Transportation in a Climate-Constrained World

Andreas Schäfer, John B. Heywood, Henry D. Jacoby, and Ian A. Waitz

The MIT Press
Cambridge, Massachusetts
London, England
Index

Airbus A380, 144, 147, 153–154, 158, 251
Aircraft
aerodynamic drag, 151–153
attributes, trade-off among, 88, 143–146, 222
blended wing body, 144, 147, 152–153
development risks, 144
direct operating costs of, 87–90, 146
every retirement of, 240–242
emissions, 8, 11–12, 141
energy intensity (see Energy intensity)
ergy use (see Energy use)
engine, power-to-weight ratio, 148
mode share of, in intercity traffic, 6
noise, 9
passenger load factors, 94–95, 157–158
price of, 158–159
separation requirements, 54–55, 155
size, 90–93, 99
speed, 43, 56–57, 91, 94
stage length, 93–94
technology development time of, 144–145
Air traffic
congestion, 8
deregulation of, 28, 95
Air travel. See also High-speed transport
affordability of, 25–29
costs of, 25–29
historical demand growth of, 6, 7
Aluminum, 107–108, 126, 135, 154
Amortization period of fuel saving technology, 136, 210, 222. See also Consumer discount rate
Automobile. See Vehicle
B-2 aircraft, 144, 152
Battery
costs, 119–120
-electric vehicles (see Electric vehicle)
ergy density, 119, 121, 162–163
for hybrid-electric vehicles, 122–123
Biodiesel, 168, 184, 186–187
Biofuels
first generation, 183–187, 209, 211, 216–218, 220, 259
land-use implications of (see Land-use)
production processes, 183–189
second generation, 185–189, 209, 211, 216–218, 220, 259–266, 268
societal impacts of, 168, 184
subsidies for, 242–243
supply characteristics, 186–187

