Anterior intraparietal area (AIP) connections to, 289
Anticipation errors, 396
Anticipatory slow potentials, 505
Aphaenogaster, multisensory signals in, 229
Aphasia, sign language, 777–778
Aphiids, multisensory signals in, 229
Apparent motion across audition, touch, and vision, 60–62
in different modalities, 50–52, 54–57
influence of static events on perception of, 49–50, 52
modality dominance with, 62–64
Arm movement control, in rotating environments, 414–417
Artists, synesthesia in, 876–877
ASL (American Sign Language), cerebral organization of language with, 731, 740
Association, in audiovisual integration, 204, 216–218
Association cortex, input to superior colliculus from, 254, 255–257
Associative learning in animals, 234
audiovisual hemodynamic studies of, 495
magnetoencephalography of, 520–522
in multisensory integration, 328
Associative learning procedures, potentiation in, 673
Associative learning theory, in odor-taste learning, 78, 79
Associators, in synesthesia, 837, 839–841, 847, 861, 862
Astatotilapia strigigena, multisensory signals in, 229
Attention allocation of, 144–145
in animals, 235
in audiovisual emotion perception, 584–585
covert shifts of, 3, 4
in cross-modal dynamic capture, 63
in cross-modal reorganization, 698
electrophysiological studies of, 549–561
multisensory convergence in, 326–328
and qualia, 879
selective to amodal stimulus properties during early development, 645–646
in color-graphemic synesthesia, 856–861
congruence effect in, 87–89
with cross-modal stimulation, 85–103
Garner interference in, 87
separable vs. integral dimensions in, 86–87
speeded classification for study of, 85–86
spatial. See Spatial attention and target stimulus, 279
in ventrolateral prefrontal cortex, 144–145
Attentional control systems, supramodal, 546
Attentional interactions, cross-modal, functional imaging evidence for, 529–546
Attentional load, in color-graphemic synesthesia, 856–861
Audiovisual illusion, 663
Audiovisual-evoked potentials (AVEPs), 362, 364, 366–367
Audiovisual illusion, 663
Audiovisual integration
after cochlear implantation discussion of, 761–767
in postlingually deaf adults, 752–754
in prelingually deaf children, 754–761
convergence vs. association in, 204, 215–218
defined, 294
magnetoencephalography of, 518
multiple electrophysiological mechanisms of, 503–511
multiplicity and flexibility of neural mechanisms for, 509–510
task dependency of, 510
Audiovisual interactions hemodynamic studies of, 483–499
activation interaction designs for, 497–498
approaches to, 484–485
background for, 483–484
deactivation interaction designs for, 498–499
for detection of changes in sensory events, 494
human imaging studies of, 485–496
for integration at semantic level, 488–490
for integration of phonetic information, 486–488
intersection and conjunction designs for, 496–497
linguistic, 485–490
nonlinguistic, 491–494
in pathological states, 495–496
in priming studies, 490
relating to associative learning, 495
relating to emotion, 494–495
for spatial concordance, 491–494
for temporal correspondence, 491
during speech perception, 550
Audiovisual mirror neurons in circuit for action understanding, 434–435
in speech perception, 215
Audiovisual multisensory zone (MZav), 362, 364, 367
Audiovisual perception, of emotion, 581–582
attention in, 584–585
conscious vs. nonconscious, 596–593
electrophysiological studies of, 585–586, 587
in faces and voices, 582–584
models for, 593
neuroanatomy of, 586–589
selective pairing mechanism in, 589–591
time course of, 585–587
Audiovisual priming studies, 490
Audiovisual properties, of speech and spoken language, 765–767
Audiovisual speech conditions for, 178–179
production-based animation in, 185–186
response to, 668–670
Audiovisual speech binding, 203–219
defined, 204
Audiovisual speech integration, hemodynamic studies of, 483–490
Audiovisual speech perception after cochlear implantation, 749–768
discussion of, 761–767
duration of deafness and, 754–755, 758, 760, 762–763, 766–767
lipreading skills and, 765–766
with oral communication vs. total communication, 755, 757–758, 763–765
in postlingually deaf adults, 752–754
predictors of success with, 761
in prelingually deaf children, 754–761
sources of variation in, 754–755, 764–765
common format, 204–207
neural implementation of, 215–216
direct-realist theory of, 190, 197–198, 206, 215
eye movements and gaze location in, 182
feature integration information-processing theories of, 215–216
image characteristics in, 170–184
lipreading cues in, 749–750
McGurk effect in, 177, 205, 207–208, 750
mirror neurons in, 215
modality-specific, 207–210
neural implementation of, 216–218
neural implementation of, 210–215
auditory speech pathway in, 211–213
common format, 215–216
modality-specific, 216–218
multisensory input to cortex from brainstem in, 214
temporal constraints in, 214–215
testing theories of, 218
visual speech pathway in, 213–214
primary modality in, 751–752, 766
proposed mechanisms of, 750
reasons to study, 750
spatial and temporal constraints on, 177–186
spatial resolution in, 179–181
synchrony in, 183–184
visual resolution in, 181–182
Audiovisual speech perception
effects, 203
common format theory of, 205
to account for, 203
Audiovisual speech production, 184–185
Audiovisual speech stimulus correspondence, modeling of, 209–210
Audiovisual stimulus, spatial position of, 731
Audiovisual synchrony, 183–184
Audition, cross-modal dynamic capture across touch, vision, and, 60–64
Auditory apparent motion, 50–52, 54–57
Auditory behavior, in visually deprived mammals and blind humans, 695–696
Auditory belt cortex, in auditory speech pathway, 211
Auditory belt neurons, 212
Auditory “capture,” of visual structure, 28–29
Auditory consequences, of altered visual experience, 604–606
Auditory cortex
activation by visual stimuli of, 778–779
activation in deaf subjects of, 124
in auditory speech pathway, 211
connections of visual cortex with, 285–287
evoked potential mapping of, 360–364
in lipreading, 31
multisensory convergence in, 297–298, 302–303, 305
in sound localization, 696
in speech-reading, 774–775, 776
vibrotactile activation of, 777
visual networks in, 685–688
visual responsiveness in, 659
Auditory dominance, 662
cross-modal interactions with, 507, 508, 510
Auditory edges, 125
Auditory emotion, cross-modal integration of visual and, 572
Auditory-evoked potentials (AEPs)
age of cochlear implantation and, 763
in rat cortex, 361–363, 365
Auditory input, encoding of, 377
Auditory koniocortex (KA), in auditory speech pathway, 211
Auditory localization, 37, (see also Auditory space map)
with blindness, 731–735
errors in, 411–412
Auditory localization cues, 613
Auditory map, aligning visual and, in ferret midbrain, 599–610
Auditory-on-visual cuing, 7
Auditory parabelt region, connections to visual cortex of, 286–287
Auditory pathway, routing visual inputs to, 683–685
Auditory perception, with blindness, 723–725
Auditory peripersonal space, auditory-tactile interactions in, 809–810
Auditory processing, 21
Auditory space, 809–810
Auditory processing, 212
cross-modal links with
in endogenous spatial attention, 550–552, 554, 559–561
in exogenous spatial attention, 557
in musicians, 724
Auditory reference frames, 463
Auditory reinforcers, amygdala and, 572
Auditory response(s), visual signals in
shaping of, 605–607
Auditory response properties, in superior colliculus, maturation of, 508–509
Auditory scene analysis, 147
Auditory selective adaptation effect, 207
Auditory/somatosensory-evoked potential (ASEP) mapping, 362, 363–365, 366–367, 368
Auditory/somatosensory multisensory zone (MZas), 362–366, 367–368
Auditory space map, 613, 614
alignment of visual and, 621
effect of partial occlusion of visual field on, 617, 618
initial formation of, 620
innate aspects of, 614
instructive signal for, 617–620
effect of partial occlusion of visual field on, 617, 618
gating of, 618–619
maintenance role of, 619–620
nature and mechanisms of, 620–621
source of, 617–618, 619
model of adaptive plasticity for, 620–622
in owls, 731
site of plasticity for, 616
visual calibration of, 614–616
visual instruction of, 613–623
Auditory space processing
calibration signals for, 697–698
in superior colliculus, plasticity of, 604–606
Auditory spatial representations, visual cues in, 731–734
Auditory speech pathway, 211–213
Auditory stimuli
activation of orbitofrontal cortex by, 572
eye-centered representations of, in posterior parietal cortex, 473–475
Auditory-tactile integration, 111–112, 115–116
Auditory-tactile interactions, in near auditory space, 809–810
Auditory-target location, in eye-centered reference frame, 467, 468
Auditory thalamus, visual responsiveness in, 659
Auditory-verbal therapy, 755
Auditory-visual integration, in complex environments, 386–388, 390
Auditory-visual interactions
subserving primate gaze orienting, 373–391
visual neglect as probe for investigating, 810
Auditory-visual modulation, of neglect, 811–812
Auditory-visual stimuli, eye-head coordination to, 582–383, 389
Auditory-visual synesthesia, 93
Autistic children, teaching new vocabulary to, 174
AV, See Audiovisual
AVEPs (audiovisual-evoked potentials), 362, 364, 366–367
Average rectified current flow (AVREC), of multisensory convergence, 300, 301, 305, 306
Aversion conditioning, neuroimaging studies of, 573–574
Aversive tastes
activation of amygdala by, 567
representation in orbitofrontal cortex of, 565–567
Awareness, in odor-taste learning, 75–76
Azimuthal location, 251
Backup signal, 236
Balance control, haptic influences on, 421, 422
Balance disorders, multisensory integration in, 785, 796
INDEX

