Abajian, Henry, 30
Ackoff, Russell, 10
Agena TFX fighter, 100
Agrell, Wilhelm, 394
Aigrain, Pierre, 458
Air Force
Air Research and Development Command (ARDC), 264, 267
Atlas Scientific Advisory Committee, 265–266
development of ICBMS, 96, 265
management structure for ICBM
development, 256–257, 266
Office of Statistical Control, 257
reorganizations of scientific and
technical units, 264
response to Rubel philosophy, 103–104
Rubel’s model management programs
(1961), 100–101
Teapot Committee, 265–266
Western Development Division
(WDD), 96
Wright Air Development Command
(WADC), 268
See also RAND Corporation
Air Force Systems Command (AFSC), 97
Akera, Atsushi, 12–13
Alchian, Armen A., 15, 259–264,
266–269, 272–275, 277, 279, 283–285,
289–290
Alexander, Samuel, 192, 194–198,
208–209, 211, 212, 214
Antisubmarine Warfare Operations
Research Groups (ASWORG), 4,
69, 72–73, 82
antitrust law
Cellars-Kefauver antitrust act (1950),
113
Clayton Act (1950), 113
horizontal joint ventures to
circumvent, 113
Arnold, Henry H. “Hap,” 64–66, 72–
73, 257–258, 313, 439–440
Arrow, Kenneth J., 15, 274–277, 279,
285, 291–292, 446
Asher, Harold, 260
Aspray, William, 228
Astin, A. V., 195, 198
Atlas missile program, 6–7, 96–97
attitude prospective, France, 146–147,
150
Augenstein, Bruno, 266
Bailey, C. E. G., 388
Bainbridge, Kenneth T., 30
Baker, Wilder D., 66, 68–69, 72
ballistic missiles
as air force priority, 96–97
air force regulations for 375-series,
97–98
Gillette Committee, 96
MMRBM program, 101
mobile mid-range ballistic missile
revival of concurrent methods in
development of, 96
See also intercontinental ballistic
missiles (ICBMs)
Barrows, George, 72
Bator, Francis, 414
Bawdey Research Station, England, 59
Bay Area Rapid Transit (BART) system, San Francisco, 7–8
general obligation bonds for district, 119
joint ventures, 117
special district for, 118
Bechtel Corporation
Bechtel Group, 121–122
use of systems engineering techniques, 5
Becker, Howard, 210
Bell, Daniel, 464
Bell Laboratories (BTL), 27–28
M-9 gun director, 34–35, 47
report on Radiation Lab radar, 48–49
Bellman, Richard, 317
Beniger, James, 95
Berger, Gaston, 146–148
Bernal, J. D., 62
Bigelow, Julian, 466
biology as information science, 470
Bitter, Francis, 71
Blackett, Patrick M. S., 59, 385, 388
Blandy, William, 40
Bloch–Lainé, François, 147
BoB. See Bureau of the Budget (BoB)
Bode, Hendrik, 36
Boone, Richard, 329, 330, 331, 332
Bowles, Edward L., 62–63, 66, 69, 313
Bowman, Edward H., 398
Bowman, Isaiah, 60
Brenner, Sydney, 476
Brillouin, Leon, 463–464
Bromley, Allan, 429
Brooks, Frederick P., Jr., 169
Brooks, Harvey, 413
Brown, James P., 362, 364
Brown, Michael, 94, 107
Bugos, Glenn, 7–8
Bundy, Harvey H., 62, 67, 69, 72
Bundy, McGeorge, 413–415, 458
Bunker-Ramo, 363
Burchard, John, 4, 62, 68, 73, 76
Bureau of Ordnance, U.S. Navy (BuOrd)
blind firing concept, 40–42
fire control radar designs, 38–39
fire control systems, 38
Getting’s relations with, 44
Bureau of the Budget (BoB)
Interagency Committee reporting to, 204
Office of Management Organization (OMO), 205
seeking control over Great Society welfare programs, 337–338
Califano, Joseph, Jr., 338, 340–341
Cannon, William, 331–332
Capron, William, 279, 331
Carbon dioxide
monitoring atmospheric, 233, 240
theory of global warming induced by, 233
cathode ray tubes, 31, 164
Centre International de Prospective, 146
Chafee, Earl, 33
Chandler, Alfred, 191
Chargaff, Erwin, 473
Charney, Jule, 228
civil systems
Ramo’s promotion of, 364
of TRW, 359–360
Clark, William C., 413, 418, 428
Clayton Act (1914), 113
climate
GCMs to study, 229, 231–232
global warming theory, 233
Study of Critical Environmental Problems (SCEP), 240–242
Study of Man’s Impact on Climate (SMIC), 240–242
climates models
during Cold War, 247
global three-dimensional, 234–236
See also general circulation models (GCMs)
Cloward, Richard, 329, 336
Club of Rome
conclusions related to population, pollution, and consumption, 245
contribution of, 245
first general meeting, 242–243
The Limits to Growth, 244–245
Cold War
climate and weather models during, 247
RAND contribution to fighting, 255
research during, 313
communication
mathematical theory of, 468
