Foundational Issues in Human Brain Mapping

edited by Stephen José Hanson and Martin Bunzl

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England
actions, sources of, 223–224
adaptation designs, 155–156
age-related compensation, 141–142, 143, 144–145
aging, attentional network changes with, 144–145
amygdala function, false hypothesis about, 101
analytical deduction, 86–87
anatomical markers
in defining ROIs, 31
as reliable guides to function, 33
anatomical matching methods, 26
anatomical specificity
in fROI analysis, 30
whole-brain analyses and, 33–34
anatomy
variability in, 179–180
constraints of, 6–8
anterior attentional networks, lifespan development of, 144
Aron et al. love-activated brain study, 229–230, 253–254
atoms, 221–222
constraints in, 223
foreground, 222
generic, 221, 224, 232
initiating actions, 223–224
instance, 221, 224, 232
in object recognition, 232
relaxation of, 223
attention
age-related changes in, 144–145
in cognitive processing, 269–270
in early processing, 254–255
in functional neuroimaging studies, 143–144
inhibition effects in, 21–22
Lavie’s theory of, 76–77
in resting-state connectivity, 140–141
selective, 144
subliminal images and, 234
attention-consciousness relationship, 264
attentional patch, 228
attribution, 5–6
averaging signal, 37–39
awareness, subliminal images and, 234
background, 221–222
Baddeley-Hitch working memory model, 272
Bahrami et al. neuroimaging study, 254–255
subliminal images in, 233–234
Barsalou, L. W., 250–251, 261n.5
Bayes model, naive, 118
Bayesian epistemology, 101, 197
begging the question, 88–89, 90–91, 91n.7
behavior
confounds of, 151
elements of, 199
goal-directed, 144
selfish versus fair, 235–238, 256–258
behaviorally driven comparisons, 156–157
Berns, G. S., 99
biasing effect, 195–196
Biederman, L., 268
biological motion, 52
biophysical connectivity origin hypotheses, 137–138
blocked designs, 156–157
blood oxygen level-dependent (BOLD) activity, 39
age-related differences in, 141–142
inter-subject variation in, 177–178
lack of in regions, 242
low signal-to-noise ratio of, 202–203
measurement of, 174
neural activity and, 199–203
showing regional activation, 241–242
task-related patterns of, 143
BOLD echoplanar imaging, 214n.5
BOLD signals. See blood oxygen level-dependent (BOLD) activity
bottleneck concept, 226–229, 251–253, 261n.4
brain. See also specific areas
activity in. See also neural activity
bottleneck slowing, 226–229, 251–253, 261n.4
love and cocaine in, 229–230
anatomical markers in, 26–29
architecture of
functional, 57–58
structural, 246
cortical lateral surface variations in, 180
fine-grain neural organization of, 163–164, 169–170
function of
causal relations in, 118–128
discovering, 115–132
elementary, 199
modular and localized, 49–50
functional decomposition of, 243–248
functional landmarks in, 27–29, 190
localization data from in cognitive psychology, 217–240
redundancy in, 247
regions of. See also functional regions of interest (fROIs); localization; regions of interest (ROIs)
category-preferring, 167–169
causal influence between, 118–121
in cognitive processing, 264–265
connectivity of, 116–132
involved in romantic love, 253–254
in object and face recognition, 161–163
object-selective, 162
sensory and motor, 241
resting-state connectivity of, 135–145
scans of. See functional magnetic resonance imaging (fMRI); neuroimaging
specialized processing regions of, 241–242
“standard,” 26–27
subliminal images impact on, 233–234
trauma to, cognitive deficits from, 261n.1
brain interactivity interpretation, 124
brain lesions approach, 49–50
Cartesian coordinate system, 26
category recognition, neural activation patterns in, 167–169
causal models, fixed, 122–123
causal relations
discovery of, 122–128
stimuli and, 121–122
causal stream, 199–203, 211–212
causality, 118–121
cerebral blood volume, resting-state connectivity and, 138