892

Baldi, 172–174
Barbary doves, multisensory signals in, 232
Barbecue spit rotation, multisensory influences on body orientation during, 410–420, 422
Barn owl
intersensory integration in, 659
visual instruction of auditory space map in midbrain of, 613–623
Basal forebrain, in memory encoding and storage, 337–338, 339
Bathygobius soporator, multisensory signals in, 230, 233
Bayes’ rule model, of multisensory enhancement, 266–271
behavioral relevance and decision theory in, 279–280
deriving testable prediction from, 271–274
future directions for, 278–280
information theoretic analysis of, 274–278
for multisensory neuron, 268–271
for unimodal neuron, 266–268
BDNF (brain-derived neurotrophic factor), in tool use learning, 457, 458
Bees, multisensory signals in, 229
Beginner’s Intelligibility Test (BIT), after cochlear implantation, 760, 761
Behavioral consequences, of multisensory integration, 252–254
Behavioral correlates of event-related potentials, 506, 510–511
of object recognition, 127–130
Behavioral relevance, in Bayes’ rule model, 279–280
Bimodal neurons, 343
in superior colliculus, 246
Binaural neurons, in superior olivary complex, 250–251
Binaural unmasking, 89
Biological motion, perception of, 453–454
Bird(s)
differential effects of unimodal and multimodal stimulation in, 646–647
migration of, 235
redundant signals in, 228–229
Bird-of-Paradise, multisensory signals in, 226
Bisensory changes, infants’ responses to, 666–667, 668–670, 671
Bisensory facilitation, 662
Bisensory learning, 672
BIT (Beginner’s Intelligibility Test), after cochlear implantation, 760, 761
Blackbirds, multisensory processes in, 235
Black-capped chickadees, multisensory signals in, 230
Black-tailed prairie dog, multisensory signals in, 226
Blindness
auditory behavior with, 695–696
compensatory plasticity with intermodal/intersystem, 738–739
intramodal/intrasytem, 736
for language function, 727–731
model for investigating, 719–720
for motor development, 740
for perceptual functions, 723–725
perceptual training and, 736
via reorganization of polymodal brain areas, 737
for spatial functions, 731–734
cross-modal plasticity due to, 522–524
echolocation abilities with, 695–696
sound localization with, 695–699
visual cortex in tactile perception with, 711–716
Blood-oxygen-level-dependent (BOLD) deactivation signals, 485, 487, 488, 497–498
Bobwhite quails, sensory development in, 234
Body
body schema of one’s own, 453, 454
ikonic representations of, 453
neural representation of another’s, 453–454
Body image developed through tool use, 455–457
of self and others, 459, 460
Body motion, illusory, 409
Body movements, perception of, 454
Body orientation, multisensory influences on, 409–422
Body schema, 819
developed through tool use, 455–457
mirror neurons and, 454–455
of one’s own body, 453, 454
BOLD (blood-oxygen-level-dependent) deactivation signals, 485, 487, 488, 497–498
Boole’s inequality, 398
Bootstrapping, 727
Braille reading
and overall language development, 727
visual cortex in, 711–716, 722
Brain defects, cross-modal plasticity due to, 524
Brain-derived neurotrophic factor (BDNF), in tool use learning, 457, 458
Braintem, in audiovisual speech perception, 214
Brightness
auditory intensity and perceived, 38
and loudness, 90, 92, 96
and pitch, 90, 91, 98–100
British Sign Language (BSL), activation of auditory cortex by, 778
Broca’s area
in action understanding, 455
in sign language processing, 777–778
Brodman’s area 42, in speech-reading, 774
Brownian motion, 402
BSL (British Sign Language), activation of auditory cortex by, 778
C
California ground squirrels, multisensory signals in, 226
Canids, multisensory signals in, 227
Cardiac orienting, to compound stimulus, 672
Cat(s)
corticocortical connectivity of cross-modal circuits in, 343–354
differential effects of unimodal and multimodal stimulation in, 646
higher-order, modality-specific cortical representations in, 343–344
intersensory integration in, 659
multisensory development in, 254–256, 484
absence in early developmental stages of, 631, 632
appearance of, 631
maturation of corticocortical influences in, 635, 636–638
multisensory cortical populations and, 625–638
receptive field consolidation and, 629
role of cortical inputs in, 643–654
role of experience in, 637–638, 639, 640
possible effect of orienting behavior on target-present prior probabilities in, 273–274, 274
superior colliculus of, 246–248, 252, 254
influences of anterior ectosylvian sulcus or rostral lateral suprasylvian sulcus on, 257–259
maturation of corticocortical influences in, 635, 636–638
maturation of sensory response properties in, 626–629
multisensory cortical populations and, 635–638
receptive field consolidation during development in, 629
role of cortical inputs in multisensory integration in, 634–635
sensory and multisensory development in, 626, 627
temporal integration in, 395–396
INDEX 893
Cross-modal circuits, corticocortical connectivity of, 343–354
Cross-modal congruence, 89–91, 93–94
Cross-modal consequences of exogenous spatial orienting of attention, 3–21
of visual deprivation in animals, 695–699
Cross-modal cuing between audition, touch, and vision, 16–21
of exogenous spatial attention asymmetric of, 6, 7
eyearly studies of, 5–7
electrophysiological evidence for, 17–20
physophysical studies of, 16–17
using implicit spatial discrimination paradigm, 11–16
using orthogonal spatial cuing paradigm, 7–10, 15–16
Cross-modal dynamic capture, 53–54
across audition, touch, and vision, 60–64, 61t
attention in combining sounds, touches, and lights, 61–62
critical role of motion in, 54–57
levels of processing in, 57–60
modality dominance of, 62–64
Cross-modal extinction auditory-tactile, 809–810
effects of tool use on spatial nature of, 820–825
between touch and mirror reflections, 831–832
visuotactile, 802–805, 806, 807, 808–809
Cross-modal facilitation, neural depression as indication of, 511
Cross-modal illusion, 244
Cross-modal integration, 484 attention in, 63n
for emotion, neuroimaging studies of, 563–576
magnetoencephalography of, 515–524
modulated by mirrors, 828–832
modulated by tool use, 819, 820–827
modulated in pathological states, hemodynamic studies of, 495–496
Cross-modal interactions, 91–93
before 200 ms latency, 506–509
cross-talk in, 95
decisive model of, 95, 96, 98–101
early holistic processing in, 94
in exogenous spatial attention, 539–542, 545
linguistic processes in, 95, 97–98
mechanisms underlying, 94–101
in near peripersonal space of fake hand, 805–807, 825
perceptual representations in, 95–97
in right temporofrontal scalp regions, 508–509
in selective attention, 89–94
semantic coding hypothesis of, 95, 98, 99f, 100f
in sensory-specific areas, 506–508
spatial frames of reference for, 542–546
spatial specificity of, 539–542, 545
in speeded classification, 85–103
stimulus-driven, 539–542
in superior colliculus, 508
in visual cortex, 544
Cross-modal interference effects of tool use on, 825–827
between touch and mirror reflections, 828–831
Cross-modal learning amygdala in, 334
basal forebrain in, 337–338, 339
rhinal cortex in, 334–337, 339
Cross-modal links in endogenous spatial attention, 539–561
and activity of supramodal attentional control mechanisms, 559–561
effect on early states of visual, auditory, and somatosensory processing of, 550–554
mediation by coordinates of external space of, 554–556
non-optional nature of, 556–557
in exogenous spatial attention, 557–558
Cross-modal matching, 93, 484
Cross-modal memory, in primates, 333–340
Cross-modal mental imagery, magnetoencephalography of, 522
Cross-modal modulation, visual dominance over proprioception in, 805
Cross-modal paradigms, 396
Cross-modal plasticity and behavioral changes after sensory deprivation, 738–739
with deafness, 773–780
defined, 711
hemodynamic studies of, 495–496
in humans, 690–691
implications for cortical development and function of, 681–691
intramodal vs., 723
magnetoencephalography of, 522–524
as mechanism for compensation and hypercompensation, 735
period of susceptibility to experience, 712, 714, 715
between visual and somatosensory representations, 711–713
Cross-modal priming, 484, 490
Cross-modal processes, temporal dynamics of, 509
Cross-modal reassignment, 722, 737
Cross-modal reorganization, attention in, 698
Cross-modal similarity, 93–94, 95, 96
Cross-modal spatial integration, effects of tool use on, 825–827
Cross-modal stimulation, perceptual effects of, 141–149

