Acceleration, 211
Accuracy. See also Errors
 in Adams-Bashforth methods, 223
 adaptive methods, 224
 centered difference, 84–85, 229–232, 235
 first and second order, 157, 215, 218, 233, 238
 and forward/backward Euler, 218, 222
 in model validation, 358
 of Neville’s algorithm, 327
 and Newton-Raphson, 84–85
 and partial differential equations, 233
 and Runge-Kutta methods, 221, 225, 237
 of secant versus bisection, 79
 and stability, 221, 223, 251
 and stochastic differential equations, 248–249
 and time, 219, 233
Adams-Bashforth methods, 221–223, 225
Adams-Moulton scheme, 225
Adaptive methods, 224–225
Affine method, 104–107, 110
Aitken’s δ^2 process, 338–340
Alleles, 28–33, 280–289
All-pairs shortest path, 21
Amino acids. See also Protein folding
 contact energies, 5–7
 and HMMs, 297–299
 and Metropolis method, 145
 proline cis-trains isomerization, 180–182
 and proteases, 9
Animation, 333
Annealing. See also Simulated annealing
Antibiotics, 45
Approximation
 centered difference, 84–85, 89, 229–232, 235
 and extrapolation, 337–340
 forward difference, 84
 and forward Euler, 214, 224
 and interpolation, 327–337
 and reaction-diffusion equations, 237
 for step size, 224
 with Taylor series, 80–81, 85, 232
Approximation algorithms. See also Traveling salesman
 and branch-and-bound algorithm, 50
 description, 47–59
 and intractability, 47–49, 50, 55
 reference, 55
 traveling salesman, 36, 48, 54
 and vertex cover, 47, 50–51
Approximation schemes, 48
Automated sequencing, 61–63
Backward algorithm, 298–299
Backward error, 77
Backward Euler, 217–219, 222
Bacteria
 antibiotic sensitivity, 45
 bacterial artificial chromosome (BAC), 64
Barrier methods, 104
Baum-Welch algorithm, 300–307
Bayesian models, 347–350, 353, 356
 additional sources, 353
Bellman-Ford algorithm, 20–21
 background, 33
Best-fit
 in interpolation, 336
 and least-squares, 356
 in parameter-tuning, 275
Bias. See also Model validation
 and gene network, 349
 and HMMs, 360
 and importance sampling, 154
 and parameter choices, 362
 unintended, 365
Biconjugate gradient, 319
Bilinear interpolation, 334
Billiard ball model, 206–209
Binary search, 338
Biochemical processes. See also Evolution; Reaction networks
 decaying exponentials, 335
 parameters, 267
 whole-cell models, 253–264
Bipartiteness, 23, 42
Bisection, 76–78, 338
Black-box, 75, 84, 237, 336
Block diagonals, 333
Boltzmann distribution, 7, 142–144, 146
Boltzmann’s constant, 7, 142
Boundary conditions
Dirichlet, 230–231
for multiple dimensions, 234
Neumann, 231
and PDEs, 230–233
and solute diffusion, 230–233
Box-Muller method, 120
background, 127
Branch-and-bound methods, 49–52
Branching process, 199
Brownian motion, 167, 241–249, 263
Brownian noise, 157
Brute force, 47, 50, 53
Calcium, 260
Calendar queue, 205t, 209
Canonical path, 161–166, 169
background, 171
Capillary sequencing, 61
Catalysts. See Enzymes
CellML, 264
Cells
and biochemical networks, 253–264
cycle synchronization, 323–325
Cell simulation
and CTMM, 256–259
electrophysiological components, 264
hybrid models, 259, 263
and PDEs, 253–256, 263
protein expression, 268
standards and software, 263
trends, 262
as very large reaction network, 260–262
Centered difference, 84–85, 229–232, 235
Chain rule, 220
Channel protein, 201–203
Chapman-Kolmogorov equations, 133
Chebyshev polynomials, 340
Chemical reaction. See also Reaction networks
and interpolation, 336
and law of mass action, 211
with noise, 246–248
and stability, 215–217
Chemical solutions. See Solutions
Chromatic number, 40
Chromosomes
diploid, 198
haploid, 192
haplotypes, 280–286
tagging SNP selection, 44, 47
Chromosome walking, 63
cis isomer, proline, 180–182
Cliques, 39, 342
union of, 344–345
Clone-by-clone strategy, 63
Clustering, 342–347, 351
additional sources, 353
Coalescent
background, 200
coaalescent simulation, 195
definition, 193f, 194
and migration, 198
and recombinations, 198
separate populations, 197
variable population sizes, 196
Coexpression models, 342–347, 351
Collisions, 141, 206–209
Coloring
in automated sequencing, 61
in graph problems, 39, 49–50
Compartments, 253–256
