THE ALLURE OF MACHINIC LIFE

Cybernetics, Artificial Life, and the New AI

John Johnston

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England
Abrahamsen, Adele. See Bechtel
Abstract machine, 105, 286
computer as, 8, 61
in DeLanda, 127, 129
in Deleuze and Guattari, 119–120, 152–153, 289
Ackley, David, 15, 267–270
crc, 268–269
evolutionary reinforcement learning, 236
Lamarckian evolution, 418n43
and “living computation,” 267–270
Adami, Christoph, 2, 20, 246–253, 260
Avida, 246–253
on complexity, 250–252
information and the genome, 249–253
on robot self-modeling, 411
agent-based emergence, 14, 341–342
multiagent systems, 14, 232–234, 256–260
Agre, Philip, and David Chapman
dectic representation, 355
Pengi, 354–356
AI. See also New AI
Brooks's critique of, 343, 346–347
classical (symbolic) AI, xii, 15, 287, 290–302, 313, 337–338
and cognitive science, 281–286
cognitivism and “mind as computer” model, 297–302
and computer games, 388
expert or smart systems, 298, 348, 386–387
importance of chess in, 293, 387, 450n4
origins, 287–297
physical symbol system hypothesis in, 293–296
Searle’s critique of, 333–335, 395
strong and weak, 434n1
symbolic AI versus connectionism, 313–319, 337–338
three ten-year stages, 298
as top-down model of human intelligence, 8, 173, 337
Algorithm, 69, 70–71, 172, 364, 396
ALife
and connectionism, 173
as emergent, self-organizing system, 13
and games, 434n77
genotype and phenotype, 176–177
influence on AI, 15, 338, 343, 347–348, 365
Langton versus Varela, 197–199, 201, 215
manipulation of genome in, 18, 246–248, 254–256
strong theory of, 1, 166, 180, 215, 401
synthetic approach, 176
versus AI, x, 173
wetlife approach, 270–274
Amoeba, 253–260
Animats, 15, 353
Artificial chemistry, 200–201
Artificial intelligence. See AI
Artificial life. See ALife
Artificial protocells, 15, 270–274
top-down versus bottom-up approach, 270–271
Ashby, W. Ross, 1, 2, 8–9, 30, 31–34, 50, 384
coupled dynamical systems, 31, 40
cybernetics as a theory of machines, 30, 40
Design for a Brain, 30, 40, 44, 45
homeostat machine, 30, 40–47
Introduction to Cybernetics, 30, 40
Markovian machines, 31, 424n27
self-organizing machines, 53–55
Asimov, Isaac, 25
Automata theory, 27, 29, 34–39, 69, 165, 168–170, 420n15. See also Neumann
See also Pengi
Autonomous mobile robots, 216, 338, 347. See also Braitenberg; Brooks; Mataric; Steels; Walter
Genghis, 344
Herbert, 344
multirobot systems, 349, 351, 356–360
subsumption architecture in, 342–346
Swarm-bots, 381–382
Autopoiesis, 188–195. See also Maturana; Varela
Avida, 246–253
Axelrod, Robert, 221
Bak, Per, 227
Baum, Eric
critique of AI programs, 389–390, 393
and Hayek machine, 393–395
human thinking as computational, 389, 391
modularity of mind, 391–393
What Is Thought?, 389–395
Beaune, J.-C., 30
Bechtel, William, and Adele Abrahamsen,
Connectionism and the Mind, 309
Becoming-machinic, 7, 19, 20–22, 107
Becoming-organic, 7
Bedau, Mark, 15
measure of evolutionary activity, 261–263
Beer, Randall
agent and environment as coupled system, 361–363
dynamical systems perspective, 360–363
neural net controller for simulated robot, 363–365
Behavior-based robotics, 64, 338, 346, 347, 348. See also Beer; Brooks; Mataric; Steels
Belin, Alletta d’A., 17–18
Bell, Graham, 220
Bergson, Henri, 18, 27
Creative Evolution, 18, 27
on the virtual/actual and the possible/real, 119–120
Bichat, Xavier, Treatise on Membranes, 4
Bigelow, Julian, 29, 43, 44
Biological Computer Laboratory (University of Illinois), 54
Boids, 179, 357, 376, 401
Boltzmann, Ludwig, 27, 137–138
Boltzmann machine, 311
Bonabeau, Eric, 342, 377–378
Bongard, Josh, 409
Boole, George, 92, 94
The Laws of Thought, 423n13, 425n36
Boolean network, 224
Bottom-up, distributed parallel processing, 6, 8, 170, 173–174, 199. See also Connectionism; Emergent computation
Braitenberg, Valentino, 34
and Vehicles, 61–64
Breazeal, Cynthia
on Cog, 330–332
on Kismet, 331–332, 347
Brooks, Rodney, 15, 280, 338, 342–347
Cog, 328–331, 347
critique of symbolic AI, 343, 346–347
“Elephants Don’t Play Chess,” 103
on neural plasticity, 450n18
“new stuff” hypothesis, 385–386
on sense-model-plan-act approach, 344–345, 409
situatedness and embodiment, 345–347
subsumption architecture in robotics, 16, 342–347
on Walter’s robots, 52
Bugs, 261, 262, 263, 439n71
Burks, Arthur, 119
Buss, Leo, 234
Butler, Samuel, Erewhon, 12
Caporale, Lynn Helena, 5–6, 223, 416n13
crc, 268–269
complex behavior of, 9–10
computation in, 170, 241–246
as nonlinear dynamical systems, 10, 181, 184–186
as programmable matter, 182
simulation, 10, 170–171
and universal computation, 170, 181
Cellular Automata Machine (CAM), 10, 182
Chalmers, David, critique of Searle, 334
Chaos science or theory, 108–109, 110, 126–127, 130, 132–136, 154, 159. See also Nonlinear dynamical systems
Chaotic attractor, 126, 140, 141–142, 144, 152, 153, 155
Chapman, David. See Agre
Chen, Liaohai, and artificial protocells, 272–274
Chomsky, Noam, 88–91, 291
competence and performance, 300
computational hierarchy, 91, 156–157, 238
machines, 89–91, 95
Syntactic Structures, 89, 95, 300–301
time of grammar, 90–91
Church, Alonso, 35
Churchland, Paul
critique of Dennett’s theory of consciousness, 326–328
The Engine of Reason, 313, 314, 445n76
Clark, Andy, on cyborgs, 419n51
Cliff, David, 368
Dewdney, A. K., 210
Dick, Philip K., 65
Digital organisms, 1, 2, 165
evolution of, 181, 217–222, 229–230, 248–267
spontaneous emergence of, 253–260