Cross-wiring, in synesthesia, 870–872
vs. disinhibition, 872
and Stroop interference, 874
Crowding effect, and grapheme-color synesthesia, 890–897, 871–872
CSD (current source density) of multisensory convergence, 300, 301, 305, 306
of P1/N1 slow wave, 360, 361
Cuban grassquits, multisensory processes in, 235
Cue(s), vs. signals, 227
Cued speech, 755
Cuing effects, 3–4
Cupiennius salei, multisensory signals in, 226
Current source density (CSD)
of multisensory convergence, 300, 301, 305, 306
of P1/N1 slow wave, 360, 361
Cycnia tenera, multisensory signals in, 229
Cynomys ludovicianus, multisensory signals in, 226

database tests, in bimodal speech perception, 161
Deactivation interactions, in hemodynamic studies, 498–499
Deafness
cochlear implantation for, auditoryvisual speech perception after, 749–768
compensatory plasticity with hemodynamic studies of, 496
for language function, 731, 740
magnetoencephalography of, 522–525
neuroimaging studies of, 773–780
for perceptual functions, 725–726
via reorganization of polymodal brain areas, 737
for spatial functions, 734–735
everal-onset vs. late-onset, lipreading with, 751, 753
fuzzy logical model of perception with, 166–168
language processing with, neuroimaging studies of, 773–780
lipreading in, 750–751, 753–754
oral communication vs. total communication for, 755, 757–758, 763–765
speech tutoring for children with, 172–174
sudden vs. gradual, lipreading with, 753–754
vibrotactile activation of auditory cortex with, 777
Decay parameter, 402–403
Decisional model, of cross-modal interactions in selective attention, 95, 96, 98–101
Decision theory, in Bayes’ rule model, 279–280
Deep brain structures, bimodal interactions in, 508, 510
Deep superior colliculus (DSC) analysis and modeling of multisensory enhancement in, 265–281
in audiovisual speech perception, 211
functions of, 265
multisensory enhancement in, analysis and modeling of, 265–281
behavioral relevance and decision theory in, 279–280
deriving testable prediction from, 271–274
future directions for, 278–280
information theoretic analysis of, 274–278
for multisensory neuron, 268–271
for unimodal neuron, 266–268
organization of, 265
Defensive movements examples of, 443, 444
multisensory neurons for control of, 445–451
Delayed eye-movement tasks, area LIP and parietal reach region in, 464
Delayed non-matching-to-sample (DNMS) task, 333, 334, 336–337
Delayed reach tasks, area LIP and parietal reach region in, 464, 466, 467–472
Dense amnesia, 337, 338–339
Density, multisensory perception of, 108, 109
Detection task, 505–509, 506–509
Development of animals, multisensory processes in, 234–235
constructivist, epigenetic systems view of, 658
of intersensory perception, 643–651
Developmental differentiation view, 108, 109
Developmental factors, in multisensory perception, 190, 197–198, 206, 215
Discriminability, in cross-modal interactions, 95
Discrimination, in speech perception, 168–174
Disinhibition, in synesthesia, 872
Displacing prisms, for ventriloquism aftereffect, 40
DNMS (delayed non-matching-to-sample) task, 333, 334, 336–337
Dogs, multisensory signals in, 232
Dominance paradigms, for texture perception, 107, 108
Dorsal pathway, to parietal lobe, 126
Doves, multisensory signals in, 232
Drift rate, 402–403
DSC. See Deep superior colliculus (DSC)
Ducklings, differential effects of unimodal and multimodal stimulation in, 467
Duplex perception, of speech, 196
Dynamic events, multisensory integration between static and, 49–50, 52
Dynamic information, multisensory integration of, 49–65
E
Early directing attention negativity (EDAN), 559
Early holistic processing, in congruence interactions, 94
ECD (equivalent current dipole), 508
Echoic abilities, in blind humans, 695–696
Edges, visual and auditory, 125
Effectiveness, inverse, 386, 402, 483, 503, 811
Elderly, sensory reweighting in fall-prone, 793–795
Electroencephalography (EEG) of integration of phonetic information, 488
magnetoencephalography vs., 515, 517
of multisensory affect perception, 585–586
of recognition of facial expressions in hemianopia, 592
Electromagnetic inverse problem, 515, 516
Electrophysiological evidence, for cross-modal cuing of exogenous spatial attention, 17–20
Electrophysiological mechanisms, of audiovisual integration, 503–511
Electrophysiological studies of integration of phonetic information, 486, 487
of multisensory affect perception, 585–586
of multisensory attention, 549–561
INDEX 895

INDEX 895
INDEX

Emotion(s)
 audiovisual perception of, 581–582
 attention in, 584–585
 conscious vs. nonconscious, 590–593
 electrophysiological studies of, 585–586
 in faces and voices, 582–584
 hemodynamic studies of, 494–495
 models for, 593
 neuroanatomy of, 586–589
 selective pairing mechanism in, 589–591
 time course of, 585–587
 cross-modal integration for,
 neuroimaging studies of, 563–576
 facial and vocal expression of, 582–584
 hyperconnectivity and, 877–878
 multisensory perception of, 581–594
 perception of, 165
 Endogenous attention, in ventriloquism
 effect, 144
 Endogenous selection, of relevant
 locations, 533–536
 Endogenous spatial attention
 cross-modal links in, 549–561
 and activity of supramodal
 attentional control mechanisms, 559–561
 and early states of visual, auditory, and
 somatosensory processing, 559–554
 mediation by coordinates of external
 space of, 554–556
 non-optimal nature of, 556–557
 possible control structures for,
 536–539, 546
 unimodal and multimodal modulations
 in, 532–539, 545
 Energy integration model, 400
 Energy summation hypothesis, 400
 Epigenetic factors, that align visual and
 auditory maps in ferret
 midbrain, 599–610
 Epigenetic systems view, of
 development, 658
 Episodic memory(ies), hippocampus in,
 324–325, 337
 Equids, multisensory communication
 in, 220
 Equilibrium-point theories, of movement
 control, 414–415
 Equivalent current dipole (ECD), 508
 Erithacus rubecula, multisensory signals
 in, 230
 Error reduction, with noisy
 communication channels, 225
 Escape responses, multisensory signals
 in, 233
 Event identity, pairings based on, 581–582
 Event-related potentials (ERPs)
 before 200 ms latency, 506–509
 additive model for, 504–505
 anticipatory slow potentials with, 505
 auditory-visual interactions in, 30, 31
 behavioral correlates of, 506, 510–511
 with blindness
 for language perception, 728
 for perceptual functions, 724–725
 of cross-modal links in endogenous
 spatial attention, 550–561
 affecting early stages of processing,
 550–554
 mediation by coordinates of external
 space in, 554–556
 as non-optimal processing strategy,
 556–557
 supramodal attentional control
 mechanisms in, 559–561
 Exogenous spatial attention
 cross-modal links in exogenous
 spatial attention, 557–558
 of exogenous cross-modal spatial
 attention, 17–20
 Exogenous attention in ventriloquism
 effect, 144
 Expected multisensory integration, 405
 Experience, in multisensory
 development, 637–638, 639, 640
 Exploratory procedures, in object
 recognition, 128–129
 Externally generated inputs, 660
 External space, mediation of
 cross-modal links in endogenous spatial attention
 by, 554–556
 Exteroceptive senses, 373
 Exteroceptors, 244
 Extinction
 cross-modal
 auditory-tactile, 809–810
 visual-tactile, 802–805, 806, 807,
 808–809
 effects of tool use on spatial nature
 of, 826–825
 as probe to investigate spatial
 multisensory interactions, 800–801
 Eye-centered reference frame, 466–473
 advantages of, 476
 with eye position gain, 468f, 473, 474
 Eye-centered representations
 of auditory stimuli in posterior parietal
 cortex, 473–475
 transformation of head-centered
 to, 475
 Eye-head coordination, to auditory-visual
 stimuli, 382–383, 389
 Eye-head orienting task, task dependence
 of auditory-visual integration on, 383–384
 Eye movement(s), in audiovisual speech
 perception, 182
 Eye movement registration, 396
 Eye position gain, eye-centered reference
 frame with, 468, 473, 474

F
 F2 area, 432–433
 F2 ventrorostral-V6A/MIP circuit, 432–434
 F4 area
 anatomical location and functional
 properties of, 426–430, 432–433
 in control of reaching in space, 432–434
and neurological deficits related to peripersonal space, 431–432
role of multisensory integration in, 430–431