Complexity, computational, 55, 260–262, 361. See also Intractability; NP-completeness
Computer graphics, 333
Concave functions, 108
Conditional probability, 295
Condition number, of matrix, 319
Conductance method, 166
background, 171
bounded random walk, 167–170
Conjugate gradient, 91, 92, 318, 319
Consensus sequence, 32
Constraint satisfaction
linear program, 96–108
nonlinear program, 108–110
parameter-tuning, 269–271
primal-dual methods, 107
Contact potentials, 5, 267
Continuous distributions
and importance/umbrella sampling, 154–156
joint distributions, 119–121, 151–152
rejection method, 121–124
transformation method, 116–121, 124f
Continuous optimization. See also Newton-Raphson method
bisection, 76–78, 338
description, 75
local versus global optima, 76
multivariate functions, 85–88
secant method, 78–80
Continuous systems
applications, 211–213
backward Euler, 217–219
definition, 211
differential equations, 212
with discrete event tracking, 206–209, 263
from discrete points, 323–326 (see also Extrapolation; Interpolation)
fine difference, 213, 226
forward Euler (see Forward Euler)
leapfrog, 221–223, 225, 236
single-step methods, 219–221, 223–225
Continuous time Markov models (CTMMs)
additional reading, 183
branching process, 199
cell simulation, 256–260
channel protein example, 201–203
and coalescence, 195
description, 173–178
versus discrete event models, 201–204
and DNA base evolution, 187
Kolmogorov equations, 178–182
Moleculizer program, 261
and population dynamics, 212
and protein folding, 180–182
rate inference, 273
and self-transition, 181
waiting time, 173–175
Convection, 237–239
Convection-diffusion, 238
Convergence, 338
order of, 248–249
Convex functions, 108–110
Cooling schedule, 148
COPASI, 260, 264
Correlation coefficients, 343, 356–358
Cross-validation, 361–362
CTMM. See Continuous time Markov models
Cubic formula polynomials, 76
Cubic formulas, 76, 329, 333
Curve, receiver operating characteristic (ROC), 360
Curve families, 334–337
Curve generation, 333
Curve linearization, 81, 86, 89, 91
Cut problems
k-cut, 38, 54, 344
maximum cut, 37, 344
minimum cut, 21–23

Data. See also Noisy data
ambiguity loss, 30
and Bayesian model, 347
and continuous optimization, 75
fitting, 329–336, 340, 361
gene expression microarray, 341
gene network inference, 352
for HMMs, 299–302
input and output format, 2–3
for intraspecies phylogeny, 29–30
posting time, 205
set relationships, 357
Decision problems, 36
Density
joint, 119
probability, 116–118, 121–122, 154
detailed balance, 143–145, 164, 169
Diagnosics, 358, 360

Differential equations. See Finite difference;
Ordinary differential equations; Partial
differential equations; Stochastic differential
equations
Diffusion
and boundaries, 230–233
and cell simulation, 259
convection-diffusion equation, 238
of particles, in two dimensions, 325
PDE example, 227
reaction-diffusion equations, 234–237, 325
Diffusion term, 234
Dijkstra’s algorithm, 20, 21
background, 33
Diploid organisms, 198
Dirichlet boundary, 230–231
Discrete distributions. See also Transformation method
and continuous models, 323–326
and Metropolis method, 146
rejection method, 124–126
and transformation method, 124
Discrete event models
artificial event, 208
background, 210
and cell simulation, 260
channel protein case, 201–203
and continuous systems, 206–209, 263, 325
versus CTMMs, 201–204
description, 203
efficiency, 204–206, 208–210
event loop, 204, 207
molecular collisions, 206–209
queuing, 205, 209–210
without queue, 208
Discretization
conversions (multigrid), 325
and gene coexpression, 344
of space, 229, 233, 235, 255, 258
of time, 242
Disease, diagnosis of, 358, 360
Distributions. See also Continuous distributions;
Discrete distributions
Boltzmann, 142–144, 146
exponential, 118
gamma, 268
Gaussian, 348
joint, 119–121, 149–152
modified, 156
normal, 120, 123–124
Poisson, 191
prior, 153, 349
probability, 347–349
stationary, 134–138, 149, 153–155, 159, 161
uniform, 115–116
DNA. See also String and sequence problems
diploid and haploid, 198
exact set matching, 27
intraspecies phylogeny, 28–33
DNA (cont.)