cerebral cortex, as processor patchwork, 224
childhood development, attentional network changes during, 144–145
circular reasoning, 88–89, 90–91, 91n.7
classification
accuracy of, 68n.3
in multivariate analysis, 59–61
classifier validation methodology, 130
clustering verification, 130
cocaine-related brain activation, 229–230
cognition
attention in, 269–270
bottleneck theory of, 226–229
genetic influence on, 181
instances in, 221
molecular framework of, 220–226
reverse inference in, 261n.2
testing current theories of, 263, 265–266
cognitive conjunction, 152–153
cognitive connectivity origin hypotheses, 138–139
cognitive illusions, 114
cognitive mechanisms, 243–248
cognitive neuroscience
central tenet of, 32
predefined ROIs in theory testing in, 29–32
stages of, 239–240, 243–248
future research in, 240
cognitive phenotypes, 181–182
cognitive processing
functionally decomposing, 241–260
neuroanatomical localization of, 263, 264–265
neuroimaging data and, 203–207
cognitive psychology, 115
brain localization data and, 217–240
cognitive representations, high-dimension
spaces for, 55–68
comparison corrections
multiple, 97–98
small-volume, 95–96, 97–98
computational cognitive task
functional brain pattern variations during, 178
models for, 115, 250, 265
conditional probabilities, 104–105, 110
confidence intervals, 128–129
confirmation theory, 100
conjunction analysis, 152–153
connectivity
of brain areas, 116
effective-state (ESC), 139, 143
from brain region interaction during task performance, 142
functional regional interaction in, 142–145
resting-state (RSC), 135–145
biophysical origin hypotheses of, 137–138
cognitive origin hypotheses of, 138–139
functional regional interaction in, 142–145
task-induced activity and, 139–142
structural, 54
consciousness, attention and, 264
consistency fallacy, 101–103, 113, 266–267, 268–269
constitution, 118
constraints, 222–223
anatomical, 6–8
attribution versus, 5–6
functional, 4
context sensitivity, 4
contrast task, 212
Cook test, 185
comparisons
test multiple-comparison, 97–98
small-volume, 95–96, 97–98
correlations
multivariate, 81–82
nonindependent data in, 93–94
in voxels selected for correlations, 80–81
counterfactual dependence, 208–210, 213
cross-lab fROI analysis comparisons, 30
cross-validation strategy, 95, 130
cytoarchitectonics, 179–180
identifying markers in, 26
cytochrome oxidase optical imaging, 135
Dang-Vu, T. T., 102
decision-making process, dorsolateral prefrontal cortex in, 235–238, 357
decomposition/localization strategy, 51
dense mode clustering (DMC), 117
detection tasks, 124–125, 129
differential psychology, 181
digital forensics, rise of, 214–215n.9
directed acyclic graphs (DAGs), Markov equivalence classes of, 120, 125–126
disease-related connectivity changes, 145
Distance toolbox principle, 185
dopamine
as “antifreezing” agent, 50
in romantic love response, 229–230
dorsolateral prefrontal cortex (DLPC)
in decision making, 235–238
in fairness decisions, 257
Downing et al. attention theory, 269–270
Dretske, Fred, 100
Dux et al. “bottleneck” hypothesis, 226–229, 251–253
dynamic systems approach, 51
dynamical causal models, 122–123
echoplanar imaging (EPI), 136
effective connectivity phenomenon, 139, 143
eigenvalue analysis, 118
eigenvariate measure, first, 38–39
elaboration density, 228
epistemologic status
of neuroimaging, 195–199
of photography, 207–209
event perception tasks, 129
graphical model of, 119
event-related neural activity designs, 156–157, 205
executive control, 144
expectation maximization (EM) procedure, 123
face recognition
brain regions involved in, 258–259
in FFA, 114
fine-grain neural organization in, 163–164, 169–171
functional selectivity and specialization in, 9–10
modular and localized cognitive functions in, 106–108
neural representations underlying, 166–167
factorial design, 35–37, 153–154
ambivalence about, 45–46
efficiency of, 15