F5 area, 426f, 434–435
F5-PF circuit, 434–438, 455
Face, visuotactile interactions near, 807–809
Face feature horizontal size of, 177, 178
Face movements, perception of, 454
Face processing, 213
Face recognition, haptic, 132
Facial affect, perception of, 165
Facial expression(s)
fearful facial expressions, amygdala in, 844–845
Fat, mouth feel of, 319–321
Far peripersonal space, neuronal bases of, 431–432
FAES region, 254
auditory inputs to, 348
excitatory-inhibitory multisensory neurons in, 351–352
external afferents to, 345, 346
intrinsic cross-modal connectivity of, 349–351
location of, 343
and SIV, 353
in sound localization, 343
Fall-prone elderly population, sensory reweighting in, 793–795
Far peripersonal space, neuronal bases for multisensory processing of, 810–811
Fat, mouth feel of, 319–321
Fearful facial expressions, amygdala in processing of, 571–572
Feature integration information-processing theories, of audiovisual speech perception, 215–216
Feature integration theory, 856
and ventriloquism effect, 144
Feedback, in sensory processing, 141, 142
Feedback circuits, for multisensory convergence, 299–303
Feedback projection, 617
Feed-forward circuits, for multisensory convergence, 141, 298–305
Feeding behavior, multisensory signals in, 228–229, 230
“Feeling” speech, 777
Ferret(s)
auditory behavior in visually deprived, 695, 697
epiphenomenal factors that align visual and auditory maps in midbrain of, 599–610
intersensory integration in, 659
routing visual inputs to auditory pathway in behavioral consequence of, 686–690
physiological and anatomical consequences of, 685–688
technique of, 685–688
filem illusion, 56
Filtering task, selective attention as, 86, 91
Fixation neurons, 374–376
Flavor, representation of, 315, 573, 574
Flavor-visual association memory, 336
Flicker-fusion threshold, of visual stimuli, 38
Flinching, 447–448
FLMP (fuzzy logical model of perception), convergent and nonconvergent integration in, 162–163
fMRI. See Functional magnetic resonance imaging (fMRI)
Focused attention, visual-tactile interaction in, 405–406
Focused attention paradigm, 396
Focused attention task, integration rule assumptions for, 404
Food, pleasantness of taste of, 314
Food texture, response of orbitofrontal taste and olfactory neurons to, 319–321
Fornix, in memory encoding and storage, 337, 338
Foveation-based signal, for auditory space map, 617
Frame of reference
of somatosensory system, 379
of visual vs. auditory system, 377–378
Free parameters, in bimodal speech perception, 160
Freezing phenomenon, 146–148
Frontal lobe, multisensory areas in, 450
Frontotemporal areas, in endogenous covert spatial attention, 536, 546
Frontotemporal circuit
F2 ventroralateral-V6A/MIP, 432–434
F4-VIP, 426–432
Frontotemporal network, 492, 493
FST (fundus of superior temporal sulcus), connections to, 288
Functional imaging, of multisensory spatial representations and cross-modal attentional interactions, 529–546
Functional magnetic resonance imaging (fMRI)
of activation of auditory cortex by visual stimuli, 778
of affective value of stimuli
gustatory, 560–567
olfactory, 568
of amygdala and auditory reinforces, 572
of audiovisual associative learning, 495
of audiovisual interactions relating to emotion, 495
of audiovisual perception of emotion, 586–588
of auditory areas during visual processing, 738
of auditory localization with blindness, 734
of color-phonemic synesthesia, 863
of cross-modal plasticity, 496
deactivation interactions in, 498–499
of detection of changes in sensory events, 494
of integration at semantic level, 494–499
of integration of phonetic information, 486–488
of language perception with blindness, 728, 729
of linguistic interactions, 485
mapping unimodal and multimodal brain areas with, 529–530, 531
of multisensory convergence in cortical processing, 296
of orbitofrontal cortex and amygdala in emotion, 564
of processing of facial expressions, 570–571
of spatial concordance, 493
of spatial frames of reference for cross-modal interactions, 543–545
of speech-reading, 774–775
of stimulus-driven cross-modal interactions, 539–542
of stimulus-reinforcer association learning, 373–376
of visual cortex
during auditory and tactile processing, 738
in tactile perception, 705, 706, 707
of visual perception with deafness, 725–726
Functional reallocation, 735, 736–737
Function words, processing by blind people of, 727, 728–729
Fundamental frequency, in audiovisual speech perception, 203
Fundus of superior temporal sulcus (FST), connections to, 288
Fusiform face area, 213
Fusiform gyrus in audiovisual perception of emotion, olfactory, 586, 587–588
cross-wiring in synesthesia of, 870–871
in grapheme-color synesthesia, 844–845
in visual speech pathway, 213

INDEX 897
Fuzzy logical model of perception (FLMP)
convergent and nonconvergent integration in, 162–163
discrete vs. continuous information processing in, 163
information vs. information processing in, 164–165
learning in, 171
of language, 172
of speech, 161–172, 198–199, 206–207
of texture, 119, 141

G

Gain fields, eye-centered reference frame with, 468, 473, 474

Gallus domesticus, multisensory signals in, 230

Gap saccade task, 375–376

Garner interference, 87
and congruence effect, 88, 92
in cross-modal interactions, 92

Garter snakes, multisensory signals in, 233–234

Gating, of instructive signal for auditory space map, 618–619, 621
Gaze location, in audiovisual speech perception, 182

Gaze orienting, auditory-visual interactions subserving, 373–391

Gaze saccade, 373, 374, 375

Generalization, of tool use, 458–459

Geometric properties, multisensory perception of, 108, 109

Geons, object, 128

Glutamate taste receptor, 314

Goby fishes, multisensory signals in, 230, 233

Grapheme-color synesthesia, 837–848, 851

consistency of, 852–853

crowding effect and, 869–870, 871–872

effects of attentional load and rivalry on, 856–861

effects of visual masking of inducing stimuli on, 853–856

general principles of, 837, 838
measures of competition in, 853, 854

photons in as automatic consequence, 838–839

cross-linkage model of, 844, 845

form and meaning in determining, 844–847

location of, 837

perceptual aspects of, 841–844

reentrant model of, 844–845

pop-out in, 869

projectors vs. associators in, 837, 839–841, 847, 861, 862

Stroop effect in, 840–841, 853, 860, 861–862

Gralpholitha modesta, multisensory signals in, 235

Grasp, coding of, 464–465

Grasps, multisensory processes in, 235

Grating orientation, visual cortical

involvement in tactile discrimination of, 703–704

Gravitational force

effect on otolith organs of, 409–410

during parabolic flight maneuvers, 413–414

and somatogravic illusions and errors in visual and auditory localization, 411–412

Grouse, multisensory signals in, 237

Gulls, multisensory communication in, 226

Gustatory region, of insular cortex, 287

Gustatory stimuli, neuroimaging studies of affective value of, 564–567

Hand, cross-modal interaction in near peripersonal space of fake, 805–807, 825

Hand-rubbing experiment, 112

Haptochromes, multisensory signals in, 229

Haptic-auditory interaction, 311, 324–326, 328

Haptic face recognition, 132

Haptic influences, on postural control and locomotion, 421, 422

Haptic object agnosia, 127

Haptic object recognition, 128–129

Haptic priming, in visual object recognition, 126, 129

Haptic space, 132

Haptic system, 107

Hardness, multisensory perception of, 120

Hard-of-hearing children, teaching new vocabulary to, 174

Head-centered reference frame, 467, 468

transformation to eye-centered

of, 475

Head-centered visual receptive field, 449

Head direction, and presubiculum, 326

Head motions, in audiovisual speech perception, 185

Head movement control, in rotating environments, 413–414

Head-related transfer function

(HRTF), 377

Hearing aids, fuzzy logical model of hearing with, 167–168

Hearing loss. See Deafness

Hebbian long-term potentiation, of associators in, 837, 853, 860, 861–862

Hemianopia, recognition of facial expressions in, 591, 592

Hemispatial neglect, 434 as probe to investigate spatial multisensory interactions, 801

Hemodynamic studies, of audiovisual interactions, 483–499

activation interaction designs for, 497–498

approaches to, 484–485

background for, 483–484

deactivation interaction designs for, 498–499

for detection of changes in sensory events, 494

human imaging studies of, 485–496

for integration at semantic level, 488–490

for integration of phonetic information, 486–488

intersection and conjunction designs for, 496–497

linguistic, 485–490

nonlinguistic, 491–494

in pathological states, 495–496

in priming studies, 490

relating to associative learning, 495

relating to emotion, 494–495

for spatial concordance, 491–494

for temporal correspondence, 491

Heschl’s gyrus

activation by visual stimuli of, 778–779

in auditory speech pathway, 211, 212

in speech-reading, 774

Heterogeneous summation law, 229

Hippocampus

in memory encoding and storage, 337

multisensory convergence in, 311, 324–326, 328

Histological tracing, of multisensory pathways, 365–366

Homologue area adaptation, 722

“Homomorphic” percept, in speech perception, 196

Honeybees, multisensory signals in, 229

Horses, multisensory signals in, 232

HRTF (head-related transfer function), 377

Hypercompensation, 719, 735

Hyperconnectivity hypothesis, of synesthesia, 872

and emotions, 877–878

Hypothalamus, response to satiety by, 314

I

ICC (central nucleus of inferior colliculus), in auditory localization pathway, 616