Dorigo, Marco, 377

Doyle, Richard, xi
doubler, Dominique, 67
Dynamical Systems Collective (Santa Cruz), 134–135, 140, 155
Dynamical systems theory, 58, 108, 139, 278–279, 352, 360–364. See also Nonlinear dynamical systems
attractor, 58, 126, 224–225, 278, 364
bifurcation, 58, 126, 278, 364
and computation, 155–162 (see also Crutchfield)
computer and, 108
and information processing (see Adami; Langton; Shaw, Robert)
model of language, 319–324
phase portrait, 58

Eberhart, Russell C. See Kennedy
Echo, 14, 231–236, 262, 263
Edwards, Paul, The Closed World, 289, 296
Egan, Greg, Permutation City, 165
Eigen, Manfred, 57, 439
Eldridge, Niles, and Stephen Jay Gould, punctuated equilibrium, 223
Eliza, 390
Ellul, Jacques, 283
Elman, Jeffrey, dynamical systems model of language, 319–324
Embodiment, 345–346
Emergence, 14, 52, 173–175, 216, 236–238, 341–342, 349–351, 415n3
Emergent computation, 6, 173, 236–237, 240, 246
Evita, 439n71
Evolutionary programming, 16, 180, 364–365, 369, 390
Evolutionary psychology, 391–393
Evolutionary robotics, 350–352, 364–375
coevolving robot and simulator, 373–374
GOLEM and coevolution, 370–371
robotic self-organization and Swiss-Italian group, 369–370
Sussex group and SAGA, 368
Evolution as computation, 20

