APPLYING COGNITIVE SCIENCE TO EDUCATION

Thinking and Learning in Scientific and Other Complex Domains

FREDERICK REIF
Contents

Preface xiii

I BASIC ISSUES 1

1 Performance, Learning, and Teaching 3
 1.1 Thinking about thinking 3
 1.2 Basic issues 4
 1.3 Importance of these issues 5
 1.4 Structure of the book 8

2 Intellectual Performance 11
 2.1 Description of performance 11
 2.2 Performance in complex domains 13
 2.3 Characteristics of good performance 15
 2.4 Analysis of performance 18
 2.5 Analysis of good performance 21
 2.6 Comparisons and overview 23
 2.7 Summary 26

II GOOD PERFORMANCE 27

II-A Usability 29

3 Important Kinds of Knowledge 31
 3.1 Declarative and procedural knowledge 32
 3.2 Comparative advantages and disadvantages 33
 3.3 Uses of declarative and procedural knowledge 34
 3.4 Condition-dependent knowledge 37
 3.5 Educational implications 38
 3.6 Summary 41
4 Specifying and Interpreting Concepts 43
4.1 Knowledge and concepts 44
4.2 Types of concepts 47
4.3 Kinds of concept specifications 51
4.4 Scientific importance of concept specifications 54
4.5 Educational implications 57
4.6 Summary 59

5 Interpreting Scientific Concepts 61
5.1 Students’ interpretation of the concept acceleration 62
5.2 Motion and the concept of acceleration 66
5.3 Specification of acceleration 69
5.4 Causes of interpretation deficiencies 71
5.5 Requirements for usable concept knowledge 77
5.6 Educational implications 80
5.7 Summary 83

6 Managing Memory 85
6.1 Properties of human memory 86
6.2 Basic memory processes 88
6.3 Practical memory management 94
6.4 Educational implications 98
6.5 Summary 100

II-B Effectiveness 101

7 Methods and Inferences 103
7.1 Methods and procedures 104
7.2 Specification of procedures 106
7.3 Making inferences 109
7.4 Educational implications 113
7.5 Summary 116

8 Describing Knowledge 119
8.1 Descriptions and their referents 120
8.2 Alternative descriptions 122
8.3 Characteristics of different descriptions 126
8.4 Complementary use of different descriptions 129
8.5 Educational implications 132
8.6 Summary 136

9 Organizing Knowledge 137
9.1 Importance of knowledge organization 138
9.2 Some forms of knowledge organization 139
9.3 Dealing with large amounts of knowledge 142
II-D Efficiency 255

14 Efficiency and Compiled Knowledge 257
 14.1 Importance of efficiency 258
 14.2 Compiling knowledge 260
 14.3 Routine performance 261
 14.4 Automatic performance 263
 14.5 Benefits and dangers of efficient performance 266
 14.6 Educational implications 267
 14.7 Summary 269

II-E Reliability 271

15 Quality Assurance 273
 15.1 Ensuring good quality 274
 15.2 Preventing defects 276
 15.3 Assessing performance 278
 15.4 Improving performance 280
 15.5 Metacognition 281
 15.6 Educational implications 282
 15.7 Summary 284
 15.8 Good performance and the instructional challenge 285

III PRIOR KNOWLEDGE 287

16 Unfamiliar Knowledge Domains 289
 16.1 Prior knowledge and new learning 290
 16.2 Everyday and scientific domains 293
 16.3 Contrasting scientific and everyday cognitions 297
 16.4 Scientists’ and students’ conceptions of science 302
 16.5 Educational implications 306
 16.6 Summary 308

17 Naive Scientific Knowledge 311
 17.1 Characteristics of naive scientific knowledge 312
 17.2 Students’ prior knowledge about science 314
 17.3 Naive conceptions about motion 316
 17.4 Naive notions about the causes of motion 319
 17.5 Force as a cause of motion 322
 17.6 Educational implications 327
 17.7 Summary 332