ICX. See Inferior colliculus, external nucleus of (ICX)

Identification, in speech perception, 155, 168–174

IFG (inferior frontal gyrus), in detection of changes in sensory events, 494

Ikonic representations, 453
ILDs (interaural level differences), 377, 613, 614
Illumination, in audiovisual speech perception, 181–182
Illusions, 662–663
Illusory flash effect, 28–29
Illusory self-motion, 409, 418
Image-based object recognition, 128, 129–130
Image characteristics, in audiovisual speech perception, 179–184
Imagery, visual
magnetoencephalography of, 522
synesthesia and, 873–874
in tactile perception, 707
Implicit memory procedures, in odor-taste learning, 79–80
Implicit spatial discrimination paradigm, cross-modal cuing of exogenous spatial attention using, 11–16
Increasing specificity view, of intermodal development, 660
Infants
cross-modal matching in, 93
heterogeneous summation in, 229
imitation of facial gestures by, 190–191, 192
imitation of modeled actions by, 663
intersensory illusions in, 662–663
motor bubblings of, 453
multisensory neurons in, 633, 634
perception-action couplings in, 658
perception of amodal invariance by, 660, 663
perception of amodal stimulus properties by, 644
perception of intersensory equivalence in multisensory compounds by, 670–672
perception of multimodal information by, 644–645
temporal synchrony in, 644, 645, 661
perceptual development and origins of multisensory responsiveness in, 643–651
recognition of facial speech gestures by, 191–192
responses to bivisual changes by, 666–667, 668–670, 671
response to audiovisual speech and singing by, 668–670,
response to kinetically static and dynamic multisensory stimulation by, 665–668
responsiveness to multisensory compounds by, 665–672
solutions to problem of multisensory inputs in, 664–665
speech perception by, 191–192
uniqueness of intersensory integration in, 674
vocal imitation by, 191
Inferior area 6, in control of defensive movements, 443, 444–448
Inferior colliculus
central nucleus of (ICC), in auditory localization pathway, 616
external nucleus of (ICX)
adaptive plasticity of, 616, 617–622
alignment of auditory and visual maps in, 621
in auditory localization pathway, 616–623
instructive signal to, 617–622
timing problems in, 621–622
space-specific neurons in, 250, 251
Inferior frontal gyrus (IFG), in detection of changes in sensory events, 494
Inferior parietal lobule (IPL), in spatial concordance, 494
Inferior pulvinar nucleus, in audiovisual speech perception, 211, 214
Inferior temporal lobe, mechanisms of speech perception, 213
Inferior temporal lobe, mechanisms of memory encoding and storage in, 357–359
Inferotemporal cortex, connections to, 288
Information processing view, of intersensory integration, 656
Inhibition of return (IOR), 5n
Input ambiguity, and effect of multisensory integration, 276–278
Instructive signal, for auditory space map, 617–620
effect of parietal occlusion of visual field on, 617, 618
gating of, 618–619, 621
maintenance role of, 619–620
nature and mechanisms of, 620–621
source of, 617–619
Insula
cross-modal interactions in right, 509
in detection of changes in sensory events, 494
in spatial concordance, 492
in temporal correspondence, 491
Insular cortex, connections of, 257–288
Insurance, with noisy communication channels, 225
Integral dimensions, in selective attention, 86–87
Integration principles, 503
Integration view, of multisensory responsiveness, 643, 645
Intensity hypothesis, 664
Intensity parameter, 400
Interaction effects, in hemodynamic studies, 497
Interarrival times, 400
Interarrival time differences (ITDs), 377, 377f, 613, 614
Intracranial time differences (ITDs)
adaptive shift in map of, 616, 618
in auditory encoding, 376, 377
as auditory localization cue, 613, 614
effect of prismatic experience on, 615–616
effect of restricted lesion in optic tectum on, 619
sensitivity of superior olivary complex neurons to, 250–251
Interference resistance, in odor-taste learning, 76–77
Intermediate reference frame, 467, 468, 475
Intermodal development, increasing specificity view of, 660
Intermodal invariances, 484–485
Intermodal plasticity, 723, 735, 738–739
Internally generated inputs, 659–660
Interoceptors, 244
Interpersonal distance, in audiovisual speech, 178, 179–181, 180
Intersection designs, for hemodynamic studies, 496–497
Intersensory confusion, 657, 658, 673
Intersensory equivalence, in multisensory compounds, 670–672
Intersensory illusions, 662–663
Intersensory integration, in infants, 657–658, 674
Intersensory matching, rate-based, 670
Intersensory perception, defining developmental question for, 657–658
Intersensory perceptual development, 643–651
multisensory redundancy in, 655–675
theoretical conceptions of, 657
Intersensory redundancy defined, 664
in early perceptual development, 647, 648–651
Intersensory redundancy hypothesis, 652–655
Interstimulus interval (ISI), in cross-modal dynamic capture, 55
Intersystem plasticity, 723, 735, 738–739
Intramodal plasticity, 723, 735, 736
Intraparietal sulcus (IPS)
in awareness of self and others, 459
and body schema, 454
connections to, 288–289
cortex of, 286
endogenous spatial attention in, 534, 535, 538
multisensory convergence in, 296–297, 305
in spatial concordance, 492
spatially specific bimodal effects for vision and touch in, 531, 532
in tactile discrimination of grating orientation, 704
in tool use, 455–458, 820
Intrasystem plasticity, 723, 735, 736
INDEX 899
INDEX

Inverse effectiveness, 386, 402, 483, 505, 811
Inverse gain reweighting, 791–793
IOR (inhibition of return), 5n
IPL (inferior parietal lobule), in spatial concordance, 494
IPS. See Intraparietal sulcus (IPS)
Irrelevant stimuli, 94, 99–100
ISI (interstimulus interval), in cross-modal dynamic capture, 55
ITDs (interaural time differences), 376, 377

J
Jaw movements, in speech perception, 182
Jensen’s inequality, 397
Jitter, 402

K
KA (auditory koniocortex), in auditory speech pathway, 211
Kinematics-based animation, 186
Kinetically static and dynamic multisensory stimulation, response to, 665–668
Koniocellular input, in multisensory convergence, 303
Kullback-Leibler divergence, 276–278

L
Lateral occipital complex (LOC) in object recognition, 126
haptic, 31
in tactile discrimination, 704, 705, 706, 707
in visual speech pathway, 213
Lateral occipital gyrus, endogenous spatial attention in, 534–535
Lateral pulvinar nucleus, in audiovisual speech perception, 211, 214
Lateral sulcus (LS), multisensory convergence in, 296–297, 450
Lateral suprasylvian cortex, and multisensory integration in superior colliculus, 634–635
Lateral suprasylvian sulcus in multisensory integration, 255, 256–257
in superior colliculus-mediated orientation behavior, 257–259
Law of heterogeneous summation, 229
LDAP (late directing attention positivity), 559, 560, 561
Learning about multisensory properties of objects and events, 333–340 associative magnetoencephalography of, 520–522
Lemurs, multisensory signals in, 233 Lesion-induced plasticity, 736 Lexical Neighborhood Test, after cochlear implantation, 757 LGN (lateral geniculate nucleus) and ocular dominance columns, 682 in visual speech pathway, 211, 213, 244 Lightness, and pitch, 92, 93, 95–97 Light-touch/visual paradigm, for postural control, 789–793 Liking, and odor sweetness, 72 Limb-centered reference frame, 467, 468 Limb-centered visual receptive field, 449 Linear acceleration, effect on otolith organs of, 409–410 Linear integration models, of multisensory texture perception, 118–119 Lingual gyrus, in exogenous spatial attention, 541 Linguistic interactions, hemodynamic studies of, 485–490 Linguistic processes, in cross-modal congruence interactions, 95, 97–98 LIP. See Lateral intraparietal area (LIP) Lip gestures, imitation by infants of, 190 Lip movements, in speech perception, 182 Lipreading, 208–209 age of cochlear implantation and, 754–755, 763 auditory cortex in, 31 cochlear implants as aid to, 751, 755, 763, 765–766 cortical activation during, 213 in early-onset vs. late-onset deafness, 751, 753 in hearing-impaired adults, 750–751 hemodynamic studies of, 485, 486–487 learning of, 171–172 magnetoencephalography of, 518 neuroimaging studies of, 773–776, 777 in normal hearing, 749–750 robustness of, 165 spatial and temporal constraints on, 177–186 with sudden vs. gradual hearing loss, 753–754 Tadoma method of, vibrotactile activation of auditory cortex in, 777 tongue movements in, 209h variable skills in, 751 Lipreading tasks, 177–178 LOC. See Lateral occipital complex (LOC) Locations, endogenous selection of relevant, 533–536 Locomotion, haptic influences on, 421, 422 Lombard effect, 189 Long-term depression (LTD), of auditory map plasticity, 621 Long-term potentiation (LTP), of auditory map plasticity, 621 Loudness, brightness and, 90, 93, 96 LS (lateral sulcus), multisensory convergence in, 296–297, 450 LTD (long-term depression), of auditory map plasticity, 621 LTP (long-term potentiation), of auditory map plasticity, 621 Luscinia megarhynchos, learning in, 234

M
Multisensory signals

Maevia inclemens, Macular degeneration, auditory

Macrospatial features, 705

Magnetic resonance imaging, functional.