embedding localizers within, 43
importance of, 46
limitations of, 48
fairness motive, 257–258
selfish behavior and, 235–238
Fisher, R. A., 113
fluororeflectometry, 137
fMRI. See functional magnetic resonance imaging (fMRI)
Fodor, J. A., modularity of mind theory of, 51–53
foreground, 221–222, 224
periphery of, 223
in sitting-down action, 225–226
in visual object recognition, 225
Fourier transform, 136
foveal retinotopic cortex, object category-specific information in, 271–272
functional decomposition, 204–205, 206, 212
functional landmarks, 27–29
functional magnetic resonance imaging (fMRI)
BOLD activity in, 241–242
complexity of, 84–85
confirming and refuting, 99–111
conventional univariate analysis of, 56–57
data from
accommodating null hypotheses, 103
consistency of with hypothesis, 101–103
consistent, 114
and high-level null hypotheses, 106–109
interpreting, 203–207
multivariate pattern analysis of, 55–68
noisy, 101
nonindependence error in, 71–91
refuting null hypotheses, 100–101
stimulus differences and, 103–105
in decomposing cognitive processes, 241–260
designs of
advancements in, 161–172
blocked versus event-related, 156–157
guidelines for, 96
high-resolution, 164, 169–171
inferential distance and, 195–213
intersubject variability in, 173–191
multidimensional data from, 83–85
neural activity and, 199–203
nonindependence errors in, 73–82
qualitative nature of, 85
reproducibility of, 183–184
of resting-state connectivity, 136–137
signal-to-noise ratio of, 173
spatial resolution of, 173
standard procedures for, 173–177
standard-resolution (SR-fMRI) versus fMRI-adaptation, 165
limitations of, 163
use and abuse of, 260
words and pictures in, 113–114
functional magnetic resonance imaging adaptation (fMRI-A), 155–156, 164–167, 172
functional patterns, intersubject variations in, 177–179
functional regions of interest (fROIs), 3. See also localization, functional advantages and disadvantages of, 13–14
analysis of
factorial design in, 45–46
key advantages of, 44–45
problems with, 47–48
averaging signal in, 4, 11–12, 37–39
in cognitive psychology, 217–240
homogeneity and inhomogeneity of, 34–35, 48
interaction of in resting-state connectivity, 142–145
intersubject averaging of responses in, 12–13
levels of, 217–218
misconceptions about, 33–40
in object-selective regions, 18–21
reasons for naming, 39–40
reasons for using, 25–33
selectivity of, 3, 8–10
strengths of, 30
validity of, 4
varying positions of, 25
functional specialization, 3, 8–10
functional stream, 199, 203–207, 212
functional variability, origin of, 177–182
functionally constrained searches, 6–8
fusiform face area (FFA), 3, 161, 162
definition of, 10–11
face processing in, 107, 114
functional profile of, 28
nonface discrimination and, 35
problem of exclusive focus on, 47
selective responses in, 9, 26
Gabor wavelet model, 66
Gaussian distribution theory, 123
Gaussian mixture model parcellation, 188
genetics, brain imaging in, 181–182
goal-related action, prefrontal activity in, 255–256
Gomo-Tempini, M. L., 9–10
grandmother cells, 231, 232
graph theory, 118–119
graphical analysis
evaluation of, 128–132
sensitivity of, 130
greedy equivalence search (GES), 125–126
Greene, Joshua, 104–105
group analysis
in inhomogeneous populations, 184–186
lack of reproducibility of, 182–183
reproducibility measures and large databases in, 189–190
small spatial misregistration in, 187–189
Hanson Stephen J., 58, 114–118
Harley, Trevor, 217–218
Haxby, James, 81–82, 107–108, 114
Haynes et al. intention decoding study, 234–235, 255–256
Hofstadter, Douglas, Jumbo model of, 220
holistic strategy, 49–54
homogeneity, assumptions of, 34–35
Houdé and Mazoyer research, 99
hypothesis testing
confirming or refuting evidence in, 100–111
consistency of data with, 101–103
low-level fMRI data and, 106–109
specifying ROIs for, 29–31
statistically unbiased data set in, 31