Index
Biomass
biodiesel from, 184, 186–187
cellulosic, 186–189
corn feedstocks, 183–187
ethanol from, 183–189
hydrogen from, 199–201
-to-liquids, 186–189, 192–193, 216–218
microalgae, 189
organic waste, 180–181
potential, 181, 189–193
synthetic oil products from (see Biomass-to-liquids)
Bitumen, 63, 170–174, 216–218, 253
Boeing
R&D expenditures, 249
747 aircraft, 144, 154
777 aircraft, 157
787 aircraft, 147, 154, 158, 251
Brazil, 166–167, 171, 183, 185–187, 194, 242, 248–249
Breguet range equation, 143
BTL. See Biomass-to-liquids
Budget airlines, 8
Büchi, Alfred, 107
Business travel. See Trip purpose
Buses. See also Low-speed public transport
energy use characteristics of, 70–71
opportunities for reducing energy use of, 137
Canada, 96, 240, 242, 245–246
Cap-and-trade. See Emissions trading
Carbon
fiber composites, 127, 154
to-hydrogen ratio, 161–163, 171, 258
tax, 228–239, 255, 259, 262–265, 267
Carbon dioxide (CO₂), atmospheric concentration of
growth in, 11
stabilization of, 12, 262
Carbon dioxide (CO₂) emissions
capture and storage of, 173, 176–179, 197, 199–201, 205, 209–210, 214–218, 258
historical growth of, 11, 100, 98–100, 259–261
in constant technology scenario, 99–101, 258–261
in maximum technology scenario, 260–262
under market-based policy measures, 262–266
Chrysler, 249
Climate change. See Greenhouse effect
Climate change policies, 18, 221–255
Coal
to-liquids, 165, 174–180
mining, impacts from, 176
power plants, emissions from, 157, 189
synthetic oil products from (see Coal-to-liquids)
reserves, 174–175
Compressed natural gas
composition of, 194–195
performance relative to petroleum-derived gasoline, 216–218
Compression ignition engine. See Diesel engine
Congressional Budget Office (CBO), 246–247, 254
Consumer
behavior and travel budgets, 25–35, 267
choice among vehicle attributes, 72–82, 222, 268, 272
discount rate, 210, 222, 234, 236, 238–239, 252
impact of climate policies, 266–268
preferences for high frequency air travel, 90–93
response to price changes (see Price elasticity)
surplus, loss in, 246, 267
Continuous descent approach, 156
Contrails, 11–12, 141
Corporate Average Fuel Economy (CAFE) Standard. See Fuel economy regulations
Costs
external, 28, 225–227
of travel, 25–28, 38–41, 267
of reducing vehicle energy use, 131–137
Criteria pollutants, 5, 118, 175, 182, 194, 226–227
Cryogenic fuels, 162–165
CTL. See Coal-to-liquids
Daimler, Gottlieb, 107
De Havilland Comet, 145, 148
Developing world
carbon dioxide emissions in, 98–100, 266
and coal-to-liquids, 177
GDP growth in, 44–45
import of used vehicles into, 139
infrastructure constraints in, 108, 138
mode shares in, 6, 21, 40, 48, 66, 257
technology opportunities in, 138–139
traffic congestion in, 52–53
travel demand growth in, 36–38, 65, 193
vehicle energy intensity in, 85, 98
vehicle growth market in, 3, 138
vehicle occupancy rates in, 83–84
Diesel, Rudolf, 115
Diesel engines
brake efficiency of, 115
emissions control of, 117
and hybrid-electric vehicles, 123
market share of, 117
thermodynamic cycle of, 115
Diesel fuel
from coal and natural gas, 174–180
from petroleum, 169–170
Physical and chemical characteristics of, 162–163
price (see Fuel price)
from unconventional oil, 170–174
Driving cycle, 19, 73, 78, 84, 121, 131–133, 137, 208, 244
Economic growth
future projection of, 44–45, 267
historical, 24
and sector change in carbon dioxide emissions, 13
and travel demand, 35–38
Efficiency
of aircraft engines, 148–151
brake, 104, 112–113, 115, 118
economic, of climate policy measures, 221, 226–227, 229–230, 236, 252–253, 255, 269
indicated, 112
mechanical, 112–116
Electricity
and hydrogen, 197–206
performance relative to petroleum-derived gasoline, 216–218
prices and battery charging, 120–121
regenerative breaking, 122, 124, 137
requirements for hydrogen fuel supply, 204–205
Electric vehicle
batteries (see Battery)
environmental aspects of, 120–121
history of, 118–119
range, 120–121
Emission standards, 5, 8, 175, 226–227
Emissions trading, 231–232, 259, 262, 267
European scheme, 18, 225, 237, 252, 270
Energy
content (see Heating value)
flow in automobiles, 110
security, 9–10, 62–64, 173, 225, 253
Energy intensity
of automobiles, 82–87, 98, 206–209, 261
of passenger travel, 67–72, 98–99, 257–258
in urban driving, 84–85
Energy use
by aircraft, 90–94, 141–160
and aircraft size, 90–93
and aircraft stage length, 93–94
by automobiles, 72–82, 103–140, 130–137, 142
and passenger comfort, 18, 28, 77–78, 106, 145–146, 154, 258
sector shifts in, 13
and vehicle performance trade-off, 115
and vehicle speed, 68, 70–71
of world passenger travel in constant technology scenario, 98–99
Engine
alternative, 118
bypass ratio, 143, 149
compression ratio, 112–113, 135
displacement, 74, 76, 80–81
downsizing, 114, 122
size (see Engine displacement)
specific fuel consumption, 142–143, 149–151
and vehicle characteristics, 113
Engine power
and energy use, 72–82, 99–100, 107, 115–116, 258, 265
trends in Europe, 74–76, 80–81
trends in the U.S., 72–82
-to-vehicle weight ratio, 73, 75–76, 80–81, 131, 208
-to-volume ratio, 112, 113
-to-weight ratio, 113, 148
England. See United Kingdom
EPPA model, 44–45, 264
Ethanol
in Brazil, 166–167
from cellulosic biomass, 185–188, 209, 211, 216–218, 220
from corn, 183–192, 209, 211, 216–218, 220
physical and chemical characteristics of, 162–163
production process of, 183–184
subsidies for, 242
from sugarcane, 166–167, 183, 186–187
supply characteristics of, 186–187
in the U.S., 167–168
as a vehicle fuel, 182–183
European
Automobile Manufacturer’s Association (ACEA), 244, 246
Union, 18, 155, 168, 225, 237, 250, 252
Feebate, 238–240. See also Policy measures
Fischer–Tropsch synthesis, 165, 175
Ford Motor Company
Focus, 238–239
Model T, 27–28, 72, 74–76, 112–113, 166
R&D expenditures of, 249
Fossil fuels
climate policies to reduce the use of, 221–255
combustion products of, 11, 13
feedstocks from, for transportation fuels, 168–180, 197–199, 210, 214–218, 219
inputs into biofuel production, 183–185, 188, 209
land-use implications of (see Land-use implications of fossil energy use
opportunities for leapfrogging the use of, 139
reserves and resources of, 59–64 (see also Coal reserves)
Freedom Cooperative Automotive Research (FreedomCar), 250
Freight transport, 16, 87
Household
- electric vehicles as second vehicles of, 120
- and family care, time dedicated to, 30–31, 33
- income and vehicle preferences, 108
- income and vehicle price (see Vehicle affordability)
- size and occupancy rate, 82–83
- vehicles per, and money budget, 33–34
- Hubbert, M. King, 59–61