random strings, 129–133
repetitive, 63
simulation, 191–195
tagging SNP selection, 44, 47
DNA bases
and CTMMs, 187
evolution, 185–191, 269–271
frequency analysis, 275–277, 280–286
and HMMs, 291–293, 303–307
parameter-tuning, 269–271
DNA microarrays, 64–66, 71, 341
DNA sequencing
big sequences, 61–63
computational methods, 64–72
Eulerian path, 66, 73
hybridization method, 64–66, 71, 73
Maxam-Gilbert, 57–59, 61
n nanopore method, 74
overview, 73–74
Sanger dyeoxy method, 59–61
shotgun methods, 67–69, 73
single molecule, 72, 74
Domain recognition, 294, 297
Double-barrel shotgun, 69
background, 73
Drosophila melanogaster, 74
Duals, 39, 46, 107
Dynafit program, 336
E-Cell system, 260, 264
Edges, graph
and Bayesian model, 349
and bipartiteness, 42
cliques, 39, 342, 344–345
and CTMMs, 174
and gene network, 349–351
in hierarchical clusters, 345
in intraspecies phylogeny, 29–31, 41
in Markov model, 143
and maximum flow, 21
and mixing, 161–166, 170
negative weights, 20
in network structure, 349
in Steiner trees, 41
transition probabilities, 160
in vertex cover, 38, 45, 47, 53
Edit distance, 3–4
Edmonds-Karp algorithm, 22–23, 33
Eigenvalues
definition, 136
of Markov models, 136–139, 159, 186
and matrices, 318, 321, 322
Eigenvectors, 136–139, 186
Einstein, A., 364
Ellipsoid method, 104, 110
Embedded methods, 224
Energy. See also Force field
and amino acids, 5–7
and Metropolis method, 143, 147
potential, 142
and simulated annealing, 52, 148
and umbrella sampling, 157
Entropy, 343–344, 358
Enzymatic reactions, 253–256, 324f
Enzymes
concentration, 325
and ODEs, 212
protease, 8–11
Expectation maximization, 345–347
Equilibrium
and Boltzmann distribution, 142
in chemical diffusion, 325
Hardy-Weinberg, 282
Ergodicity
and canonical path, 164
definition, 136
and Markov models, 136, 148, 159, 164, 167, 169
and Metropolis method, 143
Errors. See also Accuracy
in differential equation types, 248
and expectation maximization, 286–287
and extrapolation, 337–339
false positives/negatives, 359, 360
forward and backward, 77, 90
and intraspecies phylogeny, 30
in leapfrog method, 222
Newton-Raphson algorithm, 83–85
in noisy data, 287
and physical conservation laws, 226
and sensitivity analysis, 363
and steepest descent, 89–90
and step size, 223
Euclidian distance, 343, 345
Euclidian traveling salesman, 48–49, 54
Eukaryotic genomes
assembly, 69–70, 73
DNA sequencing, 63, 67, 73
gene prediction, 307
sequence problems, 26
Eulerian path, 66, 73. Euler-Maruyama method, 246, 249, 250
Event loop, 204, 207
Evolution. See also Continuous time Markov models; Molecular evolution
coalescent model, 193–199
and data ambiguity, 30
description, 2–4
DNA base evolution, 185–191, 269–271
DNA strand simulation, 191
genetic algorithms, 52–53
graph problems, 16–18
intraspecies phylogeny, 28–33, 41
Jukes-Cantor model, 185–188
Graph problems (cont.)
 independent set, 38, 42
 matching, 23
 maximum clique, 39
 maximum cut, 37, 344
 maximum flow/minimum cut, 21–23
 minimum spanning trees, 16–18, 20, 29–31
 multigraphs, 16
 NP-completeness, 4, 36–42, 47, 344
 phylogeny example, 28–33
 and set problems, 44
 shortest path, 19–21
 Steiner trees, 40–41
 subgraphs, 42, 54
 traveling salesman, 36, 48, 54
 and union-of-cliques, 344
 vertex cover, 38, 45, 47, 53, 54
Graph properties, 42
Green’s function reaction dynamics (GFRD), 263
Grid box, 334
Growth factor, 223
Guilt by association method, 344

Haemophilus influenzae, 73
Hamiltonian path, 36–37, 65
Hamming distance, 41
Haploidy, 198
Haplotypes
 frequency estimation, 280–286
 inference from noisy data, 286–289
Hard sphere model, 206–209
Hardy-Weinberg equilibrium, 282
Hastings-Metropolis method, 160. See also
 Metropolis method
 Heat equation, 227
 background, 239
 Hessian, 86–89, 109
Heuristic methods. See also Simulated annealing
 background, 53, 158
 clustering methods, 344–347
 definition, 52
 and gene (co)expression, 344–347
 genetic algorithms, 52
 and Gibbs sampling, 152–154
 and intractability, 52
 kitchen sink approach, 53
 and Metropolis model, 52, 147
 and network inference, 349
Hexamers, 260–262
Hidden Markov models (HMMs)
 and amino acids, 297–299
 background and sources, 289, 307
 and DNA bases, 291–293, 303–307
 and expectation maximization, 300–307
 gene structure, 292, 299–302
 motif-finding, 303–307, 359–362