networks within organizations, 95
Community Action Program (CAP), 332–334
Compton, Karl, 33, 60, 61, 68, 78–81
computers
development of digital (1945–1960), 237
ENIAC, 224–226
Los Alamos Maniac, 473, 475
as management tools, 161
microprocessors, 161
MIT Whirlwind digital computer, 163–164, 229–230
persistent distrust of, 183
potential risks, 162–163
random-access magnetic core memory, 164
for systems approach (1960s), 10
TRW applications, 369–370
U.S. lead in use of, 437
See also microprocessors; SAGE (Semi-Automatic Ground Environment) system
computer simulation
modeling and simulation at RAND, 317
as technique for policy analysis, 245
See also simulation models
computer systems
application of deductive proof, 180–182
fatal accidents related to failure of, 170–171
first real-time, 161
installation of different backup systems, 179
SABRE computerized airline reservation system, 161
safety-critical, 171–173
testing for safety, 175–178
See also programming computer systems
Conant, James B., 61, 62, 67, 78
concurrency
origin of term, 96, 97, 264
seen as threat by air force officers, 104
shift to phased planning from, 106
concurrent method
of building a system, 93–94, 96
of procurement, 93–94
See also sequential method
conglomerates
development of (1960s), 114
divestiture movement (1970s), 115
organizational form, 114
control
as application of computers, 229–230
military command-control systems, 230
SAGE system used for, 229–230
Conway, Jack, 336–337
Cowles Commission, 274–275
Cramér, Harald, 389, 396, 398
Crawford, Perry, 163
Crick, Francis, 467, 470–471, 473, 478–479, 483
Critical Path Method (CPM), 93, 122
cryptanalysis
diamond code, 472–477
of DNA structure and protein synthesis, 472
information theory transformation of, 472
Dalenius, Tore, 401
Dancoff, Sydney, 470
Dantzig, George B., 317, 448, 449
data
- for climate models, 235
- computer as tool to refine and shape, 229
- conversion for SAGE system, 230
- focus in SCEP and SMIC reports, 241–242
- from IGY, 234
- lacking in Forrester’s systems, 238–239
- paleoclimatic, 235
- relationships between models and, 240–242
- in world dynamics models, 244
- data collection
 - for global weather forecasting, 226–228
 - for SAGE system, 230
- data networks
 - of IGY, 234
 - for meteorological observation, 232–233
 - for weather and climate models, 247
- data sources
 - computer-related fatal accidents, 170–171
 - weather satellites, 235–236
- Davenport, Lee, 30
- Davidson, Ward F., 70–77
- defense policymaking
 - centralization at DOD, 326
 - criticism of U.S. (1958), 322
 - in The Economics of Defense, 318–319
- Defense Reorganization Act (1958), 98
- defense sector, Sweden
- National Defense Research Institute (FOA), 385, 388–391
- OR activities, 388–390
- OR in, 394
- during World War II, 387
- de Gaulle, Charles, 135, 137–138, 142
- DeLauer, Richard, 367
- Delbrück, Max, 467, 473, 475, 478, 480–482
- Delinquency and Opportunity (Cloward and Ohlin), 329
- Department of Defense (DOD)
 - concerns related to centralization of management, 104–106
 - McNamara as Secretary, 321, 324
 - phased planning regulations, 106
 - Planning-Programming-Budgeting (PPB) system, 326–327
 - PPB program packages, 341–343
 - Reorganization Act (1958), 322, 324
 - Research and Development Board, 263
 - systems analysis and program budgeting in, 341–342
- Department of Health, Education, and Welfare (HEW)
- Office of Management Policy (OMP), 199–201
- Statistical Processing Branch (SPB), 201
- systems analysis study (1958), 199–200
- Dibner conference, 2
- Dickins, B. G., 66
- Digital Radar Relay, 164
- Dijkstra, Edsger, 168, 175, 180–181
- districts, special
 - BART district, 118–119
 - in California, 118
 - new agency formation commissions to oversee, 119–120
- Douglas, Donald, 313
- Douglas, Walter, 120–122
- Draper, Charles Stark, 41
- Eaker, Ira C., 65–66
- earth systems models, 246
- Economic Opportunity Act (1964), Community Action Programs, 334–336
- economics
 - of innovation, 268, 293–295
 - of technical change, 256–257, 259–270
- The Economics of Defense in the Nuclear Age (Hitch and McKean), 318–319, 324–326
economists
RAND economists of innovation project, 268, 293–295