Hybrid-electric vehicles
- costs of, 123, 132–135
- designs of, 121–122
- energy-efficiency advantage of, 122
- future market share of, 233–237, 268
- and impact on oil imports, 123
- plug-in, 122–123
- by Porsche, 107
- projected characteristics of future, 131–135

Hydrogen
- from biomass, 189, 199–202
- as a component in synthesis gas (see Synthesis gas)
- convenience of use, 165
- economy, 197, 250
- from fossil fuels, 197–202, 205
- and fuel cells, 124
- infrastructure challenges of, 124, 204–205, 259
- life-cycle characteristics, 200–201
- from nuclear energy, 199–202, 204–205
- performance relative to petroleum-derived gasoline, 216–218
- perspectives of, 205–206, 220, 259
- physical and chemical characteristics of, 162–163
- role of, in FreedomCAR program, 250
- storage, 164–165, 203–204
- use in oil refining, 169, 172
- from water electrolysis, 198–204, 216–218, 220

Industrialized world
- air transport system characteristics in, 54–55
- air travel growth in, 6–7
- carbon dioxide emissions in, 98–100, 265–266
- GDP growth in, 44–45
- mode shares in, 6, 21, 47–51, 65–66, 257
- telecommuting and change in lifestyles in, 51, 57
- travel demand growth in, 36–38, 65–66
- travel patterns in, 42, 84
- vehicle occupancy rates in, 83–84
- vehicle replacement market of, 3, 78, 138, 197

Intergovernmental Panel on Climate Change (IPCC)
- climate impact predictions by, 12
- SRES-b1 scenario of, 44–45

Internal combustion engine
- efficiency, 104, 112–116, 118
- energy losses, 110
- fundamentals, 104
- future importance of, 267

International Civil Aviation Organization (ICAO), 225

Japan, 6, 14, 29, 41, 46, 68–69, 108, 117, 123, 224–226, 244, 246, 250, 269

Jet engine
- and aircraft performance, 90
- efficiency of, 148–151
- history of, 144–145

Jet fuel, physical and chemical characteristics of, 162–163

Junkers, Hugo, 144

Kerogen. See Shale oil

Kyoto protocol, 18

Land-use
- changes and travel time budget, 31
implications of biomass plantations, 189–193, 259, 265
implications of fossil energy use, 177–180
planning, 21, 223
Leisure travel. See Trip purpose
Life-cycle emissions, 206–219, 259–266
Lifetime
of aircraft, 145
of automobiles, 108
of carbon dioxide in the atmosphere, 12
carbon dioxide burden (LCB), 238
Lift-to-drag ratio, 142–143, 151–153
Light-duty vehicle. See Vehicle
Light trucks
costs for reducing fuel consumption of, 136
market share of, 74–76, 79–81, 86–87, 244–245
technology characteristics, 74–77, 80–81
Lightweight materials, 126–127
Lockheed 1049G Super Constellation, 148
Market-based measures. See Policy measures
Material
corrosion from biofuels, 182
requirements of products from unconventional oil, 171–172
use in aircraft, 154
use in automobiles, 126–127
Methane
climate impact relative to carbon dioxide, 11
fuel-cycle emissions, 170, 172, 176, 195, 212, 261–262
leaks in natural gas supply system, 195
physical and chemical characteristics of, 162–163
as a vehicle fuel, 194–197
Microalgae. See Biomass
Mobility. See Travel
Mode shares
future, 43–51
historical, 38–43
impact on energy intensity resulting from changes in, 68, 84–85, 101
projected, sensitivity with regard to assumptions, 49, 65
stage of evolution of, 39–40
Motorization
and average travel costs, 26–27
mass, 2, 26, 34
and occupancy rates, 82–83
and travel money budget, 34–35
in Western Europe, 2–3
Next Generation Air Transportation System Initiative, 56, 155
Northrop, Jack, 144
NSU 8/24, 107
Nuclear energy, 171, 197, 199–202, 204, 205, 216–218
Occupancy rate. See Vehicle
occupancy rate
Ohain, Hans von, 145
Oil
consumption, 10
import dependence, 9–10, 62–64, 66, 123, 173, 225, 253
infrastructure, 166
heavy, 63, 170–174
refining, 169–170
reserves and resources, 59–64
sands (see Bitumen)
supply disruptions, 9–10 (see also Oil price volatility)
weapon, 62–63
Oil crisis. See Oil price volatility
Oil price, 25, 59, 61–62, 173, 177, 219
alternative fuel subsidies in response to rise in, 165–167, 194, 196, 219
consumer behavior in response to changes in, 68, 73, 165–166, 194, 237
and industry behavior, 145, 167
volatility, 10, 45, 64, 109, 167, 176, 196, 222, 225, 243
Oil shocks. See Oil price volatility
Otto, Nikolaus, 111
Ozone, 12