 and Newton-Raphson method, 302
 and output probability, 297–299
and protein domain, 294
and protein folding, 308
special features, 291
state assignment, 295–297
training, 299–302
transcription factor binding, 293
Hierarchical clustering, 345
HIV, 10
HMM. See Hidden Markov models
Huen’s method, 224
Hungarian method, 24, 33
Hybridization, sequencing by, 64–66, 71
 background, 73
Hydrogen bonds, 158
Hyperplanes, 97
Identity matrix, 310–312, 320
Image analysis, 325, 340
Imino acid, 180
Implicitly specified functions, 271–273
Importance sampling, 154–156, 170
 umbrella sampling, 155, 158
Infeasible points, 97
Infinite series, 337–340
Infinite sites model, 191–192
Information, mutual, 344
Information theory, 343, 358
Inheritable properties, 42
Integer linear programs, 51
Intermediate point methods, 104–107, 108
Interpolation
 best-fit, 336
 bilinear, 334
 in biochemical reactions, 335
 curve families, 334–337
 definition, 325
 examples, 323–326
 Fourier interpolants, 340
 Levenberg-Marquardt method, 336
 linear, 272
 multidimensional, 334
 and Newton-Raphson method, 81, 336
 and optimization, 335–337
 polynomial type, 326–330
 rational function, 330
 and secant method, 79
 splines, 331–334
 and steepest descent, 90
Intractability, See also NP-completeness
 approximation algorithms, 47–49, 50, 55
 branch-and-bound methods, 49–52
 brute force approach, 47, 53
 coping with, 30–32, 35, 46, 49, 53
 definition, 24–26, 35
heuristic approaches, 52
trade-offs, 30–32, 46, 49
Isomerization, 180–182
Iterative methods
finite difference, 338
Gauss-Seidel method, 317
Jacobi method, 317
Krylov subspace, 317–320
and Newton-Raphson, 82, 88
Itô integral, 244. See also Stochastic integrals;
Stochastic differential equations
Itô-Taylor series, 249

Jacobian, 86–89, 92
Jacobi method, 317
Johnson’s algorithm, 21
background, 33
Joint distributions, 119–121, 149–152
Joint entropy, 344
Jukes-Cantor model, 185–189, 191
background, 200
Karmarkar’s method, 104, 108, 110
k-coloring, 40
k-cut problems, 38, 54, 344
k-fold cross validation, 361
Kimura model, 188–191
background, 200
Kinetic models, 351–353
Kolmogorov criterion, 160, 164, 168
Kolmogorov equations
Chapman-Kolmogorov, 133
and CTMMs, 178–182
and discrete event simulation, 201
and evolutionary processes, 187, 190
and implicitly specified functions, 273
Kruskal’s algorithm, 17, 31
background, 33
Krylov subspace, 91, 317–320, 333
kth-order Markov model, 130–131

Laplacian, 227
Latent variables, 277, 284, 288–289, 300, 345
Lattice models
background, 10
description, 5–7
and discretized states, 324f, 325
and heuristics, 52
in Markov example, 145
move sets, 10
parameters, 267
and protein folding, 5–6, 145–146
for spatial discretization of PDEs, 258–259
Law of mass action, 211
Lazy queuing, 205
Leapfrog method, 221–223, 225, 236
Least-squares, 320, 336, 349, 356
Leave-one-out cross validation, 361
Levenberg-Marquardt method, 90, 273, 336
background, 93
Likelihood, maximum. See Maximum likelihood
Linear congruential generators, 116
Linear interpolation, 272
Linearization, of curve, 81, 86, 89, 91
Linear programming
barrier methods, 104
cost factors, 108
definition, 96
ellipsoid method, 104, 110
primal and dual, 107
relaxation, 51
simplex method, 97–103, 108, 110
software, 107, 111
standard form, 98–99
Linear recurrence, 222
Linear regression, 310
Linear systems
definition, 309
and differential equations, 213
Gaussian elimination, 310–316, 318
and gene networks, 352
and interpolation, 330–334
iterative methods, 316–321
Krylov subspace methods, 317–319
linear regression, 310
and multivariate functions, 87
optimization in, 92
over- and under determined, 320
pivoting, 312–316
preconditioners, 319–320
pseudo-inverse, 321
references, 93
and Taylor expansions, 85
Line-by-line method, 256
Local linearizing, 81, 86, 89, 91
Local optimum, 52
LU decomposition, 315

Macromolecular complexes, 260–262, 264
Markov chain Monte Carlo (MCMC), 141–158, 350
Markov chains
background, 139
definition, 129
and gene network, 350
irreducibility, 136
and mixing times, 163, 166–170
in molecular evolution, 185–188
Markov models
background, 139
branching process, 199
components, 129, 291
conductance, 166–170
continuous time (see Continuous time Markov models)
and DNA bases, 185–188, 269–271, 291–293
Markov models (cont.)