RAND economists’ criticism of systems analysis, 257–270
RAND economists during Sputnik crisis, 285–292
RAND economists’ study of R&D, 270–285
Edsall, John, 467
Edwards, Paul N., 13–14
Edwards, Richard, 203
Eisenhower, Dwight D., 98, 193, 212
Eisenhower administration defense establishment during, 322
enforcement of Clayton Act, 113
ICBM development as priority, 96
electronic data processing (EDP) introduction into federal bureaucracy, 191–194
Elichirigoity, Irving, 244
EMEP (Cooperative Programme for the Monitoring and Evaluation of Air Pollution in Europe) model, 421, 423–424
engineering
safety engineering, 172–173
software engineering, 166–169, 180–182
systems engineering, 1, 200, 214, 256–257
systems-engineering management, 5, 96–97, 265, 360–362, 378
engineers
at heart of l’action prospective, 148
mutual orientation of scientists and, 223, 230
ENIAC computer
computerized weather prediction by, 225–226
initial applications, 224
Enthoven, Alain, 6, 325, 338, 446, 448
environmental simulators to test real-time systems, 175
European Space Agency, Phased Project Planning, 106
Everett, Robert, 163–164
Everitt, William L., 67–68
Fairchild, Muir, 66
Fehrm, Martin, 390–391
Feynman, Richard, 473
FOA. See National Research Defense Institute (FOA and FOA P), Sweden
Ford Foundation, “Grey Areas” programs, 328–330
Forrester, Jay, 6, 14, 163–164, 222, 229–230, 236–237, 242–243, 247
Foster, John S., 374–375, 377
Foucault, Michel, 467
France
post–World War II role of state, 134–135
systems analysis approach in, 19
une attitude prospective, 147–150
Frenckner, Paulsson, 397–398
Furer, Julius A., 62, 67, 75
Futures Studies, Sweden, 402–405
game theory, 317
Gamow, George, 471–478, 483
Gardner, Trevor, 265
Garmisch conference. See Software Engineering Conference, Garmisch (1968)
Geiger, Roger, 288
general circulation models (GCMs) contribution to anthropogenic climate change theory, 229
development (1959), 228–229
GFDL models, 231
to study climate, 231
weather prediction, 228–229
General Dynamics, Convair Division, 96
geometric code
governing heredity, 463
as information system, 466, 469
seen as computer program, 464
Geophysical Fluid Dynamics
Laboratory (GFDL), Princeton
general circulation model (GCM),
238
global, three-dimensional general
circulation models, 231
geopolitical power
technological achievements as, 142–
143
German systems analysis approach, 19
Getting, Ivan, 3, 27, 28, 30–31, 36–
37, 39–46
Gilbert, Walter, 485
Gill, William, 205–209, 214
Gillette Committee, 96
Gilpatric, Roswell, 324, 325
Glass, Robert L., 169
Glasser, Otto, 105–107
Global Atmospheric Research Program
(GARP), 234, 247
global modeling
as paradigm, 246
global warming, 233
Godet, Sidney, 30
Golomb, Solomon, 480, 483
Gordon, Basil, 480
Gordon, Kermit, 339–340
Gorman, Joseph, 378
Goudsmidt, Samuel, 78, 82
Gregory, H. F., 287
Griffith, John, 479
Gruenberger, Fred, 175
gun fire control
Mark 56, 28
SCR–268, 28, 31
Gvishiani, Jermen, 414–416, 458
Hackett, David, 329, 331, 332
Haefele, Wolf, 449, 451
Haldane, John B. S., 468
Handler, Philip, 416, 458
Haraway, Donna, 465
Harris, Arthur, 66
Harris, George, 30
Harrison, George, 80–81
Hart, David M., 240
Hastings, R. C., 167
Haveman, Robert, 343
Hayes, Frederick, 332
Hazen, Harold, 40–41
Hecht, Gabrielle, 8–10
Heller, Walter W., 327–328, 330, 339
Helmer, Olaf, 316
heredity
as information transfer, 464
similar to computer memory, 463–
464
Hetzel, William C., 175
Hirsch, Etienne, 145–146
Hirsch, Werner Z., 260
Hitch, Charles, 6, 99–100, 288–289,
317–319, 324–326, 338, 447, 448
Hoare, C. A. R., 11, 163
Holling, C. S., 449
Hoos, Ida, 342, 344, 399–400
Hoover, Herbert, 60, 192–193, 212
Hoover Commission, 192–193, 204
Hudson Institute, 403
Hughes, Agatha, 494
Hughes, Thomas, 465, 494
Hulthén, Lamek, 388–389, 398
Humphrey, Hubert, 16
IIASA. See International Institute for
Applied Systems Analysis (IIASA)
Iklé, Fred, 446
information
biology as information science, 470
in genetic code, 463–464
in human chromosomes, 464
information systems
in disciplines, 463–465
genetic code as, 466
in molecular biology, 463–464
information theory
link to cryptanalysis, 472
Ingelstam, Lars, 402–403
Ingersoll, Royal E., 66