image construction conventions, 211–212
independent data sets
assessing by analytical deduction, 86–87
assessing by numerical simulation, 87
separation of, 86
individual functional localizer approach (IFLA), 175–176
individual region of interest-based approach, 175–176

inferential distance
actual versus apparent, 196, 210–211, 214n.3
characterization of, 196–198
difficulty of determining, 214n.2
illusions of, 212–213
imaging parameters and, 214n.5
in neuroimaging, 195–213, 198–199
in photography, 207–209
changing status of, 214–215n.9
as relational measure, 198–199
state of knowledge and changes in, 214n.6
information processing operations, 32–33
information theory, 89–90
instances, 221, 224, 232
intentions
decoding of, 234–235
encoding of, 255–256
interaction effects, nonindependent data in, 94
intersubject averaging, 12–13, 43–44
intersubject variability
analysis strategies to deal with, 184–191
in fMRI data, 173–191
in functional pattern, 177–1789
intramitochondrial redox states, 138

Johnson-Laird, P. N., 113

Kanwisher, Nancy, 106–107, 108–109, 114
Knoch et al. selfish behavior study, 235–238, 256–258

language
functional brain response variations to, 178
representation variation in, 181
temporal lobe response to, 186
laser-Doppler flowmetry, 135
of spontaneous low-frequency fluctuations, 137

lateral occipital complex (LOC), 3, 161, 162, 163
view-dependent cortical representation in, 165–166

Lavie’s theory of attention, 76–77
LiNGAM procedures, 126, 128
localism, 49–54
localization
anatomical, 263, 264–265
functional
advantages of, 15–16
defense of, 25–40, 43–48
definition of, 3
dissembling full designs to create, 6
goals of, 270–271
preserving balance, 14, 15–16
reasons for using, 5–17
in ROI analysis, 94
sensitivity of, 6–8
separate, 14–17
theoretical issues of, 5
visual attention shifts and, 21–23
hypotheses of, 246, 263–264
localizers
designs of, 4
functional, critique of, 3–23
independent, 35–37
logical consistency, 113
long-term potentiation (LTP), 246
Loosemore and Harley molecular model, 243, 249–250, 261n.4, 264, 265, 269
on cognitive science stages, 243–248
critique of neuroimaging studies, 251–259
Loosemore and Harley molecular model, 260
love. See romantic love