and DNA motifs, 153
eigenvectors, 136–139, 186
ergodicity, 136, 148, 159, 164, 169
gene sequence types, 276
and Gibbs sampling, 149–156
hidden, 291 (see also Hidden Markov models)
and Metropolis method, 142–148 (see also Metropolis method)
mixing time, 138, 159–160, 166, 170
and molecular evolution, 185–191
nonergodic, 137
order, 130–131
and prior distribution, 153
with random walk, 167
and spatial effects, 258
stationary distribution, 134–138, 149, 153–155, 159, 161
and waiting time (see Continuous time Markov models)
Mass action, law of, 211
Matching problems
exact set, 27
unweighted, 23
weighted, 24
Mating, 53
Matrices. See also Transition matrix
condition number, 319
inversion, 87
over/underdetermined, 310, 320, 330, 333
permutations, 314
positive (semi)definite, 92, 318, 319
Maxam-Gilbert method, 57–59, 61
Maximal matching, 47
Maximum a posteriori probability (MAP), 275
Maximum clique problems, 39
Maximum cut problems, 37, 344
Maximum edge loading, 161–166, 170
Maximum flow problems, 21
Maximum likelihood
background, 289
and clustering, 345–346
description, 268
and expectation maximization, 275, 277–280 (see Expectation maximization)
in haplotype error correction, 286–287
in haplotype frequency estimation, 282–283
and Hardy-Weinberg equilibrium, 282
and latent variables, 284
and network inference, 347–351
and parameter-tuning, 8–10, 268, 275–277, 283
MCell, 258–259, 264
Metropolis criterion, 6–7, 10
Metropolis method
background, 158
caveats on use, 146
efficiency, 154–156
generalized, 146–147
and mixing time, 146, 154, 170
for optimization, 147, 350
and protein folding, 142, 145, 154
and simulated annealing, 52, 148
and thermodynamics, 141–143, 146
and traveling salesman, 147
Michaelis-Menten reaction, 253–256
Microarrays, 64, 71, 341
Microreversibility, 143–145, 164, 169. See also Detailed balance
Midpoint method, 219–222
Migration, 198
Milstein’s method, 249, 251
Minimum cut, 21–23
Minimum description length (MDL), 361
Minimum set cover, 45. See also Vertex cover
Minimum spanning network, 31
Minimum spanning tree, 16–18, 20, 29–31
Minimum test set, 44
Mixing time
canonical path method, 161–166, 169, 171
conductance method, 166–170, 171
definition, 138, 159–160
and eigenvalues, 138–139
and importance sampling, 170
and Metropolis method, 146, 154
monomer-dimer systems, 171
Model space, reduction, 351
Model validation
accuracy, 358 (see also Accuracy)
cross-validation, 362
goodness measures, 355–358
overfitting avoidance, 361
receiver operating characteristic (ROC) curve, 360
scientific method, 363–366
sensitivity, 359, 360, 362
specificity, 359–361
Mode-of-action by network identification (MNI), 351
Modified distribution, 156
Molecular evolution
coalescent model, 192–198
DNA strand, 191
Jukes-Cantor model, 185–188
Kimura model, 188–191
and Kolmogorov equations, 187, 190
one-parameter, 185–188
and self-transition, 163–164
two-parameter, 185–188
Molecular modeling
and continuous optimization, 75
lattice models, 5–7, 145–146
macromolecular complexes, 260–262, 264
and numerical integration, 211
and stochastic differential equations, 245
and umbrella sampling, 156–158
Moleculizer program, 261
Monomer-dimer systems, 170–171
Monte Carlo samplers, 350
Motifs
 alignment of, 152
 detection of, 152, 303–307, 347, 359–362
 transcription factor binding, 293
Move sets, for lattice models, 6
Multicommodity flows, 23
Multidimensional curve, 336–337
Multigraphs, 16
Multigrid methods, 324f, 325
Multiple independent variables, 356 (see also Partial differential equations)
Multiple regression, 351
Multivariate functions, 85–88
Mutations
 in genetic algorithm, 53
 infinite sites model, 191–192
 and Jukes-Cantor model, 187, 191
 and Kimura model, 186f, 188–189
 random, 163–166
 simulation, 4–7, 191
 transitions/transversions, 189
 and Wright-Fisher neutral model, 192
Mutual information, 344
Needleman-Wunsch algorithm, 33
Network identification by multiple regression (NIR), 351
Networks
 gene regulatory, 341–353
 inference of, 349–353, 363
 minimum spanning, 31
 reaction networks, 260–264, 323–325, 340
 reduced median, 33
 Neumann boundary condition, 231–232
 Neville’s algorithm, 326–329
Newton-Raphson method
 background, 93
 black-box functions, 84
 and HMMs, 302
 and implicitly specified function, 273
 and interpolation, 336
 and Levenberg-Marquardt method, 90
 multidimensional, 85–88
 and parameter-tuning, 80–84, 269
 and steepest descent, 90
 Newton’s second law, 211
Next reaction method, 257