innovation
economics of, 268, 293–295
Institute for Advanced Study (IAS,
Princeton), Numerical Meteorology
Project, 225
Institute for Research on Poverty, 343
institutions
collaboration with IIASA, 457–458
post–World War II new and
reformed French, 135
providing support to military sector,
443–444
Interagency Committee on Automatic
Data Processing, 204–207
intercontinental ballistic missiles
(ICBMs)
program to develop, 6, 96–97
U.S. decision to build, 256–257
International Energy Workshop
(I EW), 420
International Geophysical Year (IGY)
data network construction (1957–
1958), 247, 232–233
International Institute for Applied
Systems Analysis (IIASA)
Agenda for the Third Decade, 438
connection to I EW, 420
differences from RAND, 453–460
formation, location, membership, and
naming of, 413–414, 437–438, 449
influence of, 420
institutions collaborating with, 457–
458
interdisciplinary network, 420, 438
multiple sponsors, 454–456
RAINS model, 419, 421–427
RAND experience applied to, 449–
460
research areas and research programs,
450–453
research on water pollution and
climate change, 428
research projects undertaken by, 417–
420
systems approach, 5
Transboundary Air Pollution (TAP)
Project, 421, 427
Internet
RISK news group, 162, 182
spread of, 161

Jansky, C. M., 67–68
Jardini, David R., 17
Jennergren, Carl-Gustav, 391–392,
394
Jewett, Frank, 61, 67, 72
JNW. See Joint Committee on New
Weapons and Equipment
Johnson, Ellis A., 71
Johnson, Leland, 279
Johnson, Lyndon B., 327, 330, 332–
333, 335, 339–341, 413
Johnson, Stephen B., 6–7
Joint Committee on New Weapons
and Equipment (JNW), 63, 69–70
Joint Venture Control Office (JVCO),
121–122
joint ventures
as approach to system building, 7–8
increasing frequency of domestic
(1950s, 1960s), 113–114
new forms (1980s), 115
parent contributions to, 116
PBTB (Parson-Brinckerhoff-Tudor-
Bechtel), 117, 120
project-specific nature of agreements,
116
risk factor, 117
Jordan, Bud, 369

Kahn, Herman, 403, 448
Kaijser, Arne, 19–20
Kay, Lily E., 23
Kaysen, Carl, 414
Keller, Evelyn Fox, 484
Kennedy, George C., 223–224
Kennedy, John F., 234, 320, 322–323,
329
Kennedy, Robert F., 329
Kennedy administration
defense department reorganization
during, 323
President’s Committee on Juvenile
Delinquency and Youth Crime,
328–330
Kershaw, Joseph, 338, 344
Kessel, Reuben A., 269, 270–275,
279, 285, 289–290
Kevles, Daniel, 258, 288
Kiely, John, 122
Killian, James R., 286
King, Ernest J., 62, 71–72
Kissinger, Henry, 446
Kistiakowsky, George, 265
Klein, Burton H., 15, 270–279, 283–285, 289–290
Knight, John, 180
Knight–Leveson programmer independence experiment, 179–180
Kolence, K., 167
Koopmans, Tjalling, 418, 449
Kovar, Donald, 370
Kraitz, Sanford, 330

Langmuir, Irving, 224
Larsson, Hugo, 390
Leach, Walter Barton, 70–76
Lederberg, Joshua, 467
Ledley, Robert, 475–476
Lee, W. A., Jr., 69–71
LeMay, Curtis, 105, 314, 439
Leveson, Nancy, 180
Levien, Roger, 413, 443, 448
Licklider, J. C. R., 164, 165–166, 183
The Limits to Growth (Meadows et al.), 244–245
Lindbergh, Charles, 265
Logue, Edward, 328
Lonnquest, John, 267
Lovell, Clarence A., 48
LRTAP (Convention on Long-Range Transboundary Air Pollution), 421, 423, 426
Lyotard, Jean François, 464
MacArthur, Douglas, 80–81
McClelland, Harold M., 66, 71
McDonald, Alan, 413, 428
McElroy, Neil H., 288
McKean, Roland N., 317–319
MacKenzie, Donald, 11–12, 155
McMillan, Brockway, 103, 480
McNamara, Robert, 6, 94
Maxwell, Jewell, 104
Meade, Frank C., 64, 67
Meadows, Dennis, 243–244
Meckling, William, 279, 284
Mees, Kenneth, 290
Mesthene, Emmanuel, 279, 284
Metropolis, Nicholas, 475, 478
Mettler, Ruben F., 361–362, 373–374
Meyaud, Jean, 137–138
M-9 gun director, 47
microprocessors, 161
microwave generation
British cavity magnetron, 61
NRDC research, 61–62
military applications
postwar mutual orientation, 223, 230
using computers for control, 230
weather prediction, 223
military sector
command-control systems, 230
operations research in Britain, 59
systems analysis, 1–2, 434–435
weather prediction, 224
See also procurement, military
military sector, Sweden
infiltration of civilians into, 393–394
role of FOA P in, 390–393
military sector, U.S.
