Index

Annotation. See also Online documentation
hypertext nodes, 100–101
online, 229, 243, 244
systems for, 237 (see Classroom Emacs; Foundation)
Artificial intelligence. See also Automated publishing; Expert systems
and automated publishing, 15–24
cross-referencing, 20
and future of technical writing, 21–22 (see also Writing)
in object recognition, 16
and parallel computer architecture, 22
and technical writers, 7–8
Automated publishing, 15–24, 25–49, 50–54
declarative formatting, 18–20
ethics of, 50–54
online retrieval, 20–21
optical character recognition, 16–17
problems with, 245
vectorization, 17–18

Chunking, 80, 96
Classroom Emacs, 237
Cognitive process
computer models of, 230–231, 232
and hypertext, 96, 231–232
limitations of cognitive model for writing instruction, 232–233 (see also Papert, Seymour)
Skinnerian method, 231–232
in software design, 232
and teaching writing, 230–232
Coleridge, S. T., 113
Computer-assisted instruction. See also Courseware development; Online training
models of, 230–233
Corporate training programs. See Online training
Courseware development, 211–226
automated reports, 218
editorial component, 220–221
graphics, 221–222
instructional design model, 219–220
milestone recording, 216
personnel, 223
production management, 214–218
project organization, 212–214

Declarative formatting. See also Automated publishing
CD ROM storage, 33
classes of, 18
defined, 18
indexing, 19
Design. See also Desktop publishing; Information; Information development; Online documentation
analytic vs. synthetic problem-solving in systems, 11
formats, research in, 258
four stages of, 256–257
Desktop publishing
case studies, users of, 271–274
and document databases, 30–34
integrating word and picture, 269–270
problem-solving techniques in publishing, 268–269
training users, 265–278
vs. mainframe, 25–49

Documentation. See also Investment in; Online documentation; Technical communication; Translation; Usability
budget, 5, 187–209
and level of investment, 202–205

Document database
and declarative formatting, 20
desktop vs. mainframe, 25–49
limitations of, 20
and new technologies, 29–34
online retrieval, 16, 20–21
problems with, 34–38
re-use of text, 35
"seed documents," 21
and status of technical writer, 37
Educational online system, 228–249. See also Online training
components of, 233–239
initial assessment of, 241–244
Expert systems
declarative formatting, 19
and documentation, 7–8
and hypertext, 100
knowledge engineers, 7
in optical character recognition, 17
Smart Documentation Systems, 3

Foundation, 237. See also Annotation; Classroom Emacs; Online documentation

Hypercard. See Hypermedia
Hypermedia. See also Hypertext
and annotation, 87–88
Hypercard, 80, 85
and object-oriented scripting languages, 77–92
sound, 90
videodisc, 89–90

Hypertext
analogy to poetry, 115–117
and cognitive science, 96, 231
and collaboration, 128–129
individualized interfaces, 94–95
integrating expert systems, 100, 103
and limits of traditional rhetoric, 96
links and nodes, 95
literary concept of, 113
and management of documentation cycle, 101–102
and Marianne Moore, 118
modeling human idea processing, 95
navigation in, 85–100
nodes, links, and structures, 124–126
pseudo-hypertext, 98
systems, examples of, 231
and teaching writing, 111–129
and university environment, 126–127
for user-feedback in documentation, 93–109

Information. See also Information development; Translation problems

and computers, 134
development process, need for, 135
teaching design of, 254–255
tolerance levels, 254

Information development. See also Management; Translation problems; Usability
defined, 136–138
as distributed group in industry, 140
as separate industrial organization, 139
and teachers of technical writing, 144–145
and technical communicators, 145–146
usability testing, 142–143 (see also Usability)

In-house training. See Online training

Interface. See Online documentation; User interface

Investment in documentation
case studies of, 187–209
and documentation attributes, 202–205
resource-enriched, 195–202
resource-limited, 189–194
variables for predicting levels of, 206–208

Management. See Courseware development; Information development; Investment in documentation; Online training; Usability

Natural language processing
how language is understood, 55–56
tension sentences, 56–58
lexical ambiguity, 64–65
S-rules, 66
Smart Documentation Systems, 6
START, 55
t-expression, 58–59
transformational rules, 61–63

Networks. See also Online training
and corporate problem-solving, 227

in management of documentation groups, 227
Online documentation. See also Online training
computing capabilities not applied to, 304–307
criteria for good online writing, 315–318
development of, 298–303
and document design, 251–264
foreign idioms in, 343
graphic interfaces, 302
human memory as factor in, 301
interface problems of, 307–308
maintenance of, mainframe, 303
major types of, 291–295, 312–314
metaphor, 337–338
multi-tasking, 307
notebooks, 306
paths, 335–337
role of writers, 11
screen design, 297, 299–300
Smart Documentation Systems, 3
storyboarding, 300–301
style, 329
truncated texts, 301–302
tutorials, 5
users control of, 338–339
use in document prototyping, 101–102
uses of, 295

Online training, 227–249
cognitive model, 230–232
computer-based training, 314
corporate environment, 227
functions of, 228–230
“mechanism” model, 230
university, 227

Papert, Seymour, computers in education, 233

Pixel-oriented graphics editing disadvantages, 18

Process
of design research, 252–264
for information development, need of, 135
of managing change in corporations, 150
model for composition, 227, 230–231
parallel development process (see also Information development), 140–144

Storyboarding. See Online documentation

Technical communication. See also Information development; Desktop publishing;
Online documentation; Translation problems
and artificial intelligence, 7
expanded role of, 137–138, 149
future of, 3–13
as revolution in English departments, 135
and rhetoric, 135

Testing. See Usability

Translation problems in documentation
American/British English, 350–353
colloquial expressions, 348–349
culture-bound references, 348
elliptical style, 362–363
inconsistent use of terms, 345–346
punctuation, 360–362
space for text, 347
syntax, 357–359
tone, 355–356

Usability, 175–185. See also Information development
adjusting design and production, 8
after-the-fact testing, 177
analog to software testing, 176, 179, 181–182, 184
business objectives of, 176–177
cost–benefit, 177–178
document maintenance, 181–182
and system design, 6, 182–183
testing, 5
theory of, 183–184
verification phase, 142–143

User interface
bitmapped displays for hypertext, 79–80
complexity of in online classroom, 243
expert systems, 7–8
individualized in hypertext, 99–101
menu-driven help screens, 5
part of initial product conception, 184
problems in online documentation, 307–308
in Space Station, 6
and theory of usability testing, 184–185
writers as designers of, 9
Workstations. See also Desktop publishing;
 Online training
 Athena network, 235
 as composing tool, 242
 in online classroom, 239, 244
Writers
 agents of change, 153
 as computer scientists, 311
 designers of user interfaces, 9–10
 expanding role of, 135
 and expert systems, 7–8
 future of in computer industry, 3–13, 21–22
 and holistic technology, 286–287
 and hypertext, 77
 importance of location to, 158
 increased technical sophistication of, 9
 information architects, 78
 information developers, 136–137
 job-security, 53–54
 needs of in desktop publishing, 271
 obsolescence of, 279–288
 in organization of documentation groups,
 158–159
 as programmers, 83
 SMEs, 224–225
 strategies for learning, 279–280
 training of in desktop publishing, 265–278
 as user advocates, 8
Writing. See also Hypertext; Information development; Online documentation; Online training; Translation problems
 future of in computer industry, 3–13
 vs. information development, 138
 submergence in industry, 281
WYSIWYG. See Automated publishing;
 Desktop publishing

Xanadu, 113