Farmer, J. Doyne, 10, 17–18, 135, 205–210
conference on “Evolution, Games, and Learning,” 205–206, 240–241
simulated immune system (with Packard and Perelson), 206–210
Feigenbaum, Mitchell, 57
Finite state automata, 89–90
Floreano, Dario. See Nolfi
Flynn, Anita, 343
Fodor, Jerry
critique of connectionism (with Pylyshyn), 314–316
The Language of Thought, 301, 313
Fontana, Walter, 200–201, 234
and algorithmic chemistry, 201
on ALife, 201
Forrest, Stephanie
on computer immune system, 212–213
emergent computation, 240
Foucault, Michel, 4
Fractal space, 141, 428n38
Franklin, Stan, Artificial Minds, 281, 441n9
Franks, John, 134
Fredkin, Edward, 20, 170
Freud, Sigmund, 68, 80, 123
Beyond the Pleasure Principle, 73
The Interpretation of Dreams, 80, 423n18

Galanter, Eugene, Plans and the Structure of Behavior (with Pribram), 291
Game of Life, 10, 11, 170, 172, 183, 184
Gardner, Howard, on the cognitive revolution, 280–281, 441n10
General Problem Solver, 59, 443n43
Genetic algorithms, 180, 207, 220, 363–364, 368, 415n5

Genome
manipulation in ALife, 18, 246–248, 254–256 (see also Adami)
mutations in, 5–6, 223
Gilles, Bernard, 7
Gleick, James, Chaos, 108, 109, 132, 135
Godwin, Brian, 277
Goldberg, David E., 207–208
Gould, Stephen Jay, 14, 223, 277
Grand, Steve, 389, 400–408
and ALife game Creatures, 401–402, 439n82
and android robot Lucy, 400–408
on emergence in ALife, 401–402
on imagination, 408
learning versus programming, 403
Lucy as self-organizing machine, 406–407
on neural architectures and evolution, 404–406
Grassé, Pierre-Paul, 376
Guattari, Félix, on auto/poiesis, 194–195.
See also Deleuze

Haken, Hermann, 57
Halls, J. Storrs, and Foglets, 383
Hansen, Mark B., on technologies and language, 441n17
Harvey, Inman, 368
Haugeland, John, 297, 298
Hawkins, Jeff, 389
brain as memory prediction system, 395–400
building an intelligent machine, 399–400
importance of neocortex, 396–397
information processing in the brain, 395–400
invariant representations and modeling, 397–398
On Intelligence, 395–400
Hayek machine, 393–395
and distributed computation, 394–395
Hayles, N. Katherine, 419n10, 421n43
Hebb, Donald, 304
Heidegger, Martin, 67, 415n6, 416n12, 422n8
Helmreich, Stefan, Silicon Second Nature, 433n62, 435n11, 436n34
Hillis, Danny, 10, 220
Hinton, E., 311
Hofstadter, Douglas
ants and information processing, 340–342
statistically emergent mentality, 303
“Waking Up from the Boolean Dream,” 302–303
Holland, John, 14, 341
classifier system, 207, 210
complex adaptive systems, 14, 231–236, 437n37
Echo, 14, 231–236
and genetic algorithms, 180, 207, 220, 415n5
Hopfield, John J., on spin glass and neural networks, 310–311
Horgan, John, critique of emergence, 240
Hsu, Feng-Hsiung, 387
Human Genome Project, 5
Husbands, Phil, 368
Hutchins, Edward, 283

Information-processing psychology, 59, 61, 291, 293, 296, 442n30, 443n43. See also Newell; Simon
Information theory, 25, 27–28, 37, 74, 81, 83, 136–139, 140–142, 146–151, 154, 155, 160. See also Shannon and disembodiment, 60–61, 419n10