Noisy data, 286–289, 323–325, 329, 347
Nonlinear programming, 108–110
Nonlinear systems, 91–92
Nontrivial graph properties, 42
Normal distributions, 120, 123–124
NP-completeness
 background, 53–55
 coping with, 35, 46–53
 and DNA sequencing, 65
 linear programming relaxation, 51
 in Steiner tree, 41
 and union-of-cliques graph, 344
NP-hardness. See NP-completeness
Numerical integration. See also Partial differential equations; Stochastic differential equations
 additional readings, 225
 backward Euler, 217–219
 and black box functions, 336
 definition, 213
 and extrapolation, 337
 finite difference method, defined, 213
 forward Euler, 214–217, 222, 223, 224
 implicit, 316
 and interpolation, 336
 and Kolmogorov equations, 273
 leapfrog method, 221–223, 225, 236
 line-by-line method, 256
 midpoint method, 219–221
 multistep methods, 221–223
 and parameter-tuning, 272
 single-step methods, 214–221
 spectral methods, 226
 speed and efficiency, 223–225
 step size selection, 223–225, 233–234
 and transformation method, 118
Objective function, 96, 268–271, 336
ODEs. See Ordinary differential equations
Optimization. See also Continuous optimization;
 Gibbs sampling; Metropolis method; Parameter-tuning
 background, 92
 in bootstrapping, 350, 363
 conjugate gradient, 91, 318
 constrained (see Constraint satisfaction)
 and decision problems, 36
 description, 1–4
 discrete, 15
 and gene networks, 349
 and Gibbs sampling, 152–154, 350
 and interpolation, 335–337
 lattice models, 5–7
 Levenberg-Marquardt method, 90, 93
 and Metropolis method, 147–148, 350
 and model goodness, 356
 (non)linear systems, 91–92, 318
 and parameter-tuning, 8, 267–271
 of state assignments, in HMM, 295–297
 steepest descent, 89–90
 without zero-finding, 89–92
Order of convergence, 248
Ordinary differential equations (ODEs)
 backward Euler, 217–219
 and curve fitting, 335
 and errors, 248
 examples, 211–213
 forward Euler, 214–217, 222, 223, 224
Ordinary differential equations (cont.)
and gene networks, 351–353
leapfrog method, 221–223, 225, 236
line-by-line method, 256
living cell simulation, 253–256
midpoint method, 219–221
and reaction network, 323, 352
step size selection, 223–225
Overdetermined systems, 310, 320, 330
Overfitting, 361
Parameter selection, 267, 362
Parameter-tuning. See also Expectation
maximization; Hidden Markov models;
Optimization
and biochemical reactions, 267
description, 8–10, 267, 275
DNA base evolution, 269–271
and gene sequences, 276
haplotype frequency, 280–286
haplotype inference, 286–289
implicitly specified functions, 271–273
and linear systems, 309 (see also Linear systems)
maximum likelihood, 8–10, 268, 275–277, 283
motif-finding, 303–307
and Newton-Raphson method, 80–84, 269
and noisy data, 286–289
protease example, 8–10
and protein expression, 268
protein folding example, 267
and sensitivity, 363
Parsimony, 3, 29–33
background, 10
Partial differential equations (PDEs). See also
Reaction-diffusion equations.
additional information, 239
boundary conditions, 230–233
convection, 237–239
coupled one-dimension, 228–230
diffusion example, 227
initial conditions, 230
line-by-line method, 256
cell simulation, 253–256, 263
multiple spatial dimensions, 233–234
one spatial dimension, 228–230
step size, 233
Particle collisions, 141, 206–209
Particle diffusion, 325
Particle interactions, 177
PDEs. See Partial differential equations
Pearson correlation coefficient, 343
Permutation matrix, 314
Pfam protein database, 295
Philosophy of science, 363–366
Phylogeny, intraspecies, 28–33
Pivoting, 312–316
Poisson process, 191
Poisson random variable, 191
Polymerization, 61
Polynomial reduction, 46
Polynomials
Chebyshev, 340
cubic formula, 76, 329, 333
fitting to lower order, 329–331, 340
Neville’s algorithm, 326–329
quadratic formula, 76
quartic formula, 76
splines, 331–334
Polytope, 97
Popper, Karl, 364
Population dynamics, 29, 212
Population genetics, 280–286
Posting time, 205
Prediction
cut site, in proteases, 8–11
gene expression, 307, 309
protein expression, 323
Predictor-corrector schemes, 225
Primals and duals, 107
Prim’s algorithm, 18, 20
background, 33
Prior distribution. See Prior probability
Prior estimate, 303
Priority queue, 18, 205, 209–210
Prior probability, 153, 298, 349
Probability. See also Sampling
of best-fit, 275
conditional, and transitioning, 295
distribution, 347–349
fundamental transformation law, 117
maximum a posteriori (MAP), 275
maximum likelihood, 8–10, 268, 275–277, 283, 356
of migration, 198
