
1 Neighborhood Search

If you want a guarantee, buy a toaster.

— Clint Eastwood

An approximate answer to the right question is worth a great deal more

than a precise answer to the wrong question.

— John Tukey

This chapter givesa brief overview of local search. Its main purpose is to present local search

algorithms generically in terms of a small set of concepts and operations. Chapter 2 shows how to

instantiate the generic local search algorithm to obtain a variety of well-known heuristics and meta-

heuristics. Thus this presentation stresses the commonalities underlying local search algorithms, not

their differences. Readers interested in more detailed presentations of local search should consult,

for instance, [1, 92].

1.1 Local Search

A local search algorithm typically starts from a solution (that is, an assignment of values to its

decision variables) and moves from solutions to neighboring solutions in hope of improving a function

f . The function f measures the quality of solutions to the problem at hand. In satisfiability

problems, it typically provides a distance from the current solution to a feasible solution. In a pure

optimization problem, it expresses the objective of the problem or a function of finer granularity

that differentiates between solutions with the same objective value. In applications composed of

both constraints and an objective, the function f may combine feasibility and optimality measures

appropriate for the problem at hand. This chapter simply assumes the availability of a function f

to be minimized.

The main operation of a local search algorithm amounts to moving from a solution s to one of

its neighbors. The set of neighboring solutions of s, denoted by N(s), is called the neighborhood of

s. At a specific computation step, some of these neighbors may be legal, in which case they may

be selected, or they may be forbidden. Once the legal neighbors are identified (by operation L),

the local search selects one of them and decides whether to move to this neighbor or to stay at s

(operation S). These concepts, which define the moves in local search, are illustrated in figure 1.1.

It shows the solution s, its neighborhood N(s), its set L(N(s), s) of legal moves, and the selected

solution (the bold thick circle).

Figure 1.2 depicts a simple generic local search template. The search starts from an initial state

s (line 2) and performs a number of iterations (line 4). The move takes place in line 7 and consists

of selecting a new solution by composing operations N , L, and S:
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N(s)

s

L(N(s),s)

Figure 1.1: The Local Search Move.

1.function LocalSearch {

2. s := generateInitialSolution();

3. s∗ := s;

4. for k := 1 to MaxTrials do

5. if satisfiable(s) ∧ f(s) < f(s∗) then

6. s∗ := s;

7. s := S(L(N(s), s), s);

8. return s∗;

9.}

Figure 1.2: The Basic Local Search Template.
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s := S(L(N(s), s), s);

Lines 4 and 5 simply keep the best solution s∗ encountered so far.

Some local search algorithms feature very simple implementations of some of these operations.

For instance, in some local search algorithms, all moves may be legal. In other algorithms, these

operations may be rather complex and may rely on sophisticated data structures and algorithms as

well as on randomization.

1.2 Illustration

To illustrate the local search schema, this section presents a greedy local improvement algorithm in

graph partitioning.

The Problem The graph-partitioning problem consists of finding a balanced partition of the ver-

tices of a graph that minimizes the number of edges with one endpoint in each partition. More

formally, a balanced partition of a graph G = (V,E) is a pair 〈P1, P2〉 such that P1 ∪ P2 = V and

|P1| = |P2|. The cost of a partition P = 〈P1, P2〉, denoted by f(P ), is the number of edges with one

endpoint in each set:

f(〈P1, P2〉) = #{(v, w) ∈ E | v ∈ P1 & w ∈ P2}.

The set of feasible solutions, denoted by S, is the set of balanced partitions, and the set of optimal

solutions, denoted by S∗, is specified as

{s ∈ S | f(s) = min
p∈S

f(p)}.

Figure 1.3 depicts a balanced partition of cost 9.

The Neighborhood The most natural move for graph partitioning consists of swapping two ver-

tices, i.e, selecting a vertex a from P1 and a vertex b from P2 and assigning a to P2 and b to P1. Such

a move is depicted in figure 1.4 and produces a partition of cost 5. More formally, the neighborhood

function N is defined as

N(〈P1, P2〉) = {〈P1 \ {a} ∪ {b}, P2 \ {b} ∪ {a}〉 | a ∈ P1 ∧ b ∈ P2}.