Jacob, François, The Logic of Life, 5
Jakobson, Roman, 67
Kafka, Franz, 115
Kant, Immanuel, 166–167
Kasparov, Garry, 98–101, 387–388
Kaufman, Stuart, 6, 224–224, 277
“Co-evolution to the Edge of Chaos,” 227
NK model, 224
Kellert, Stephen H., 134
Kelly, Kevin, 58–59, 167–168, 277
clock versus swarm model, 378–379
on cybernetics, 58–59
Out of Control, 378
Kennedy, James, and Russell C. Eberhart, Swarm Intelligence, 379–380
Kephart, Jeffrey O., 212
Khepera (robot), 369
Kierkegaard, Søren, Repetition, 75
Kismet, 331–332, 347
Kittler, Friedrich A., 80–84
computer as machine subject, 81
cybernetics as theory of Second World War, 81
discourse network, 82, 83
on Freud and Lacan, 80, 82
Gramophone, Film, Typewriter, 80, 81
Lacan and technical media, 82
on Shannon and Markoff chains, 84
technical media, 80, 81
Kleene, Stephen, 35, 82
Kolmogorov, A. N., 427n30
algorithmic complexity, 160, 250, 251, 429n52
Koza, John, 180, 360, 365, 431n30
Kubie, Lawrence, 65–66

and automata theory, 68, 88, 91
and cybernetics, 66, 67, 68, 71, 73, 86, 88, 91–97, 106, 423n14
directed graphs, 86–87
discourse of the other, 72, 74
crits, 75, 79, 81, 85, 86
ego and the imaginary order, 72–73, 101
formal language theory, 85, 88, 91
the imaginary and the symbolic, 72, 78, 79, 98
and Newell and Simon’s physical symbol system, 94
play of the symbol, 79, 97
on Poe’s “The Purloined Letter,” 75–76, 78, 79, 85
on the real, 90, 96, 425n41
the real and the symbolic, 76, 79
repetition, 65, 73–74
seminar on the ego, 66, 68–69, 71–79, 101
subject, 68, 72, 73, 78, 97
symbolic order, 68, 74, 77–79, 106, 424n40
symbolic order and the machine, 67, 68, 72, 74, 78–79, 95–96, 97, 101
Lamarckian evolutionary theory, 16–18
Langacker, Ron, cognitive grammar, 324–325
Langton, Christopher, ix, xii, 2, 6, 11, 15, 165, 171–188, 197, 220, 225
on emergent behavior, 173–174
first ALife conference, ix, 165, 171
lambda parameter, 182–185
life at edge of chaos, 11, 13, 181–182, 225, 241–242
and phase transitions, 186–188
theory of ALife, 175–181
Lapedes, Alan, 241
Laplace, Pierre Simon de, 139, 428n34
Latil, Pierre de, *La pensée artificielle*, 67
Learning. See also Neural networks
in Creatures, 401
and evolution in ERL, 236, 437n39
in multiagent robot systems, 358–360
new algorithms for, 22
in Polyworld, 266
and robot Lucy, 402–403
in Shannon’s mouse, 28–29, 44
and Walter’s tortoises, 48–50
Lenant, Douglas, and CYC, 299–300
Leroy-Gourhan, André, 7, 283
Levi-Strauss, Claude, 88
*Elementary Structures of Kinship*, 73
Levy, Steven, 211, 430n16
Lewin, Roger, 228
Libchaber, Albert, 271
Life
and autopoiesis, 167, 188, 191
definitions of, 2–4, 6, 15, 171, 175, 215–216
and information, 233–234, 436n33
logic of, 2, 3
and molecular biology, 4–6
Lindgren, Kristian, 220–221
Lipson, Hod, 370–375
evolving robot controllers and morphologies together, 370–371, 373–375
on GOLEM, 370
on robot self-modeling, 374, 409–410
self-reproducing robots, 371–373
use of rapid prototyping machines, 374
Litman, Michael, 236, 418n43
Living computational system, 15, 268–269
Logic gates, 92–93, 183
Logic Theorist, 59, 290–292, 337
Lorenz, Edward, 132–135, 427n23
Lorenz or “strange” attractor, 133–135
Lovelock, James, Gaia hypothesis, 435n15
L-systems, 178
Lucy, 400, 402–408
Ludwig, Mark A., 211–212
Lwoff, André, 5
Machines
abstract, 8, 70–71, 95
“biology” of, 167–168
complexity of, 2, 32
computer as new type of, 70–71
deterministic but unpredictable, 33
liminal, 1–2, 12
mapping of state transitions, 32
self-organizing, 167
self-reproducing, 165, 168–170
universal, 70
Machinic life, ix, 1, 4, 34, 234, 415n2
Machinic philosophy, xi
Machinic phylum, 2, 13, 108, 415n1
Macy Conferences, 26, 28–29, 65, 66, 67
Maes, Pattie, 348, 353–354
on autonomous agents, 353–354
Mandelbrot, Benoît, 57, 67, 428n38
Margolis, Norman, 10
Margulis, Lynn, and symbiogenesis, 435n15
Markov chains (or processes)
applications of, 31, 85, 90, 424n28
as stochastic process, 84
Mataric, Maja, and multirobot systems, 356–360
Maturana, Humberto, xii, 167, 188–195.
See also Varela
allopoeisis, 193
autopoiesis, xii, 188–195, 215
*Autopoiesis and Cognition* (with Varela), 189–191
on living systems, 191–195
on machines, 191–194
vision in frogs, 190–191
McCarty, John, LISP, 290
McClelland, James L. See Rumelhart
McCulloch, Warren S., 66
“A Logical Calculus of Ideas Immanent to Nervous Activity” (with Pitts), 36, 65, 82, 286, 303, 305, 388
McMullin, Barry, 196
Menzel, Peter, and Faith D’Aluisio, *Robo sapiens*, 347
Miller, George A., 290
Millonas, Mark M., 380–381
Minsky, Marvin, 287, 307–308
*Computation: Finite and Infinite Machines*, 307, 420n15
*Perceptrons* (with Papert), 307–310
Mirowski, Philip, on cyborg science, 442n25
Mitchell, Melanie, 240–246, 277–279
CA experiments, 242–246
on Langton, 241
on Packard, 242–244
Molecular biology, 5–6, 253
Monod, Jacques, 226
Moravec, Hans, on genetic takeover, 12
Morowitz, Harold J., *The Emergence of Everything*, 19, 418n44
Morris, Robert, 211
Mountcastle, Vernon, 396
Mumford, Lewis, 283