Mating behavior, multisensory signals

Material properties, multisensory

Mark test, 459

Map expansion, 722–723, 736

Manner feature, in speech

Magpies, redundant signals in, 228, 229, 230, 232, 233, 235–236

Maximum-likelihood integration model, of multisensory texture perception, 119

McGurk effect, 27, 203

in audiovisual speech perception, 177, 205, 207–208, 750

as example of emergence, 234

familiarity with talker and, 207, 208
gaze during, 182

haptic version of, 189

in infants, 662

with low spatial resolution, 180

magnetoencephalography of, 518

and multimodal speech perception, 156, 159

multisensory convergence and, 311, 322, 323–324

positron emission tomography of, 488

sensitivity to asynchrony in, 183

and special nature of speech, 154

in speech perception by infants, 191

McGurk effect tasks, 177–178

Medial auditory belt, connections of, 287–288

Medial geniculate nucleus (MGN)
in audiovisual speech perception, 211, 214

histological tracing of multisensory pathways in, 365, 366, 368

projections to anterior ectosylvian sulcus from, 345

routing visual inputs to, 683–686

Medial intraparietal area (MIP), 426, 433–434

cross-modal spatial resolution of, 639–640

with low spatial resolution, 180

Medial intraparietal sulcus, 180

Mirror(s), cross-modal integration modulated by, 828–832

Mirror-image stimuli, discrimination between, 705

Mirror neurons

in audiovisual speech perception, 215 and body schema, 454–455

in circuit for action understanding, 434–435

PF, 436–438

Mirror reflections
cross-modal interference between touch and, 828, 831

cross-modal spatial extinction between touch and, 831–832

Mismatch negativity (MMN), 585–586

Misses, 396

Modality appropriateness hypothesis, 27–28, 36

and infants’ responsiveness to multisensory compounds, 667

of multisensory texture perception, 116–118

Modality dominance, of cross-modal dynamic capture, 62–64

Modality-specific audiovisual speech perception, 207–210

neural implementation of, 216–218

Modality-specific cues, in perception of amodal invariant, 661–662

Modality-specific stimulus properties defined, 660

effects of, 644

intersensory redundancy and perceptual learning about, 469

perception by infants of, 644

specification of multisensory object or event by, 660

Model tests, in bimodal speech perception, 161

Modularity, in speech perception, 155

Mole rats, multisensory signals in, 228
Monaural spectral cues, 613

Monkey
absence of multisensory integration in early developmental stages of, 631
control of defensive movements in, 445–451
cortical sites for audiovisual convergence in, 433–434
forward attention in, 320–321
inferior temporal lobe in, 337–339
motion signals, multisensory integration
motion perception, sound alters vision
neocortex of, 285, 286
perception of facial and body movements in, 454
posterior parietal cortex in, 288–289
superior colliculus in, 246–248
superior colliculus of, 248

tool use by, 820

Moths
morphosyntactic priming, with blindness, 631–633
morning warblers, multisensory processes

Motions
motor apraxia, 225–226
multisensory areas, in human brain, 450
multisensory communication, in animals, 225–236
descriptive observations of, 226–227

Motion capture, 308–309
in artificial vision, 308–309

Motor areas, in multisensory integration, 429–439
motor babbling, 453
motor cortex, sensory responses in, 443, 444–448
motor development, with blindness, 740
motor reference frame, 464
in superior colliculus, 248
motor representation, of perceived object, 431
motor representation hypothesis, 438–439
motor theory, of speech perception, 154–155, 199, 194–197
motor valence, of PF mirror neurons, 436
mouth, in smell and taste, 72–74
mouth movements, perception of, 213
movement control
- equilibrium-point theories of, 414–415
- multisensory influences on, 409–422
- somatosensory influences on, 419–421

Movement planning, posterior parietal cortex in, 464–466
moving events, multisensory integration between, 50–52
MSE. See Multisensory enhancement

MST (medial superior temporal area)
connections to, 288
multisensory convergence in, 297, 301
MT (middle temporal visual area)
- multisensory convergence in, 297, 301, 303, 304
- MTG. See Middle temporal gyrus (MTG)

Multichannel diffusion model
402–403
multilinear regression, in audiovisual speech perception, 209–210
multimodal information, infant perception of, 644–645

Multimodal stimulation, differential effects of unimodal and, 646–648

Multimodal stimuli, fundamental problems for orienting to, 376–379
multiple-messages hypothesis, 236

Multisensory areas, in human brain, 450
multisensory communication, in animals, 225–236

multisensory neurons in, 352–353
sensory representations, 353

Multisensory depression, in deep superior colliculus, 205

Multisensory development, 625–640
early absence of, 630–631, 632
future directions in, 638–640
maturation of corticocollicular influences in, 635, 636–638
maturation of integrative properties in multisensory neurons in, 631–633, 634
maturation of sensory response properties in, 626–629

Multisensory enhancement (MSE)
Bayes’ rule model of, 265–271
behavioral relevance and decision theory in, 279–280
deriving testable prediction from, 271–274
future directions for, 278–280
information theoretic analysis of, 274–278
for multisensory neuron, 268–271
for unimodal neuron, 265–271
for unimodal neuron, 266–268
in deep superior colliculus, analysis and modeling of, 265–281
function of, 266
percent, 265–266
intracellular correlates of, 363–365
in rat cortex, 357–360
multisensory facilitation, 674
multisensory index, 248, 250
multisensory influences, on orientation and movement control, 409–422
musculoskeletal inputs, solutions to problem of, 664–665

Multisensory integration
absence in early developmental stages of, 630–631, 632
action as binding key to, 425–439
appearance of, 631
associative learning in, 328

INDEX
behavioral consequences of, 252–254
countered model of, 390–391
in cortex and superior colliculus, 254–255
defined, 248, 250, 483, 497
development of, 625–640
ear absence of, 630–631
future directions in, 638–640
maturation of cortical excitatory
influences in, 635, 636–638
maturation of integrate properties
in multisensory neurons in, 631–635, 634
maturation of sensory response properties in, 626–629
multisensory cortical populations in, 635–637, 638
receptive fields and, 629–630, 631, 633
review of work on, 626, 627
role of cortical inputs in, 634–635
role of experience in, 637–638
role of cortical inputs in, 634–635
review of work on, 626, 627
maturation of receptive fields and, 629–630
maturation of sensory response properties in, 626–629

Multisensory neuronal convergence of, 631, 633
in superior colliculus, role of cortical inputs in, 634–635

Multisensory signals
in animals, 223, 226
classification of, 227–228
composite, 227, 228
cues vs., 227
dominance of, 232–233
emergence of, 234
enhanced responses to, 229–230
equivalences of, 229
independence of, 232
modulation of, 233–234
nonredundant, 227–228, 230–234
redundant, 227–230
learning advantage of, 672–674
Multiunit activity (MUA), of multisensory signals
Multiunit activity, brief review of, 655–656
models for, 656
Neuroanatomy
of audiovisual perception, 655–675
hemispatial, 434
as probe to investigate spatial multisensory interactions, 801–812
spatial, 431
unilateral, parietal cortex and, 453
Visual
bimodal stimulation for, 811–812
as probe to investigate auditory-visual interactions, 810–812
ventriloquism effect with, 145–146
Neocortex, of monkeys, 285, 286
Neonates (see also Infants)
multisensory neurons in, 633, 634
Nerve growth factor (NGF), in tool use learning, 457
Neural correlates, of synesthesia, 851–852, 862–864
Neural depression, as indication of cross-modal facilitation, 511
Neural implementation, of audiovisual speech perception, 210–215
Neural integration, and saccade reaction time, 380–381, 389
Neural plasticity, 720–723
classification of, 721–723
developmental factors in, 723
intramodal vs. intermodal changes in, 723
intersystem vs. intersystem changes in, 723
Neuroanatomy, of audiovisual perception of emotion, 586–589
Multisensory neuronal convergence, of taste, somatosensory, visual, olfactory, and auditory inputs, 311–329
Multisensory pathways, histological tracing of, 365–366
Multisensory perception, of emotion, 581–594
attention in, 584–585
conscious vs. unconscious, 590–593
electrophysiological studies of, 585–586
in faces and voices, 582–584
models for, 593
neuroanatomy of, 586–589
selective pairing mechanism in, 589–590, 591
time course of, 585–587
Multisensory perceptual contours, 306
Multisensory processes, in animals for attention and perception, 235
Multisensory responsive auditory-visual modulation of, 801–802
visuotactile interactions in, 805–809
Neglect
auditory-visual modulation of, 811–812
hemispatial, 434
as probe to investigate spatial multisensory interactions, 801–810
spatial, 431
unilateral, parietal cortex and, 453
visual
bimodal stimulation for, 811–812
as probe to investigate auditory-visual interactions, 810–812
ventriloquism effect with, 145–146
Neocortex, of monkeys, 285, 286
Neonates (see also Infants)
multisensory neurons in, 633, 634
Nerve growth factor (NGF), in tool use learning, 457
Neural correlates, of synesthesia, 851–852, 862–864
Neural depression, as indication of cross-modal facilitation, 511
Neural implementation, of audiovisual speech perception, 210–215
common format, 215–216
modality-specific, 216–218
testing theories of, 218
Neural integration, and saccade reaction time, 380–381, 389
Neural plasticity, 720–723
classification of, 721–723
defined, 720, 722
intramodal vs. intermodal changes in, 723
intersystem vs. intersystem changes in, 723
Neuroanatomy, of audiovisual perception of emotion, 586–589
INDEX 903

N
N1 response, decreased amplitude of, 511
Nasal nasality feature, in speech perception, 204n, 205
Near peripersonal space auditory-tactile interactions in, 800–810
neuronal bases for multisensory processing of, 801–802
visuotactile interactions in, 805–809
Neglect
auditory-visual modulation of, 811–812
hemispatial, 434
as probe to investigate spatial multisensory interactions, 801–812
spatial, 431
unilateral, parietal cortex and, 453
visual
bimodal stimulation for, 811–812
as probe to investigate auditory-visual interactions, 810–812
ventriloquism effect with, 145–146
Neocortex, of monkeys, 285, 286
Neonates (see also Infants)
multisensory neurons in, 633, 634
Nerve growth factor (NGF), in tool use learning, 457
Neural correlates, of synesthesia, 851–852, 862–864
Neural depression, as indication of cross-modal facilitation, 511
Neural implementation, of audiovisual speech perception, 210–215
common format, 215–216
modality-specific, 216–218
testing theories of, 218
Neural integration, and saccade reaction time, 380–381, 389
Neural plasticity, 720–723
classification of, 721–723
defined, 720, 722
intramodal vs. intermodal changes in, 723
intersystem vs. intersystem changes in, 723
Neuroanatomy, of audiovisual perception of emotion, 586–589
INDEX 903
INDEX