machine (statistical) learning pattern classifiers, 55, 57
magnetic resonance imaging (MRI). See also functional magnetic resonance imaging (fMRI)
data from, 214n.4
functional versus structural, 3
Markov equivalence classes, 120, 125–126, 127
matched filter theorem, 11–12
McIntosh, A. R., 116
memory
long-term, as background, 222
neural activity in, 204–205
working, 129
Baddeley-Hitch model of, 272
as foreground, 221–222
mental processes, direct mapping of, 54
mimesis, 209–210
mind, “reading,” 234–235
minimum cluster size constraint, 91n.1, 91n.4
mirror system, 51–52, 53
model-based prediction, 65–66
model specification procedures, 128–132
modular functional architecture, 7–8
modularity, 49–50
horizontal, 51–54
vertical, 51–53
Mole and Klein cognitive theory, 113–114, 266–267
consistency fallacy in, 268–269
molecular framework, 249–251
interpreting “bottleneck” theory, 228–229
interpreting “Jennifer Aniston cell” theory, 232
molecularity, 220–226
moral judgments
task condition differences and, 105
up-close and personal, 104
morphing algorithm, 166–167
motion processing, effect of load on, 76–77
motivation, romantic love and, 229–230
motor sequence learning, three-way design analysis of, 94
multivariate pattern analysis (MVP or MVPA) applied to whole-brain data, 68n.1
assumptions of, 67
definition of, 58–59
of fMRI data, 55–68
model-based prediction in, 65–66
nonindependence errors in, 81–82
pattern classification in, 59–61
sensitivity of, 60–61, 68n.2
similarity structure analysis in, 61–65
multivoxel pattern analyses (MVPA), 164, 167–169, 172
natural phenomena, fROI analysis in discovering, 32–33
neural activity
functional relevance of, 200–201
high-dimension spaces for, 55–68
raw data and, 199–201
similarity structure of, 61–65
neural implementation, 224
neural models, 271–272
testing, 263, 269–270
neuroanatomical tools, 245–246
neuroimages
actual versus apparent inferential proximity of, 210–211
biassing effect in, 195–196
epistemologic status of, 195–199
low signal-to-noise ratio of, 210–211
as photographs, 215n.10
raw data and, 201–203
testimony dependence of, 211–212
neuroimaging. See also functional magnetic resonance imaging (fMRI)
blocked versus event-related designs in, 156–157
causal stream in, 199–203
neuroimaging (cont.)
challenged for, 95–96
in cognitive psychology, 217–240
confirming or refuting fMRI data in, 99–111
conjunction analysis in, 152–153
data from
credibility of, 195–196
image and, 201–203
neural activity and, 199–201
decoding intentions, 234–235
in discovering cognitive mechanisms, 243–248
epistemology of, 109–111, 208–210
factorial designs in, 153–154
functional, 199, 203–207
of cognitive processes, 241–260
contributions of, 263, 269–270
genetics and patterns of, 181–182
goals of, 263–272
questions to ask of, 270–271
inferences of, 195–213
interpretation of, 215.12
interpretive problems of, 213
large cohorts in, 189–190
lexical stimuli effects on, 215.13
logic of study designs in, 147–159
matching brain function to structure, 115–116
methods and underlying assumptions in, 49–54
as “mind reading,” 234–235
molecular framework in, 220–226
parametric designs in, 154–155
as photography, 197–198, 207–212
priming and adaptation designs in, 155–156
reexamining studies of, 248–260
subtraction method in, 147–152
theoretical framework in, 220
neurons
fine-grain structure of, 34–35
sparse encoding of, 231, 232, 258–259
neuropsychological studies, attention in, 143–144
noisy data, 101
nonindependence errors
in fMRI analysis, 71–91
formal description of, 72–73, 88–91
heuristics for avoiding, 85–88
in multivariate pattern analysis, 81–82
in plotting signal change in voxels selected
for signal change, 76–80
reasons for prevalence of in fMRI, 82–85
in reporting correlations in voxels selected for
correlations, 80–81
in testing for signal change in voxels selected
for signal change, 74–76
nonindependent data
damage from plotting, 79–80
information gleaned from, 79
nonsense object categories, 271
nonsphericity, estimation of, 24.1
novel stimuli, predicting response pattern to, 65
null hypotheses
data accommodating, 103
data refuting, 100–101
high-level, 106–109
refuting, 100–101
numerical simulation, 87
object category-specific information, 271–272
object classification, accuracy of, 68.3
object recognition, 129, 161. See also face
recognition
fine-grain neural organization in, 163–164,
169–171
repetition priming in, 267–268
theories of, 267–269
object-selective brain regions, 162
functional, 18–21
sensitivity of, 19
object-shape change interaction, 20
oddball tasks, 124–125, 129
orientation-selective cells, 63, 64
orthogonal contrasts, 46, 91.3
O’Toole, A. J., 108
parahippocampal place area (PPA), responses of, 36–37
parametric designs, 154–155
parcellation technique, 187–189
Parkinson’s disease, akinesia in, 50
peak-smoothed averaging, 38
perturbation manipulations, 131
Pessoa, Luiz, 102–103
Petersen and Fiez research, 150–151, 204
phonological processing, 149–150
analysis of, 152–153
photography
ability to interpret, 209
actual inferential distance of, 214–215n.9
epistemic status of, 207–209
interpretation of, 215n.12
misleading, 215n.11
neuroimages as, 207–212, 215n.10
physical parameters of, 214n.8
plasticity, in motor system, 7
Popper, Karl, 100
positron emission tomography (PET), ROI in brain mapping with, 10
prefrontal cortex
functional changes in, 144
in goal-related activities, 255–256
posterior lateral (pLPFC)
bottleneck in, 226
in dual task performance, 238
in task performance, 252–253
Price and Friston cognitive conjunction approach, 152–153
priming effects, 155–156, 254–255, 267–268
principal components analysis (PCA), 38–39
probability
causality and, 118–119
theory of, 89, 90–91
property verification task, 251
propositional logic, 88–89
psychological testing, reaction times in, 173–174
psychological variations, intersubject, 180–181
pure insertion (PI) assumption, 148–149
in factorial designs, 154
testing of, 150–151
pure modulation assumption, 155
queuing behavior, 226
Quiroga et al. neuroimaging study, 230–232, 258–259
reciprocity behaviors, 237–238
recognition response
of celebrities, 230–232, 261n.6
fMRI studies of, 161–172
LOC activation in, 163
molecular theory of, 225
regions of interest (ROIs). See also functional regions of interest (fROIs)
advantages of predefining, 29–32
definition of, 176
functional constraints characterizing responses of, 4
in imaging, 10–11
interactions between during task performance, 142
localizing contrast to identify, 43
nonindependent analysis of, 93–96
prevalence of, 93–94
role of, 93–96
sensitivity of, 94
as sets of voxels, 117–118
relaxation, 223
outward-moving, 224
in sitting-down action, 226
reliability, multiple, 33
repetition priming, 155–156, 267–268
representations
abstract, 261n.5
active, 222–223
construction conventions of, 211–212
mimetic, 208, 209–210
resting-state functional connectivity maps, 140
retinotopic mapping, 46–47
reverse inference, 261n.2
romantic love
brain activation in, 229–230
mental operations in, 253–254
Roskies, A. L., 114, 269