Neumann, John von, 1, 2, 9, 34–39, 102, 165, 171, 172, 383, 421n44
automata theory, 34–39, 165, 168–170
complexity barrier, 2, 25, 34, 339
*The Computer and the Brain*, 35
computer architecture, 8, 10
on McCulloch and Pitts’s neural net
theory, 36–37
*Theory of Self-Reproducing Automata*, 37–39

Neural net controllers, 16, 363–365, 369, 373–374
artificial, 8, 304–305, 388–389
vector coding in, 312–313, 445n76, 445n81
New AI, xii, 2, 15, 280, 336–339. See also Beer; Brooks; Maes; Mataric; Steels
distributed AI, 340–342
emergence of, 338–340
influence of ALife on, 347–349
multiagent systems, 340
swarm intelligence, 340, 342
Newell, Allen, xii, 59
dismissal of cybernetics, 59
General Problem Solver (with Simon), 59, 443n43
Logic Theorist (with Simon), 59, 290, 290–292, 337
physical symbol system hypothesis (with Simon), 293–296, 298, 337

Noireaux, Vincent, 271
Nolfi, Stefano, and Dario Floreano
*Evolutionary Robotics*, 368–369
on self-organizing machines, 369–370
See also Chaotic attractor

Ong, Walter J., on science as assemblage, 428n44
Packard, Norman, 205, 206–210, 226, 242–243
Bugs, 261, 262, 263, 439
measure of evolutionary activity, 261–263
simulated immune system (with Farmer and Perelson), 206–210
Pandemonium, 286, 306–307, 337, 444n61
Papert, Seymour, 287
*Perceptrons* (with Minsky), 307–310
Parallel distributed processing, 445n66. See also Connectionism
Parallel processing, xii, 6, 8, 10, 308–311, 397, 430n19. See also Neural networks
Pargellis, Andrew, Amoeba, 253–260
P-array, 32–34
Pattee, Howard, 264–265
on molecular coding, 120–121, 422n48
Pengi, 354–356
Perceptron, 286–287, 304–308, 337
Perelson, A. S., 206–210
Petitot, Jean, and morphodynamics, 324–326
Plaxis and technê, 4, 12, 13, 107, 166, 415n6
Physical symbol system hypothesis, 293–296, 298, 337. See also Newell; Simon
Pickering, Andrew, 46, 53
Pinker, Steven, 395, 425n40
Pitts, Walter. See McCulloch
Poe, Edgar Allan, *The Purloined Letter,* 75–76, 78–79
Poincaré, Henri, 139–140
Pollack, Jordan, 370
Polyworld, 265–267
Post, Emile, 82
Posthuman, 12, 34
Power law, definition of, 436n24
Powers, Richard, *Galatea 2.2*, 385
Pribram, Karl. See Galanter
Prigogine, Ilya, 57
*Order Out of Chaos* (with Stengers), 108–109
Prisoner’s Dilemma, 180, 221, 423n16
Probe-head, 129–130
Processor P, 32
Pulyshyn, Zenon, 314–316

Rasmussen, Steen
and artificial protocells, 272–274
CoreWars, 435n4
Ray, Thomas, 2, 15, 265
Internet Tierra, 228–231
Tierra, 15, 217–222, 228, 233–234, 246, 247, 253, 267
Recursion, 177, 431n26
Remote Agent, 386
Reynolds, Craig, 179, 357, 376, 401
Rheingold, Howard, *Smart Mobs*, 375
Robotic *Merkwelt*, 347
Rocha, Luis, 265
Rosenblatt, Frank
*Perceptron*, 286–287, 304–308, 337
*Principles of Neurodynamics*, 308
Rosenblueth, Arturo, 29
Rucker, Rudy, *Software*, 337
Rumelhart, David E., and James L. McClelland, Parallel Distributed Processing, 308–310