institutions providing operational and
systems analysis support, 443–444
NBS research funded by, 195–196
use of operations and systems analysis,
434–435
Mindell, David A., 3
Minuteman program, 103–104
Missile Early Warning Radar, 164
missiles
Atlas missile program, 6–7, 96–97
Fleet Ballistic Missile Program, 11
phased planning for, 100–102
Polaris Intermediate Range Missile, 6
Titan missile development, 97
See also ballistic missiles
MIT (Massachusetts Institute of
Technology)
Radiation Lab, 27–28, 30–31, 62, 74
Sloan School of Management, 236,
241
Systems Dynamics Group, 222, 244
MITRE Corporation, 5
Mobilization for Youth (MFY), 328–
329
models. See climate models; earth
systems models; EMEP model;
general circulation models (GCMs);
RAINS model; simulation models;
weather models; world dynamics
models
modem
Digital Radar Relay as predecessor of,
164
Molander, Per, 401–402
Monod, Jacques, 23, 463
Monte Carlo methods, RAND, 317
Moore’s law, 165, 169
Morgenstern, Oskar, 255, 317
Morse, Philip M., 4, 5, 68–69, 76, 78,
82–83
Moses, R. G., 69–71
Moynihan, Daniel, 327, 328, 331, 333,
337
Murphy, Emerson, 40
mutual orientation
of scientists and engineers, 223, 230
weather prediction, 223
Myrdal, Alva, 403
National Aeronautics and Space
Administration (NASA)
Phased Project Planning, 106
shrinking budget (late 1960s), 366
National Bureau of Standards (NBS)
advisory service on EDP
procurement, 192, 196–199, 209–
212
computer procurement program, 195
Data Processing Systems Division,
208, 212
Interagency Committee on
Automatic Data Processing as rival
to, 204
involvement with computers, 194
National Bureau of Standards (NBS) (cont.)
military research and funding for (1950s), 195–196
National Applied Mathematics Laboratory (NAML), 194–195
PILOT project, 208
SEAC stored program computer, 195, 208
National Center for Atmospheric Research (NCAR)
climate, atmosphere, and ocean modeling, 231, 241
National Defense Research Committee (NDRC)
fire control division, 28–29
London Mission, 62
Microwave Committee, 28–29
research contract development under, 61
role in development of OR in United States, 67–68
V. Bush as chairman of, 60–61
National Research Defense Institute (FOA and FOA P), Sweden, 385, 388–393, 399
NATO Air Defense Ground Environment (NADGE), 230
Navy
Bureau of Ordnance, 38–42, 44
Fleet Ballistic Missile Program, 11
Special Projects Office (SPO), 10–11
NBS. See National Bureau of Standards (NBS)
NDRC. See National Defense Research Committee
Nelson, Richard R., 15, 276, 278–279, 284, 285, 290–292
Nichols, Nathaniel, 37
Nimitz, Chester, 80–81
Nirenberg, Marshall, 483–484
Nix, Paul H., 326
Nixon, Richard M., 366
North Atlantic Air Defense Command (NORAD), 230
nuclear power industry
probabilistic risk assessment, 172–173
nuclear weapons research, Sweden, 393
NWP. See weather forecasting
Nyquist, Harry, 36
Office of Economic Opportunity (OEO)
Community Action Programs under, 336–337
funding for Institute for Research on Poverty, 343
PPB system in, 343, 344
Shriver as director of, 338
TRW systems management, 366
Office of Field Service (OFS), 79–83
Office of Scientific Research and Development (OSRD)
Applied Mathematics Panel (AMP), 315–316
level of involvement in OR, 75
Office of Field Service (OFS), 5
research and development functions, 4–5
Statistical Research Group, Applied Mathematics Panel, 257
V. Bush as director, 57–58, 60
Ohlin, Lloyd, 329
Olmstead, Dawson, 64
O’Neill, John W., 322
Operations Analysis Division (OAD), 72
operations research (OR)
in Britain, 385
British military uses during World War II, 59
in British radar program, 62
in civilian sector, 20
early experiments in England, 59
experience of RAND staff in, 316–317
International Federation of Operations Research Societies (IFORS), 398–399
objective, 57
postwar spread of, 437
post–World War II meaning, 1
in Sweden, 385–388
during World War II, 4–5
operations research (OR), Sweden
 civilian, 395–404
 first period of, 399–400
 for military planning, 391–393
 in public sector, 400–401
 role of FOAP, 391–393
 used for industrial management, 396–398
 using mathematical statistics for, 396–397
 weapons systems analysis and development, 394–395
Opler, A., 167
organizations
 conglomerate organizational form, 114
 control and communication within, 95
 MIT Radiation Lab, 62
 restructuring of DOD, 98, 320–324
Orgel, Leslie, 479
oscilloscope displays, 31
OSRD. See Office of Scientific Research and Development
Page, Robert M., 41
Palme, Olof, 403
Parikh, Kirit, 451
Parnas, David, 163
Parsons Brinckerhoff, 5, 120–122
Patent Office mechanization study (1950s), 197–198, 202
Pauling, Linus, 473
Paxson, Edwin W., 316
PCJD. See President’s Committee on Juvenile Delinquency and Youth Crime
Peccei, Aurelio, 242–243, 414–415, 420
Peirce, Charles Sanders, 213
Penn v. Olin (1964), 113
Perlis, A., 168
PERT. See Program Evaluation Review Technique
Pestel, Eduard, 243
Phillips, Norman, 228, 231
Phillips, Samuel, 103