prior, 298
Proline, 180–182
Proteases
cut site prediction, 8–11
and HIV, 10
and parameter-tuning, 8–10
Proteasomes, 11
Protein expression, 268, 323
Protein folding
and CTMMs, 180–182
and HMMs, 308
importance sampling, 154–156
lattice models, 5–7, 10 (see also Lattice models)
Markov model example, 145
Metropolis model, 142, 145, 154
parameters, 267
umbrella sampling, 155–158
Proteins
and Brownian motion, 157
channel protein, 201–203
coiled-coil, 293–295
complexes, 177, 260–262
database, 295
domain recognition, 294, 297
exact set matching, 27
growth rate example, 95
hydrogen bonds, 158
ligand binding, 75
longest common subsequence, 25, 42–43
longest common substring, 26
sampling programs, 261
string and sequence problems, 24–27
structure simulation, 4–7
translation, 268
Pseudoinverse, 321
Pseudorandom numbers, 115
P-value calculators, 343
Quadratic formula, 76
Quadratic programming, 109
Quartic polynomials, 76
Queues, 18, 205, 207–210. See also Priority queues
Random DNA strings, 129–133
Random mutations, 163–166
Random number generation
 pseudorandom numbers, 115
 rejection method, 121–124
 transformation method, 115–121
Random variables. See Distributions
Random walk, 167–170, 324f
Rational function, 330
Rational interpolation, 330
Reaction-diffusion equations, 234–237, 325
 background, 239
Reaction networks, 211, 217, 260–264, 264, 271, 323–325, 335, 340
 cell simulation, 260–262
 data-fitting, 340
 Reaction term, 234
Receptor operating characteristic (ROC) curve, 360
Recombination, 198
Reduced median network, 33
Rejection method, 121–126
 background, 127
Relaxation, 51
Reversibility, 143–145
Reweighting, 21
Richardson extrapolation, 225, 337
RNAi, 352
Runge-Kutta methods
 and accuracy, 221, 225, 237
 with black box, 237
 and cell simulation, 260
 embedded, 225
 fourth order, 221
 midpoint method, 219–221
 and stability, 221
Run time. See also Optimization; Simulation
 and accuracy, 219, 233
 and boundary conditions, 231
 coalescent, 195–197
 and CTMMs, 173–175, 273
 and discrete event models, 204–206, 208–210
 and importance sampling, 155
 and intraspecies phylogeny, 29
 and Krylov subspace methods, 319
 and Metropolis method, 146, 154
 and numerical integration, 225
 and stability, 215
 and step size selection, 217, 233
 and umbrella sampling, 156–158
Sampling. See also Gibbs sampling; Importance sampling; Markov models; Metropolis method; Umbrella sampling
 continuous distributions, 116–124, 156
 discrete distributions, 124–126, 146
 efficiency, 154
 exponential random variable, 118–119
 geometric random variable, 125–126
 joint distributions, 119–121, 149–152
 modified distribution, 156
 and network inference, 350, 363
 normal distributions, 120
 with optimization, 350
 at point in time, 182
 (pseudo)random numbers, 115
 rejection method, 121–124
 and simulation, 7, 115
 transformation method, 116–121
 uniform random variable, 116
Sanger dideoxy method, 59–61
Scaled variables, 105
Science, philosophy of, 363–366
Scientific method, 363–366
Secant method, 78–80
Selfing, 198
Self-transitions
 conversion to, 168
 and CTMMs, 181
 and mixing time bounds, 159
 and molecular evolution, 163–164
Semidefinite programming, 108–110
Sensitivity, 359, 360, 362
Sequences. See DNA sequencing; String and sequence problems
Set problems
 independent set, 38, 42, 46, 54
 minimum set cover, 45
 minimum test set, 44
 Shortest common supersequence, 43
 Shortest common superstring, 44
 Shortest path, 19–21
Shotgun methods, 67–71
 background, 73
Signal processing, 340
Similarity measures, 342–344
Simplex method, 97–103, 108, 110
Simulated annealing
background, 54
and Bayesian models, 349–350
description, 52
and Metropolis method, 52, 148
Simulation
Brownian motion, 241–249
chemical, in inhomogeneous solution, 234–237
continuous systems, 211–213 (see also Continuous systems)
of CTMM (pseudocode), 175f
of discrete events (see Discrete event models)
DNA, haploid, 198
DNA random string, 129–133
DNA strand, 191
DNA whole population, 192–195
implicit functions, 271–273
of macromolecular reactions, 260–262
of mutation, 4–7, 191
parameter-tuning, 267–271
of particle collisions, 141, 206–209
protein structure example, 4–7
reaction networks, 253–264
of recombination, 198
and sampling, 7, 115
Single-molecule sequencing, 72, 74
Single-pair shortest path, 19–21
Single-step methods, 219–221, 223–225
Smith-Waterman algorithm, 33
SNP selection, 44, 47
Social constructivism, 365
Solutions
convection, 237–239