Ruyer, Raymond, La cybernétique et l’origine de l’information, 67
Santa Fe Institute, 199, 218, 224, 226, 227, 234
Santa Fe perspective, 235
Schrödinger, Erwin, What Is Life?, 56–57
Searle, John, “Chinese room” argument against AI, 333–335, 395
Sejnowski, Terence J., 311
See also Ashby; Prigogine; Von Foerster
Self-organized criticality, 227
Self-organizing machines, 53–58, 444n58
Selfridge, Oliver, Pandemonium, 286, 306–307, 337, 444n61
Shakespeare, William, A Winter’s Tale, 215
Shalizi, Cosma, 55
Shannon, Claude, 1, 27–28, 67, 83, 103
chess-playing program, 60
on Markoff processes, 84
Mathematical Theory of Information, 84, 89, 136–139, 427n30
maze-solving mouse, 28
mutual information, 139, 149, 428n43
on redundancy and entropy, 56
use of Boltzmann, 27, 137–139
Shaw, J. C., 59
Shaw, Robert, xii, 110, 135
“The Dripping Faucet as Model Chaotic System,” 143–155
strange attractors and information, 136, 140–142
Shelley, Mary, Frankenstein, 5
Simon, Herbert, xii, 59
on complexity, 355
dismissal of cybernetics, 59
General Problem Solver (with Newell), 59, 443n43
on iconicity thesis, 325
Logic Theorist (with Newell), 59, 290–292, 337
physical symbol system hypothesis (with Newell), 293–296, 298, 337
The Sciences of the Artificial, 297, 415n5
Simondon, Gilbert, 283, 426n8
Du mode d’existence des objets techniques, 7, 425n45
Sims, Karl, 16
Virtual Creatures, 16, 366–367
Smale, Steven, 57
Smith, Hamilton D., 271
Smolensky, Paul, defense of connectionism, 316–319
Spencer, Herbert, 17
Stanovich, Keith E., The Robot’s Rebellion, 450n15
Steels, Luc, 338, 342, 347–353, 365
emergent functionality, 349
on language learning in robots, 411–413
necessity of artificial evolution, 351
robotic ecosystems, 351
on robotics and dynamical systems theory, 352
Talking Heads experiment, 412–413
Stengers, Isabelle
on Darwinian evolution and becoming, 418n45
Order Out of Chaos (with Prigogine), 108–109
Stiegler, Bernard, 5
La technique et le temps, 5, 6, 283–284, 423n19
Stigmergy, 376
Stoppard, Tom, Arcadia, 105
Swarm (software platform for bottom-up simulations), 174, 196, 342
Swarm behavior and phase transitions, 380–381
Swarm-bots, 381–383
Swarm intelligence, 342, 377–380
Swarm machines, 375, 381–384
Talking Heads, 412–413
Taylor, Charles, 216
Taylor, Tim and Cosmos, 263–265
on limits of ALife systems, 264–265
Technical system, 6–7, 11
Technics, 282–286
Technogenesis, 11
Technological evolution, 16
Teilhard de Chardin, Pierre, The Phenomenon of Man, 18
Théraulaz, Guy, 377
Thom, René, 57, 324
Tierra, 15, 217–222, 228, 233–234, 246, 247, 253, 267
Internet Tierra, 228–231
Toffoli, Tommaso, 10
Turing, Alan, 8, 35, 69–70, 81, 82, 93, 286, 290, 293
“Computing Machinery and Intelligence,” 93
“Intelligent Machinery,” 417n18
“On Computable Numbers,” 69–70
Turing machines, 10, 69–71, 105
Turing test, 425n37
Ulam, Stanley, 9, 169
Index