Neurogenesis, and compensatory plasticity, 739

Neuroimaging modalities, 503

Neuroimaging studies
 of affective value of stimuli, 564–572
 auditory, 572
 gustatory, 564–567
 olfactory, 567–569
 somatosensory, 569–570
 visceral and somatic representations of, 570
 visual, 570–572
 of cross-modal integration in amygdala, 572
 for emotion, 563–576
 in orbitofrontal cortex, 573, 574
 of cross-modal plasticity and language processing in deaf people, 773–780
 of representation of flavor, 573, 574
 of stimulus-reinforcer association learning, 573–576

Neuromagnetic inverse problem, 515, 516

Neuromagnetic signals, genesis of, 516

Neuromagnetometers, 516

Neuron(s), multisensory integration in single, 243–260

Neuronal correlates, of object recognition, 124–127

Neuronal plasticity, in ventriboquism illusion, 45–46

Neuroplasticity. See Neural plasticity

Neuropsychological evidence, of integrated multisensory representation of space, 789–814

Neurotrophin(s), in tool use learning, 457–458

Neurotrophin 3 (NT-3), in tool use learning, 457

NGF (nerve growth factor), in tool use learning, 457

Nightingales, learning in, 234

N-Methyl-D-aspartate (NMDA) receptors, 367

in midbrain auditory localization pathway, 616

in visual and auditory map registration, 606–607

Noisy communication channels, 225

Nonlinguistic interactions, hemodynamic studies of, 491–494

Non-matching-to-sample (NMS) task, 334

Nonredundant-cue identification task, 505–509

Nonredundant signals, in animals, 227–228, 230–234

Nose, in smell and taste, 72–74

Novelists, synesthesia in, 876–877

NT-3 (neurotrophin 3), in tool use learning, 457

Nucleus of solitary tract (NTS), in taste pathway, 312, 314

Number line, in synesthesia, 875–876

O

Object-based visual search task, attention in, 326–328

Object constancy, 123, 127–128

Object discrimination learning, medial temporal lobe in, 337

Object geons, 128

Object recognition, 125–136

behavioral correlates of, 127–130

experimental studies on, 130–135

for multiple objects, 132–135

for single objects, 130–132

haptic, 128–129

lateral occipital cortex in, 31

neuronal correlates of, 124–127

with odor-taste synesthesia, 73–74

spatial constraints on, 135–136

temporal constraints on, 136

verbal mediation in, 134–135

Object segregation, 147

Object similarity, multisensory perception of, 108

Observation-execution matching (OEM) system, in audiovisual speech perception, 215

OC (oral communication), audiovisual speech perception with, 755, 757–758, 763–765

Occipital cortex, in tactile discrimination by blind subjects, 711

Occipital visual areas in blindness, 738

differential activation of, 531

in endogenous spatial attention, 533–534, 536, 538

retinotopic organization of, 530, 543

Occipitotemporal areas, in object recognition, 126

Ocular dominance columns, development and plasticity of, 681–682, 683, 699

Oculocentric coordinates of somatosensory input, 379

of visual input, 377–378, 389

Oculonvicillar illusion, 411

Olfactor(s)

defined, 69

sweet, 69–72

liking and, 72

odor-taste learning and, 74

Odor-learning system, 79

Odor-odor learning, 80

Odor perception

odor-taste learning and, 80

role of learning in, 70

Odor-taste learning, 72, 74–78

acquisition and awareness in, 75–76

expectancy test of, 76, 77

extinction procedure for, 76

implicit memory procedures in, 79–80

and odor perception, 80

preexposure and training in, 77–78

retention and resistance to interference in, 76–77

successive vs. simultaneous associations in, 75–76

Olfactory mixtures, configural encoding of, 78–79

Olfactory synesthesia, 69–81

language and, 73

and object identification, 73–74

reliability of, 70

validity of, 70–72

OEM (observation-execution matching) system, in audiovisual speech perception, 215

Olfaction

orthonasal, 69, 73

retroonasal, 69, 72, 73

synesthesia between taste and, 69–81

Olfactory neurons, response to texture of food by, 319–321

Olfactory pathway, in primate brain, 313

Olfactory representations, in primate cortex, rules underlying formation of, 315–316

Olfactory sensory-specific satiety, 318–320

Olfactory stimuli

neuroimaging studies of affective value of, 567–569

representation of pleasantness of, 318–320

Olfactory-to-taste associations, 311, 315

Orange-puzzle neurons (OPNs), 376

Ontogenetic adaptations, 657

Optic ataxia, 434

Optic tectum (OT), visual instruction of auditory space map in, 613–623

Oral communication (OC), audiovisual speech perception with, 755, 757–758, 763–765

Orbital motion, direction of experienced, 419–421

Orbitofrontal cortex

activation of

by auditory stimuli, 572

by gustatory stimuli, 565–567

by olfactory stimuli, 567–569

by somatosensory stimuli, 569–570

by visual stimuli, 570–572

in emotion, neuroimaging studies of, 563–576

imaging methods for, 564

multisensory convergence in, 311, 312, 328

representation of flavor in, 315, 573, 574

representation of tastes in, 565–567

in representing affective value of stimuli, neuroimaging studies of, 564–572

response to satiety by, 314, 318–320

response to texture of food by, 319–321

rules governing formation of olfactory representations in, 315–316

secondary taste cortex in, 313

stimulus-reinforcer learning in, neuroimaging studies of, 563–564, 573–576

visual inputs to, 316–318
Oriental fruit moths, multisensory signals in, 235

Orientation
multisensory influences on, 409–422
in object recognition, 130–131
in scene recognition, 133–134
somatosensory influences on, 419–421

Orientation behavior, superior colliculus-mediated, anterior ectosylvian sulcus or rostral lateral suprasylvian sulcus and, 257–259
Orientation selectivity, development of, 682–685, 685, 686
Orienting, to multimodal stimuli, fundamental problems for, 376–379
Orienting behavior, possible effect on target-present prior probabilities of, 272–274
Orienting gaze shift, auditory-visual interactions subserving, 373–379

Ornstein-Uhlenbeck process (OUP), 402
Orthogonal spatial cuing paradigm, for exogenous spatial attention, 7–10, 15–16
Orthogonal task, selective attention as, 86, 91
Orthonasal olfaction, 69, 73
OT (optic tectum), visual instruction of auditory space map in, 613–623
Other-awareness, 459, 460
Otolith organs

effect of gravitoinertial force on, 409–410

threshold measurements of, 417–419
OUP (Ornstein-Uhlenbeck process), 402
Overgeneralizations, reduced number of, in blind children, 727

Owl
auditory consequences of altered visual experience in, 604–605
auditory spatial representations in visually deprived, 731–732
intersensory integration in, 659
sound localization in visually deprived, 696, 697
space-specific neurons in inferior colliculus of, 250, 251
visual instruction of auditory space map in midbrain of, 613–623

P
P1/N1 slow wave, 359–360, 363, 364, 365
Pan troglodytes, multisensory signals in, 225
Parabelt, of auditory cortex in auditory speech pathway, 212–213
connections to visual cortex of, 286–287
Parabolic flight maneuvers, gravitoinertial force during, 413–414
Paradisaea raggiana, multisensory signals in, 226
Parahippocampal gyrus, in speech-reading, 775, 776
Parameter estimation, in bimodal speech perception, 160
Parchment-skin illusion, 112, 518
Parietal area 7b, in control of defensive movements, 443, 444, 449–450
Parietal cortex
in action understanding, 455
in audiovisual convergence, 483, 484
and body schema, 453
motor properties of, 425
posterior connections to, 288–289
eye-centered representations of auditory stimuli in, 473–475
in movement planning, 464–466
multisensory representations of space in, 463–476
and unilateral neglect syndrome, 453
Parietal lobe
dorsal pathway to, 126
multisensory areas in, 449–450
in ventrobasal complex, 46
Parietal reach region (PRR), 288, 289
common spatial representation in area LIP and, 466–474
in movement planning, 464, 465
Parieto-occipital cortex (POC), in tactile processing of near peripersonal space, 802
Parieto-occipital cortex (POC), in tactile processing of near peripersonal space, 802
Parietal function, compensatory plasticity as consequence of sensory loss for, 723–726
Perceptual representations, in cross-modal congruence interactions, 95–97
Perceptual segmentation, 147
Perceptual training, after visual loss, 736
Perceptuocognitive brain, executive vs., 425
Peripersonal space, 430–431
cross-modal integration of modulated by mirrors, 828–832
modulated by tool use, 819, 820–827
far, neuronal bases for multisensory processing of, 810–811
near auditory-tactile interactions in, 809–810
neuronal bases for multisensory processing of, 801–802
visuotactile interactions in, 805–809
neurological deficits related to, 431–432
temporal pattern of multisensory convergence for, 305–306
Perirhinal cortex, in cross-modal learning, 334–337, 339
Perky effect, in synesthesia, 873–874
PET. See Positron emission tomography (PET)
PF area, 426f, 435–438
Phantom limb(s)

cortical remapping with, 124
lack of perceptual plasticity associated with, 690–691
Phantom limb pain, 739–740
Phi phenomenon, 49, 61
Phenotypically Balanced–Kindergarten Test (PBK), after cochlear implantation, 760, 761
Phonetically Balanced–Kindergarten Test (PBK), after cochlear implantation, 760, 761
Phonetic gesture(s)
evidence for perception of, 192–194
recognition by infants of, 191–192