schizophrenia, ventricular enlargement study
in, 10
scrambled blobs, 24n.3
selected effects bar charts, 77–79
selection bias error, 73, 90–91
selectivity, functional, 3, 8–10
selfish behavior, 256–258
brain trigger for, 235–238
semantic analysis, latent, 66
semantic processing, 149–150
sensitivity testing, 130
Shallice, Tim, 108–109
Shannon entropy of random variables, 89–90
shape-contour processing, 19–21
signal-to-noise ratio (SNR), intersubject variation in, 176–177
similarity structure analysis, 61–65
simulation, 250–251
sitting-down action, 225–226
smoothing
in fROI averaging, 11–12
spatial, 58–59, 117–118
social networks, 51–52
spatial autocorrelation, 41n.1
spatial misregistration, 187–189
spectrophotometric studies, 138
split design model, 15
split-half analyses, 98
split-half procedure, 46
split-half strategy, 95
spontaneous low-frequency signal fluctuations (SLFs), 135
biophysical basis of, 135–136
recent studies of, 143
in resting-state connectivity, 137
temporal correlation of, 138–139
statistical clustering methods, 117
statistical hypothesis testing, nonindependence errors in, 72–76
statistical power
with multiple comparison corrections, 97–98
with predefined ROIs, 29–31
stereotactic neurosurgery, 3
stereotactic normalization, 175–176
limitation of, 177–178
stereotaxic coordinates, 31
stimuli
ambiguous, 161
causal relations of, 121–122
in fMRI data differences, 103–105
stringent corrections, 97
structural damage, loss of function and, 49–50
structural equation models (SEMs), 121–122, 123–124, 127–128
structure-function relationships, 46–47
subject activation patterns, 175
subliminal images, 233–234
subtraction method, 147–148, 212
alternatives to, 152–159
confounds and, 151
core problem in, 148–149
defense of, 150–151
inferences from, 151–152
need for task analysis in, 149–150
sulcal-gyral landmarks, 40
sulcogyral structure variations, 179–180
summary measures, 37–39
Talairach and Tournoux stereotaxic system, 26, 27
Talairach atlas-statistical parametric maps (TA-SPM), 175–176
task-activation maps, 142–143
task analysis
functional components in, 206–207
in subtraction method, 149–150
task-independent decreases, 152
task performance
age-related compensation in, 141–142
attentional load in, 254–255
bottleneck in, 238
“central bottleneck” in, 226–229
competition in, 251–252
conceptual, 250–251
condition differences and, 103–106
localized brain activity in, 242
manipulation of, 147
neural activity during, 139–142, 204–207
in neural mapping, 54
parameter manipulation in, 154–155
regional interaction during, 142
temporal lobe, language stimulation response in, 186
Thirion soft constraint technique, 187–189
threshold-average method, 37–38
time series models, 120–121, 121–122
time variables, 127–128
Tootell, R. B., 110–111
Tourette syndrome, resting-state connectivity in, 145
transcranial magnetic stimulation (TMS) studies, 256–258
Ultimatum Game, 235–238, 257–258
univariate analysis
assumptions of, 67
of fMRI data, 56–57
limitations of, 55–56
versus multivariate pattern (MVP) analysis, 55–68
representational capacity in, 59
V1 activity processing, 254–255
variables
causal and statistical relations among, 118–121
definition of, 116–118
ventral stream, functional organization of, 161–172
ventral tegmental area, involved in romantic love, 253–254
ventral temporal (VT) cortex, in face and object pattern recognition, 59
viewpoint-independent processes, 268–269
viewpoint-specific processes, 268–269
vision
binocular disparity in, 261n.3
phenomenology of, 214n.7
visual attention shifts
functional localizers and, 21–23
inhibition effects on, 21–22
visual cortex
pattern classification in, 60
similarity structure in, 62–63
visual object processing, 267–269
hierarchies of in face recognition, 9–10
modular, 16
molecular theory of, 225
visual perception
brain areas involved in, 244
as direct or mediated, 214n.7
visual system studies, reproducibility of, 182
visual word form area (VWFA), 3
visualization, 209
voxel-based approach, 175–176
voxel signal change
plotting, 76–80
testing, 74–76
voxel-sniffing, 31
Vuilleumier et al. cognitive theory, 267–268
Wallis and Bulthoff object recognition theory, 268
whole-brain analysis
disadvantages of, 47
versus fROI analysis, 44–45
smoothing in, 37
Williams et al. neural modeling, 271–272
Winston, Joel, 101
Yovel, Galit, 106–107