diffusion, 227, 230–237, 259, 325
inhomogeneous, 234
Sparse candidate algorithm, 351, 352
Sparse graphs, 18, 21
Sparse matrices, 315, 316, 322
Spatial models
discretization, 229, 233, 235, 255, 258
multidimensional, 85–89, 233, 325
one dimension, 228–230
reaction-diffusion equations, 234–236
three-dimensional, 234
and time, 233
two-dimensional, 325
Spearman correlation coefficient, 343
Species tree, 28–33
Specificity, 359–361
Spectral methods. See also Eigenvalues, Fourier transforms
interpolation, 340
numerical integration, 226, 239
Splines, 331–334
Stability
and accuracy, 221, 223, 251
of Adams-Bashforth methods, 223
additional information, 239
of backward Euler, 218
classifications, 215
disadvantages, 217
of forward Euler, 215–216
of leapfrog method, 222
and mutations, 4–7
references, 239
and Runge-Kutta methods, 221
and step size, 217
and stochastic differential equations, 249–251
unconditional, 219
von Neumann analysis, 215–217
Standards, 264
Standard Weiner process, 241
Stationary distribution, 134–138, 149, 153–155, 159, 161
Steeped descent, 89
Steiner nodes, 32, 41
Steiner trees, 31–32, 40–41
Step sizes, 233, 337
adaptive methods, 223–225
predictor-corrector schemes, 225
and stability, 217
Stochastic differential equations
accuracy, 248
additional information, 252
for Brownian motion, 241–248
and cell simulation, 256
Euler-Maruyama method, 246, 249, 250
and implicit function, 273
for protein-folding, 157
stability, 249–251
Stochastic integrals, 244
Stochastic simulation algorithm (SSA), 256–260, 263
StochSim, 256–259
Stratonovich integral, 244
String and sequence problems
applications, 24
exact set matching, 27
haplotype frequency, 280–286
haplotype inference, 286–289
HMM, 292
hybridization, 64–66, 71, 73
longest common subsequence, 25, 42–43
longest common substring, 26
Markov model example, 276
noisy data, 286–289
NP completeness, 42–44, 47
random DNA strings, 129–133
sequence alignment, 33
shortest common supersequence, 43
shortest common superstring, 44
suffix trees, 26, 27, 33
Index

Subgraphs, 42, 54
Subsequences, 25, 42–43
Subspace. See Krylov subspace
Substrings, 26
Successive squaring, 133
Suffix trees, 26, 27, 33
Sum-of-squares. See Least-squares
Supersequences, 43
Superstrings, 44
Systems Biology Markup Language (SBML), 264

Tagging SNP selection, 44, 47
Tau leap algorithm, 259
Taylor series
 approximation with, 80–82, 85, 232
 and backward Euler, 218
 and finite difference approximations, 229, 232
 and forward Euler, 215
 and midpoint method, 220
 and multistep methods, 222, 225
 and Newton-Raphson method, 80–82, 84–85
 and Richardson extrapolation, 337
 stochastic. See Itô-Taylor series
Temperature. See Simulated annealing
Terminal nodes. See Steiner trees
Terminator base, 59–61
Thermodynamics
 and CTMMs, 180–182
 and Metropolis method, 141–143, 146
Time. See Evolution; Mixing time; Run time
 Tractability, 24–26, 35. See also Intractability
 Transcription factor binding, 293
 Transformation method, 116–121, 124
 background, 127
 trans isomer, proline, 180–182
 Transition, Markov model, 130
 Transition matrix
 for CTMMs, 173
 in Jukes-Cantor model, 186
 in Kimura model, 189
 of Markov models, 132, 134–137
Traveling salesman problem (TSP), 36, 48, 54, 147
Trees
 minimum spanning, 16–18, 20, 29–31
 and optimization, 2–4
 Steiner, 31–32, 40–41
 suffix, 26, 27, 33
 and traveling salesman, 48
Triangle traveling salesman, 48–49, 54
True negatives, 359
True positives, 359, 360
Truth, 365
Twofold cross-validation, 361

Umbrella sampling
 background, 158
 and Gibbs sampler, 156–158
 and Metropolis sampler, 155

Unconditional stability, 219
Underdetermined system, 310, 321, 333
Union-of-cliques, 344–347
Variation distance, 160
Vertex cover
 approximation algorithms, 47, 50–51
 description, 38
 and genetic algorithm, 53
 hardness testing, 46
 and independent set, 39
 and minimum set cover, 45
 reference, 54
Virtual Cell, 255, 261, 264
Viterbi algorithm, 296, 299
von Neumann analysis, 215, 219, 220, 250

Waiting time, 173–175
 and coalescence, 198
 and CTMMs, 201–204
 and Poisson process, 191
 and recombination, 199
Wave equation, 238
Wavelets, 223, 226, 340
Weiner process, 241
Whole population sampling, 192–195. See also Coalescent
Wikipedia, 93, 110
Wright-Fisher neutral model, 192

Zero, avoiding, 105–107
Zero-finding
 alternative approaches, 89–92
 bisection method, 76–78
 multivariate functions, 85–88
 Newton-Raphson methods, 80–88, 90, 269
 secant method, 78–80
 0–1 integer programming, 51