Partnership for a New Generation of Vehicles (PNGV), 249–251
kilometers travelled (see Travel)
Peak oil. See Hubbert, M. King
Persepolis, 31
Petroleum. See Oil
Photochemical smog, 5
Policy measures coordination of, 221, 237, 251–254, 268–269
market-based, 230–243, 269–270
overview of, 227–230
public acceptance of, 237
regulatory, 243–249, 261, 269–270
research and development investments as, 249–251, 270–271
Population, 24, 36–38, 44
Porsche, Ferdinand, 107
Price-based measures. See Policy measures
Price elasticity of air travel, 96–97, 99, 264–265
of automobile driving, 85, 99, 264–265
of fuel, 85, 96–97, 222–223, 232, 252, 265
ProÁlcool program, 166–167
Product cycle, impact of policy measures on, 227–230

Railways. See also Low-speed public transport
energy use characteristics of, 70–71
high-speed (see High-speed rail)
opportunities for reducing energy use of, 137
Rebound effect, 227, 239, 243, 246–247
Regulatory measures. See Policy measures
Renault, Louis, 107
Renewable Fuel Standard, 167
Research and development budget of NASA, 250
investments of air and road vehicle industry, 248
strategies, 249–251
and trade disputes, 251
Resistance acceleration, 105, 125
aerodynamic, 105, 111, 129–130
climbing, 105
driving, 105, 125
public, to policy measures, 229, 237, 269
rolling, 105, 111, 125, 128–129
Road pricing, 226, 259
Rome, 31–32, 52

Single European Sky Air Traffic Management Research (SESAR), 56, 155
South Africa, 165, 174, 177
Spark-ignition engines efficiency of, 112–116
emissions control, 113
historical progress in, 111–113
pumping losses, 112–114
Steel
 as a vehicle material, 126
 high-strength, 126, 135
Subsidies, 28, 165–167, 242–243
Synthetic fuels
 from biomass, 180–193
 from coal and natural gas, 174–180, 258
Synthesis gas, 165, 175, 198

Tar sands. See Bitumen
Technology
 dynamics, following a carbon tax, 233–237
 mandates, 247–249
Telecommunication. See Travel
Thermodynamics, first law of, 104, 142

Time
 allocation to major activities, 29–31
 budgets (see Travel time budget)
 constants in fuel infrastructure turnover, 166
 to impact by policy measures, 229, 247
 to impact through fleet turnover, 108, 145
Tires, 128–129
Toyota
 Camry, 77–78, 238–239
 Prius, 107, 123
Traffic congestion
 airspace, 8, 53
 external costs of, 226
 history of, 52
 road, 4–5, 52–53
 and travel behavior, 53
Transport. See Travel
Travel
 affordability of, 25–29, 65, 267
 constraints, 51–66
 demand, 19, 24, 35–38, 45–51, 65, 257, 266
 distance, 31, 32, 42, 47, 53, 56–58
 money budget, 33–35, 38–39
 and telecommunication, 51, 57–59
 time budget, 29–33, 38–43, 47, 49–50, 98
 to work, 42, 51, 53, 57–59
Trip purpose
 in air travel, 97
 change in, with income, 42–43
 and vehicle occupancy, 83
Trip rate, as function of income, 42
Turbocharging
 and Diesel engine, 115
 and engine downsizing, 114
 history of, 107
United Kingdom, 13, 14, 68–69, 145, 165, 174, 237
U.S. Climate Change Science Program (CCSP) study, 262–264
Urban air pollution, 4, 8, 12, 182, 221–223, 226, 240, 247, 255
Variable valve lift and timing, 114, 135
Vehicle
 aerodynamic drag, 105, 111, 129–130, 132
 affordability of, 25–29, 77–82
 attributes of, trade-off among, 77, 106, 222
 development risks of, 106
 downsizing, 127–128, 136–137
 drivetrain, 105, 110–125, 130–131
 early retirement of, 240–242
 energy intensity (see Energy intensity)
 energy use (see Energy use)
 financing, 2, 78
 fleet growth, 2–4
 flexible fuel, 182, 254
 fuel consumption (see Energy use)
 industry, economic importance of, 4
 leasing, 79
 occupancy rate, 25, 82–84, 86–87
 safety, 5, 77
 size, 72–82
 as status symbol, 77
 tailpipe emissions, 5, 106, 113, 117, 226, 253
Vehicle (cont.)
technology characteristics, 72–82, 103–140, 206–212
technology development time of, 106–108
transmissions, 118, 122
Venezuela, 171
Vienna, 31
Very light jets, 8, 54, 92

Weight
aircraft, 142–143, 153–154
automobile, 72–78, 80–81, 125–128
increase of passengers, 146
savings, secondary, 126
Whittle, Frank Sir, 144–145

Zahavi, Yacov, 29, 33–34
Zero-Emission Vehicle mandate, 248