Pitts, Walter, 37
 planning, phased
 for development of air force missiles, 100–102
 as sequential method, 94–95
Planning Commission, France
 applying systems thinking, 134
 objectives and contributions of Fourth Plan, 150–152
 the Plans, 149–154
Planning-Programming-Budgeting (PPB)
 BoB interest in, 338
 in Defense Department, 326–327
 implementation in federal bureaucratic structure, 341
Plass, Gilbert, 233
Polaris Intermediate Range Missile Project, 6
policy analysis, United States, 386, 402, 435–437
politics
 French technologists’ view of, 141–142
 relation to technology, 154–156
Poster, Mark, 465
PPB. See Planning-Programming-Budgeting
President’s Committee on Juvenile Delinquency and Youth Crime (PCJD), 328–330, 332
procurement, military
 concurrent, 93–94
 phased planning, 94
 sequential, 93–94
Program Evaluation Review Technique (PERT), 6, 93
 computer program, 10–11
programming
 dynamic programming at RAND Corporation, 255, 268, 317
 Knight-Leveson programmer independence experiment, 179–180
 linear programming at RAND, 255, 268, 317
 N-version, 179–180
programming computer systems
creating software, 164–165
increased efficiency in development
of, 169–170
program specification, 180–182
program testing, 175–176
automated testing, 178
random testing, 176–178
reliability growth modeling, 176–177
proximity fuse (VT or variable time
fuse), 47–48
Putt, Donald L., 267
Quade, Edward, 268–269, 392
Quastler, Henry, 469–470, 473
Rabar, Ferenc, 451
Rabi, I. I., 286
radar
Digital Radar Relay, 164
integration into British air defense
system, 58–59
meteorologists using, 223
Missile Early Warning Radar, 164
MIT Radiation Lab, 48–49
rawinsondes (radar-tracked
rawinsondes), 223
See also microwave generation
radar systems
fire control, 38–46
Mark 56 Gun Fire Control System, 42–44
SAGE, 229
scanning XT-1 prototype, 31
SCR–268, 28
SCR–584, 32–33
in World War II, 434
radar technology, British
during Battle of Britain, 63
cavity magnetron, 61
OR program in, 62
Radiation Laboratory, MIT
airborne radar project, 30–31
automatic fire control project, 30, 33
Getting’s transformation of, 44–46
losses to military during World War
II, 74
Mark 56 Gun Fire Control System,
42–44
microwave research, 29
organization of, 27–28, 30–31, 62, 74
radar-controlled fire control system,
27–28
SCR–584, 31–33, 47
as system integrator, 49–51
rawinsondes (rawinsondes), 223
Raiffa, Howard, 413, 414, 417, 420, 448, 449
RAINs (Regional Acidification
Information and Simulation) model, 419, 421–427
Ramo, Simon, 5, 6, 18, 176, 257, 266, 362–364, 375, 378
See also TRW
RAND Corporation
assistance to Swedish OR
development, 392, 400–401
contributions to various disciplines, 442
criticism of system analysis approach,
15–16
departments, 445–447
design and creation of, 257–258, 313–317, 439–441, 444–448
development of economics of
technical change, 256–257
Dynamic Offensive Bombing Systems
(DoBS), 260
economics of innovation project, 268, 293–295
experience applied to IIASA, 449–460
interdisciplinary systems analysis,
444–445
lessons (1948–1973), 443–448
as pioneer of systems analysis, 255, 264, 268
policy analyses, 442–443
as Project RAND at Douglas Aircraft, 313–317, 439–441
proliferation of management methods, 343
role of economists, 257–295
shift to civilian projects (1960s), 17
systems analyses, 441–443
systems analysis techniques, 5, 13, 14–15
work in applied mathematics, 316–317
See also International Institute for Applied Systems Analysis (IIASA); research and development (R&D)
Randel, B., 167
random testing, 176–178
Rau, Erik P., 4, 5
Raymond, Arthur E., 313–315
Reilly, Frank, 199–203
reliability growth modeling, 176–177
research
model during World War II, 312–313
RAND as model for Cold War research, 313
RAND as research center (1946–1962), 257–258
research and development (R&D)
differences in decisions for procurement and, 261–264
RAND economics during Sputnik crisis, 285–292
RAND economists’ study of, 270–285
seen as economic problem, 268
Revelle, Roger, 233–234, 241
Rich, Alexander, 473, 476
Richardson, Robert C., 80–81
Ridenour, Louis, 74, 76
risk
associated with joint ventures, 117
risk assessment
computer systems, 173–174
of computer system safety, 171–173
risk assessment, probabilistic
component failure probabilities, 179
computer systems, 173–174
in safety engineering, 172–173
RNA Tie Club, 473, 475
Robertson, H. P., 62, 68, 73–74, 77–78
Rohr, Incorporated
corporate control center, 126
maker of BART cars, 126–127
Root, Elihu, 70
Rosenblueth, Arturo, 466
Rosenhead, J., 400
Ross, D. T., 167
Rossby, Carl-Gustav, 224
Rowe, A. P., 59
Rowen, Henry, 340, 342, 442
Rubel, John, 100–102
Ruiz, Al, 41
safety engineering
fault trees, 172–173
hazard mode and effects analyses, 172–173
SAGE (Semi-Automatic Ground Environment) system
Air Defense Project, 6, 11
building, 230
command-control systems, 230
computerized, real-time system, 161, 163
programs required for, 164–165
Singapore radar data to plot aircraft intercept, 229