Varela, Francisco, xii, 167, 188–205, 279–281. See also Maturana allopoiesis, 193
on autonomy and autonomous systems, 195, 198, 352
autopoiesis, xii, 188–195, 215 Autopoiesis and Cognition (with Maturana), 189–191
on Langton and ALife, 197–199
on living systems, 191–195
on machines, 191–194 Principles of Biological Autonomy, 202
theory of enaction, 338, 352
theory of immune system, 202–205
Vaucanson, Jacques, mechanical duck, 35, 69
Venter, J. Craig, 271
Vichniac, Gerard, 10
Virtual Creatures, 16, 366–367
Viruses, 215, 260. See also Computer viruses
and becoming-symbiotic, 20
Von Foerster, Heinz, 54–57, 58, 189
“order from noise” principle, 57
on self-organizing systems, 55–57, 59

Waldrop, M. Mitchell, 227
Walter, W. Grey, 1, 2, 34
behavior design philosophy, 51
and complexity, 52–53
The Living Brain, 48, 51
tortoises, 1, 2, 47–53
Weaver, Warren, 61
Weizenbaum, Joseph, 390
Wendroff, Burton, 241
Wheeler, William Morton, ant colony as organism, 375–376
Wiener, Norbert, 26–27, 66, 67, 74, 102
“Behavior, Purpose, and Teleology” (with Rosenblueth and Bigelow), 29
Cybernetics, 26–27
The Human Use of Human Beings, 28
Wilson, E. O., 251
Winograd, Terry, 298
Winston, Patrick, 282
Wittgenstein, Ludwig, on language, 451n28
Wolfram, Stephen, 10, 21
on CA as computational process, 170
on CA and dynamical systems, 10, 11, 170, 184
A New Kind of Science, 21, 418n50

Yaeger, Larry, Polyworld, 265–267
Young, John Z., 67

Ziman, John, 16, 17
Žižek, Slavoj, 425n41
Zykov, Victor, 409