The neighborhood N has a fundamental property: if the solution s is a balanced partition, all the

solutions in N(s) are balanced partitions as well. As a consequence, any local search starting from a

balanced partition explores only balanced partitions and need not represent the balancing constraint

explicitly. In other words, the local search algorithm considers only feasible solutions.
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Figure 1.3: A Graph Partition of Cost 9.
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Figure 1.4: A Move from Neighborhood N .
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Legal Moves Local improvement algorithms require the neighbors to improve the objective value.

As a consequence, the legal moves in the local improvement algorithm are specified by

L(N, s) = {n ∈ N | f(n) < f(s)}.

Selection It remains to specify how to choose the neighbor. Since the algorithm is greedy, the

algorithm selects the best legal neighbor, that is, an element from

S(M, s) = {n ∈ M | f(n) = min
s∈M

f(s)}.

1.3 Formalization

This section formalizes the concepts introduced so far and defines a variety of concepts mentioned

throughout the book. It assumes an underlying combinatorial optimization problem P of the form

min f(�x) subject to

C1(�x)
...

Cn(�x)

where �x is a vector of n (discrete) decision variables, f is an objective function Nn → N that

associates a performance measure with a variable assignment, and C1, . . . , Cn are constraints defining

the solution space. The concepts of solutions, feasible solutions, and optimal solutions have the

following (natural) meanings.

Definition 1.1 A solution to P is an assignment of values to the variables in �x. The set of solutions

to P is denoted by LP .

Definition 1.2 A feasible solution of P is a solution x̂ that satisfies C1(x̂) ∧ . . . ∧ Cn(x̂). The set

of all feasible solutions of P is denoted by L̃P .

Definition 1.3 The set of optimal solutions to P , denoted by LP
∗ is defined as

LP
∗ = {s ∈ L̃P | f(s) = min

k∈L̃P

f(k)}

Many local search algorithms consider only solutions that satisfy some of the constraints. This set

of solutions over which the algorithm is defined is called the search space.

Definition 1.4 A search space for a combinatorial optimization problem P is a set L̂P such that

LP ⊆ L̂P ⊆ Nn. Elements of the set L̂P often satisfy a subset of {C1, . . . , Cn}.
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The concepts of neighborhood, transition graph, and local optimality are central in local search,

since they define how to move from solution to solution.

Definition 1.5 A neighborhood is a pair 〈L̂P , N〉, where L̂P is a search space and N is a mapping

N : L̂P → 2L̂P that defines, for each solution s, the set of adjacent solutions N(s) ⊆ L̂P . Whenever

the relation s ∈ N(j)⇔ j ∈ N(s) holds, the neighborhood is said to be symmetric.

Definition 1.6 The transition graph G(L̂P , N) associated to a neighborhood 〈L̂P , N〉 is the graph

whose nodes are solutions in L̂P and where an arc a → b exists if b ∈ N(a). The reflexive and

transitive closure of → is denoted by →∗.

A solution is locally optimal if none of its neighbors have a smaller cost. Note that local optimality

is always defined with respect to a specific neighborhood function.

Definition 1.7 A solution s in LP is locally optimal with respect to N if

f(s) ≤ min
i∈N(s)

f(i).

The set of locally optimal solutions with respect to N is denoted LP
+.

One of the critical issues in local search is to escape local minima, which is why local search

algorithms typically feature interesting legality and selection criteria.

Definition 1.8 A legality condition L is a function (2L̂P × L̂P)→ 2L̂P that filters sets of solutions

from the search space. A selection rule S(M, s) is a function S : (2L̂P × L̂P) → L̂P that picks

an element s fromM according to some strategy and decides to accept it or to select the current

solution s instead.

Definition 1.9 A local search algorithm for P is a path

s0 → s1 → . . .→ sk

in the transition graph G(L̂P , N) for P such

si+1 = S(L(N(si), si), si) (1 ≤ i ≤ k).