Whirlwind as core of, 229–230
Samuelson, Paul, 37
Sapolsky, Harvey, 11, 286
Sauvy, Alfred, 138–139
Saville, Gordon P., 64–68
Schlesinger, James, 446
Schriever, Bernard, 5, 6–7, 96–97, 102, 104–107, 257, 264–265
Schrödinger, Erwin, 466
Schultze, Charles, 331, 337, 340
Scripps Institute of Oceanography, 241
sequential method, 93–94
Servo Laboratory, MIT, 37, 42
Shannon, Claude, 23, 468–469, 472, 480
Shapiro, Stuart, 168–169
Shepard, Horace, 373
Shriver, Sargent, 333–336, 338
Siegfried, André, 136
Simon, Herbert, 446
similation models
for industrial dynamics management, 237
numerical models of weather and climate, 222, 223–236
RAINS model, 419, 421–427
world dynamics models, 222, 231–239
Sinsheimer, Robert, 464, 482
Sloan School of Management, MIT
industrial dynamics approach (Forrester), 236–237, 243
Smagorinsky, Joseph, 228, 231, 241
Smith, Harold, 75, 78
Smyth, H. D., 284
Social Security Administration
IBM punch card machinery (1940s), 193–194
software
approaches to engineering, 166–169
reliability growth modeling, 176–177
technical systems to support development of, 169–170
Software Engineering Conference, Garmisch (1968), 166–168, 180–182
Solomon, George, 367
Spaatz, Carl, 65–66
space program, U.S.
use of systems analysis approach, 15
Sperry, Elmer, 3
Sperry Gyroscope Company, 33
Spiegelman, Sol, 467
Sputnik crisis, 98, 285–292
Sputnik launch (1957), 321
Staats, Elmer, 338
Standards Eastern Automatic Computer (SEAC), 195
Staples, Eugene, 414
Statistical Research Group (SGF), Sweden, 389, 396, 401
Staudenmaier, John, 20
Staudhammer, Peter, 378–379
Stenbit, John, 379–380
Stevens, Mary Elizabeth, 13, 196–204, 209–211, 214
Stewart, James, 102–103
Stimson, Henry L., 62–64
Strategic Air Command Control System (SACCS), 230
Study of Critical Environmental Problems (SCEP) report, 240–242
Study of Man’s Impact on Climate (SMIC) report, 240–242
Sues, Hans, 233
Sullivan, Leo, 30
Sundquist, James, 332
Sutherland, Richard K., 80
Svoboda, Tony, 42
Sweden
operations research, 19–20
Swedish Operations Research Association (SORA), 386–387, 398–399
systems analysis approach, 19–20
See also defense sector, Sweden; Futures Studies, Sweden; military sector, Sweden; National Research Defense Institute (FOA and FOA P), Sweden; operations research (OR), Sweden; Statistical Research Group (SGF), Sweden
Symington, Stuart, 323
Symington Committee, 323
System Development Corporation, 165
system dynamics
post–World War II, 1
world dynamics models, 222
System Dynamics Group, MIT, 222, 244
systems
industrial models of Forrester, 236–237
insensitivity to parameter changes, 238
modeling of relationships (Forrester), 238–239
shift in meaning and goals of managing, 107
urban models of Forrester, 238–239
systems, conventional fault tree, 172–173
hazard mode and effect analyses, 172–173
systems analysis
allocation of resources in, 343–344
applied to HEW, 200–202
in civilian sector, 20
in computer engineering, 200
of conglomerate management, 114–115
criticism of RAND’s, 259–260
in economic analysis of defense budgeting, 319
IIASA applied research, 418–430
international framework, 20–22
introduction in Sweden, 386
invented and developed at RAND, 255, 317, 319
in Japan and Europe, 19
for postwar military operations and defense, 434–435
post–World War II, 1
power of, 214–215
PPB reliance on, 338
RAND and MITRE in vanguard of, 100
RAND criteria for first-class, 444–445
RAND economists’ critique (Alchian and Kessel), 257–270
as specialized technique, 214
task force to evaluate federal agency operations, 205–209
U.S. HEW study, 199
systems analysis, Sweden studies (1960s), 401–402
transition from OR to, 390–391
systems approach
development in Sweden, 405–407
development in Sweden (1945–1980), 385–387
Dibner conference, 2–3
early uses of analytic tools and mathematical models, 435–437
military origins (1939–1960), 1–2
origins and development, 3–5, 8
post-1960 civilian applications, 2
in Swedish defense establishment, 387–395
systems engineering
post–World War II meaning, 1
as specialized technique, 214
U.S. Air Force management structure, 256–257
systems thinking
applied to French attitude prospective, 147–148
in France (1950s, 1960s), 134, 140
in the French Plans, 150–153
for French postwar goals, 154–155
Szilard, Leo, 463–464, 479
TAP (Transboundary Air Pollution Project), 421, 423, 426, 429
Task Force on Antipoverty Programs, Johnson administration, 333
Tate, John T., 68
Taylor, Frederick W., 203–204, 395
technical change
economics of, 256–257, 259–270
technical systems, computerized, 161–162
technocracy
defined by French technocrats, 139–140
French view of and debates about, 135–137
Meynaud’s perception, 137
technocrats
French technocrats defend themselves, 138–139
perception of social scientists in France, 137–138
as planners, 149
in post–World War II France, 135
technologists
characteristics of, 140–141
in France after World War II, 136
technologists (cont.)
