138
in one-dimensional system, 57-71
Johnson, H. R., 182
Kinetic power, 67-68, 111, 130
Kino, G. S., 5, 89, 98, 103, 179, 180,
181
Kislov, J. J., 4, 180
Kitsenko, A. B., 3, 179
Kovner, M. S., 179
Kurilko, V. I., 35, 139, 141, 181
Kusse, B. R., 143, 183
Landau, L. D., 5, 9, 35, 50, 51, 139,
144, 181, 182
Landau damping, 51-52, 54-59, 123
Langmuir, I., 2, 178
Laplace contour, definition of, 13
Laplace transformation, definition of, 13
Laplacian operator, transverse, 85
~ also Reactive—medium amplifica-
tion, Resistive—medium amplifi-
cation
Longitudinal beam waves, 49, 87
Longitudinal interactions, cold beam-
plasma, 32, 48-49
warm plasma, 53-70
~ also Reactive—medium amplifica-
tion, Resistive—medium amplifi-
cation
Longitudinal mass, 71
Louisell, W. H., 182
Mapping of ω(k), 30
Maxum, B. J., 98, 183
Maxwellian distribution function, non-
relativistic, 50
relativistic, 70
Morse, D. L., 5, 96, 180
Morse, P. M., 182
Nergaard, L. S., 178
Neufeld, J., 179
Nonconvective instability, see Absolute
instability
Normal modes, definition of, 11
continuum of, 16
response expressed as, 16, 17
Nunnink, H. J. C. A., 4, 180
Pervance, 101-102, 111-112, 116-117
Pierce, J. R., 2, 3, 90, 110, 178, 181,
182, 183
Plasma wave, quasi-static, approxima-
tion for in waveguide, 86-87
in hot-electron plasma, 120-121
Polarization of transverse waves, 72,
150-151
Polovin, R. V., 36, 139, 181
Index

Power, acoustic, 67-68
small-signal kinetic, 67-68, 111, 130
see also Energy, negative small-signal

Propagation velocity of unstable waves, 23-27, 38
Pulse, spatial, on unstable system, 9, 23-29, 35
Puri, S., 124, 133, 137, 183

QC (space-charge parameter), 89-90, 92
Quasi-static approximation, for beam-plasma dispersion equations, 85-86, 97, 162-164
for plasma waves, 86-87
validity of, 84-85

Reactive-medium amplification (instability) in finite system,
in filled waveguide, 88-89
in hot-electron plasma, 122-123
with thin beam, 99-100
of transverse mode, 103-106
Reactive-medium amplification (instability) in one-dimensional system, 54-57
condition for 60-62
with infinite growth rate, 63-67
Relativistic mass, longitudinal, 71
transverse, 74
Residue evaluation of $F(\omega, z)$, 17
Resistive-medium amplification (instability), 4
in finite system, 123-124
one-dimensional longitudinal, 55, 57-59
one-dimensional transverse, 79-81
Resonance distribution, 51, 72
Rukhadze, A. A., 3, 179
Saddle point of $\omega(k)$, 30-31
Serafim, P., 181
Shapiro, V. D., 35, 139, 141, 181
Shimabukuro, F., 179
Siegel, A. E., 182
Smullin, L. D., 2, 4, 47, 55, 120, 178
Space-charge parameter QC, 89-90, 92
Space-charge waves, of finite system, 49
of one-dimensional system, 87
Spalter, J., 180
Square distribution, 51
Starting length for oscillation, general, 37
of backward-wave oscillator, 90
of cyclotron waves, 96
of space-charge waves, 91-92, 101
Stepanov, K. N., 3, 179
Stix, T. H., 4, 78, 148, 180
Stover, H., 180
Sumi, M., 3, 179
Surface charge, 163
Synchronous beam waves, 103

Tchernov, Z. S., 4, 180
Temperature, 50
in relativistic plasma, 70
Transformation of frequency-wave number, 160
Transformation of small-signal energy and power, 160-161
Transverse beam waves, 73-75, 160-161
Transverse interactions, at ion cyclotron frequency, 75-81
at very low frequencies, 81-83
Transverse mass, 74
Transverse waves in cold plasma, 73
Traveling-wave-tube amplifier, 37, 41, 68
analogy with beam-plasma system, 92, 122
Trivelpiece, A. W., 2, 178, 180, 182
Twiss, R. Q., 3, 5, 9, 178, 181

Unstable wave, definition of, 9

Valun, J., 181
Van Kampen, N. G., 16, 144, 182
Van Kampen modes, 16, 144
Velocity, average thermal, 50
Vlaardingerbroek, M. T., 4, 180, 181
Vlasov equation, 6, 48, 119, 148

Walker, L. R., 55, 182
Weak-coupling dispersion equations, 39-42
Weimer, K. R. U., 4, 180, 181
Wright, H., 179
Wronskian relation for Bessel functions, 100, 101, 106