Typically, such a local search produces a final computation state sk that belongs to LP
+ (for a

given neighborhood function N). The role of heuristics and metaheuristics is to drive the search

toward high-quality local optima and, ideally, those in LP
∗.
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1.4 Properties of Neighborhood

The effectiveness of a local search algorithm critically depends upon its neighborhood. This section

briefly reviews some fundamental properties of neighborhoods.

Neighborhood Size The size of a neighborhood N : L̂P → 2L̂P for a solution s is the set of

solutions in N(s). Typically, large neighborhoods induce shorter paths to high-quality solutions but

require also more time to explore. This trade-off between the length of the paths and the exploration

is a key design decision. Sometimes it is preferable to select a linear neighborhood (in the size of the

problem P) over a quadratic neighborhood, even if the resulting path is longer. Sometimes, however,

the resulting neighborhood is not large enough to produce high-quality solutions in reasonable time.

Neighborhood Connectivity Another fundamental property of a neighborhood is its connectivity.

Informally speaking, a neighborhood is connected if there exists a path from any solution s to an

optimal solution s∗. This ensures that the neighborhood is strong enough to reach optimal solutions,

although the heuristic and metaheuristic may prevent the algorithm from reaching them in practice.

Definition 1.10 A neighborhoodN : L̂P → 2L̂P is weakly connected if and only if, for each solution

s, there exists a path s→∗ s∗ to an optimal solution s∗.

Definition 1.11 A neighborhood N : L̂P → 2L̂P is optimally connected if and only if, for each pair

of solutions s1, s2, there exists a path s1 →∗ s2.

Using (weakly) connected neighborhoods brings several advantages:

• Local search algorithms typically do not need a restarting strategy to reach optimal solutions,

since there exist paths leading from each solution to an optimal solution.1

• Randomized heuristics, where there is a nonzero probability of accepting a neighbor k ∈ N(s)

for each solution s, may be guaranteed (under certain conditions) to reach a global optimum

(in the limit). In other words, connectivity is a requirement for the convergence proofs of

metaheuristics such as simulated annealing.

Observe, however, that there are very effective local searches based on neighborhoods that are not

connected. One of them is presented in chapter 21 of this book.

Neighborhood Constraints One of the critical issues in local search is to determine how to

combine feasibility and optimality requirements. The simplest option is to maintain feasibility at

all times and explore only feasible solutions in the neighborhood search. This is the approach taken

1A restarting strategy may still be useful for performance results.
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Figure 1.5: A Move from Neighborhood N ′.

by neighborhood N in the graph-partitioning problem presented in Figure 1.4. The neighborhood

implicitly maintains the balancing constraint, and it suffices to start with a balanced solution to

maintain feasibility in the local search. In some applications, however, it is preferable to relax a

subset of the constraints and explore a larger search space. Consider, for instance, the neighborhood

N ′ for graph partitioning, in which a single vertex is relocated:

N ′(〈P1, P2〉) = {〈P1 \ {a}, P2 ∪ {a}〉 | a ∈ P1} ∪ {〈P1 ∪ {b}, P2 \ {b}〉 | b ∈ P2}.

Figure 1.5 illustrates such a move that decreases the cost of the partition from 9 to 6.

The neighbor N ′ induces the local search to explore infeasible solutions or, in other words, unbal-

anced partitions. It is thus important to drive the search not only toward high-quality solutions, but

also toward feasibility. Once again, there are many different ways to approach this issue; several of

them are illustrated in this book. One of them entails designing an objective function that combines

feasibility and optimality components. For instance, for a neighborhood N ′ in graph partitioning,

the algorithm may use the objective

α ·#{(x, y) ∈ E | x ∈ P1 & y ∈ P2}+ β · (#{x ∈ E | x ∈ P1} −
n

2
)2

for some well-chosen values of α and β and #V = n. The left member of the objective captures the

cost of the partition, while the right member penalizes its imbalance.