national goals sought by French, 142–143
technology
phased planning to control development of, 95
relation to politics, 154–156
Teller, Edward, 286
Thiesmeyer, Lincoln, 76, 83
Thompson Products, Inc., 360–361
Tiberg, Joar, 19–20
Titan missile, 97, 100–101
Tizard, Henry, 58–59
Tizard Mission, 29, 61
TRW
Center for Automotive Technology (CAT), 378–380
civil systems, 359–360, 364–365, 377
civil systems applied to War on Poverty programs, 366
Civil Systems Center, 371–373
civil systems ventures, 367–371, 377–378
effect of aerospace recession on, 366–367
Energy Systems Group, 374–377
formation of, 360–361
growth and diversification strategy, 361
hiring for Systems Group, 366
sale or liquidation of civil systems ventures (1970s), 374
Space Technology Laboratories (STL), 361–362
System 4000, 370
Systems Application Center, 369–370
Systems Group applied R&D, 367
Systems Group business ventures, 367
Systems Integration Group, 379–380
transfer of systems techniques, 17
transfer to civilian projects, 18–19
variable-thrust rocket motor, 367
Tudor, Ralph, 121
Tudor Engineering, 121
Tuve, Merle, 47
Ulam, Stanislaw, 478
United Nations
weather and climate data gathering agencies, 247
Urban Area Task Force (1964), 336
Urban Institute, 343
Vaupel, James, 417
Veblen, Thorstein, 191
Voctor, David G., 240
von Neumann, John, 224–225, 228,
229, 255, 265, 317, 467–469, 478
V-1 robot bomb, 47–48
War on Poverty program, 327, 366
Waterman, Alan T., 74, 77–78, 81–82
Watson, James, 470–471
Watson–Watt, Robert, 64
weapons
American creation of fusion, 96
gunfire control, 28, 31
M-9/SCR-584/VT radar-activated fuse, 48–49
radar-driven fire control systems, 38–46
See also missiles
Weather Bureau, General Circulation Research Section, 228
weather forecasting
with electronic digital computers, 222
GCMs as numerical weather prediction (NWP) models, 231
link to military issues, 224
numerical, 222, 224–226
weather models
during Cold War, 247
differences from climate models, 235
Weaver, Warren, 27, 29, 33, 36–37,
40, 44, 68, 73, 76–77, 315–316, 468
Weeks, Sinclair, 197
Western Development Division (WDD)
Atlas program, 97
Ramo-Wooldridge as systems engineering contractor for, 96–97
Titan missile development, 97
Wettestad, Jorgen, 427
Wexler, Harry, 228
Whirlwind digital computer, 163–164, 229–230
Whitehead, Rennie, 415
Wiener, Norbert, 22–23, 464, 466–469
Wiesner, Jerome, 265
Williams, John D., 259, 315–316
Wilson, Carroll L., 75–78, 241, 243
Wilson, Charles E., 286, 288
Winter, Sidney M., 292, 448
Woese, Carl, 484
Wohlstetter, Albert, 448
Wood, Robert, 344
Wooldridge, Dean, 5, 176, 257
world dynamics models
World 1, World 2, and World 3 models, 243–244
World Meteorological Organization (WMO), 226–227, 233, 247
World War II
adoption of OR during, 57–84
operations analysis during, 434
radar detection and defense systems, 434
World Weather Watch (WWW), 234, 247
World Wide Military Command and Control System (WWMCCS), 230
Wright, J. David, 361

XT-1 radar
prototype, 31
standardized as SCR–584, 31

Yarmolinsky, Adam, 333–336
Yashin, Anatoli, 417
Yates, JoAnn, 95
Ycas, Martynas, 473, 476–479, 483
Ylvisaker, Paul, 328
York, Herbert F., 326

Zachrisson, Lars-Erik, 389, 399
Zuckerman, Solly, 62, 414–415, 420, 458
Zwick, Charles, 344
Zworykin, Vladimir, 224