INDEX 905
Phonetic information, hemodynamic studies of integration of, 486–488
Phonetic module, 195–196
in speech perception, 154–155
Phonetic processor, in speech perception, 196
Phonism(s)
as automatic consequence of viewing graphemes, 838–839
cross-linkage model of, 844, 845
defined, 837
form and meaning in determining, 844–847
location of, 837
perceptual aspects of, 841–844
reentrant model of, 844, 845
perceptual aspects of, 841–844
classification of, 721–723
defined, 720, 722
intramodal vs. intermodal changes in, 723
intrasytem vs. intersystem changes in, 723
physiological, 721–722
use-dependent, 736
in ventroloquim illusion, 45–46
Pleasant tastes
activation of amygdala by, 567
hunger and, 314
representation in orbitofrontal cortex by, 565–566
PMs (ventral premotor zone) in control of defensive movements, 443, 444–448
multisensory responses of, 289
PO (posterior nucleus), histological tracing of multisensory pathways in, 365–366, 368
POC (parieto-occipital cortex), in tactile discrimination of gratting orientation, 703, 704
Poets, synesthesia in, 869–870
Polyvalent brain areas, reorganization of, 735, 736–737
Polysensory zone (PZ), in control of defensive movements, 443, 444–448
Pop-outs, in grapheme-color synesthesia, 869
Positron emission tomography (PET), 364
of activation of auditory cortex by visual stimuli, 778
of affective value of stimuli gustatory, 565–566, 567
olfactory, 567–568
of amygdala and auditory
reinforcers, 572
of audiovisual associative learning, 493
of audiovisual interactions relating to emotion, 494–495
of audiovisual perception of emotion, 587, 589
of audiovisual priming studies, 490
of auditory localization with blindness, 732–734
of color-phonemic synesthesia, 863
of cross-modal plasticity, 496
of endogenous spatial attention, 533–536, 538
of integration at semantic level, 489
of integration of phonetic information, 488
of linguistic interactions, 485
of orbitofrontal cortex activation by auditory stimuli, 572
of orbitofrontal cortex in representation of flavor, 573
of spatial concordance, 493
of temporal correspondence, 491
of visual cortex in tactile perception, 703, 704–705, 706, 707
Postcues, 16n
Posterior cingulate gyrus, in speech-reading, 775, 776
Posterior ectosylvian gyrus (PEG), projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
Posterior inferior temporal cortex (PIT), in grapheme-color synesthesia, 844–845
Posterior inferior temporal cortex (PIT), in grapheme-color synesthesia, 844–845
Posterior medial lateral suprasylvian cortex, projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
Posterior middle temporal gyrus (pMTG), integration at semantic level in, 489–490
Posterior nucleus (PO), histological tracing of multisensory pathways in, 365–366, 368
Posterior parietal cortex (PPC) connections to, 288–289
eye-centered representations of auditory stimuli in, 473–475
in movement planning, 464–466
multisensory representations of space in, 463–476
Poststimulus time histograms (PSTHs), of auditory/somatosensory evoked potentials, 364, 365
Postsynaptic potentials (PSPs), 364–365, 367
Postural control
haptic influences on, 421, 422
multisensory integration in, 785–796
ambiguities and, 785–787
light-touch/vision paradigm and, 789–793
sensory reweighting and, 787–789
in fall-prone elderly population, 793–795

Plasticity
anatomical, 721–722
of auditory space map, 616, 617–620
model for, 620–622
of auditory spatial processing in superior colliculus, 604–605, 606
compensatory as consequence of sensory loss, 719–740
for language function, 727–731
mechanisms of, 735–739
model for investigating, 719–720
for motor development, 740
for perceptual functions, 723–726
for spatial functions, 731–735
in developing and adult brain, 738–739
maladaptive consequences of, 739–740
neural mechanisms of, 698–699
cross-modal and behavioral changes after sensory deprivation, 738–739
with deafness, 773–780
defined, 711
hemodynamic studies of, 495–496
in humans, 690–691
implications for cortical development and function of, 681–691
intramodal vs., 723

magnetoencephalography of, 522–524
as mechanism for compensation and hypercompensation, 735
period of susceptibility to experience, 712, 714, 715
between visual and somatosensory representations, 711–712, 715
intermodal, 723, 735, 738–739
intramodal, 723, 735, 736
intrasytem, 723, 735, 736
lesion-induced, 736
magnetoencephalography of, 515–524
neural, 720–723
classification of, 721–723
defined, 720, 722
intramodal vs. intermodal changes in, 723
intrasytem vs. intersystem changes in, 723
physiological, 721–722
use-dependent, 736
in ventroloquim illusion, 45–46
Pleasant tastes
activation of amygdala by, 567
hunger and, 314
representation in orbitofrontal cortex by, 565–566
PMs (ventral premotor zone) in control of defensive movements, 443, 444–448
multisensory responses of, 289
PO (posterior nucleus), histological tracing of multisensory pathways in, 365–366, 368
POC (parieto-occipital cortex), in tactile discrimination of gratting orientation, 703, 704
Poets, synesthesia in, 869–870
Polyvalent brain areas, reorganization of, 735, 736–737
Polysensory zone (PZ), in control of defensive movements, 443, 444–448
Pop-outs, in grapheme-color synesthesia, 869
Positron emission tomography (PET), 364
of activation of auditory cortex by visual stimuli, 778
of affective value of stimuli gustatory, 565–566, 567
olfactory, 567–568
of amygdala and auditory
reinforcers, 572
of audiovisual associative learning, 493
of audiovisual interactions relating to emotion, 494–495
of audiovisual perception of emotion, 587, 589
of audiovisual priming studies, 490
of auditory localization with blindness, 732–734
of color-phonemic synesthesia, 863
of cross-modal plasticity, 496
of endogenous spatial attention, 533–536, 538
of integration at semantic level, 489
of integration of phonetic information, 488
of linguistic interactions, 485
of orbitofrontal cortex activation by auditory stimuli, 572
of orbitofrontal cortex in representation of flavor, 573
of spatial concordance, 493
of temporal correspondence, 491
of visual cortex in tactile perception, 703, 704–705, 706, 707
Postcues, 16n
Posterior cingulate gyrus, in speech-reading, 775, 776
Posterior ectosylvian gyrus (PEG), projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
Posterior inferior temporal cortex (PIT), in grapheme-color synesthesia, 844–845
Posterior medial lateral suprasylvian cortex (PMLS), projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
Posterior middle temporal gyrus (pMTG), integration at semantic level in, 489–490
Posterior nucleus (PO), histological tracing of multisensory pathways in, 365–366, 368
Posterior parietal cortex (PPC) connections to, 288–289
eye-centered representations of auditory stimuli in, 473–475
in movement planning, 464–466
multisensory representations of space in, 463–476
Poststimulus time histograms (PSTHs), of auditory/somatosensory evoked potentials, 364, 365
Postsynaptic potentials (PSPs), 364–365, 367
Postural control
haptic influences on, 421, 422
multisensory integration in, 785–796
ambiguities and, 785–787
light-touch/vision paradigm and, 789–793
sensory reweighting and, 787–789
in fall-prone elderly population, 793–795

INDEX
Postural sway, 787–788, 796
Postural actions, 431
Potentiation, 672–673
PPC. See Posterior parietal cortex (PPC)
PPVT (Peabody Picture Vocabulary Test), after cochlear implantation, 760, 761
Prairie dog, multisensory signals in, 226
Precentral gyrus, polysensory zone of, in control of defensive movements, 443, 444–448
Preexposure effect, 77
in odor-taste learning, 77–78
Prefrontal cortex
in attention, 327
in audiovisual convergence, 483, 484
connections to, 290
Prelabeling model, of audiovisual speech perception, 209
Premotor cortex
area F4 of anatomical location and functional properties of, 426–430, 432–433
in control of reaching in space, 432–434
and deficits related to peripersonal space, 431–432
role of multisensory integration in, 430–431
in audiovisual convergence, 483, 484
connections to, 289–290
polymodal neurons in, 425
sensory responses in, 443, 444–448
spatial representations in, 532
Premotor saccade burst generator, 376
Preparation enhancement model, 400
Presubiculum, and head direction, 326
Primates
auditory-visual interactions subserving gaze orienting in, 373–391
cross-modal memory in, 335–340
intersensory integration in, 659
multisensory signals in, 227
olfactory pathway in, 313, 315–316
resurrection of multisensory cortex in, 285–291
taste processing in, 312–314, 313f, 315f
Priming, audiovisual, 490
Principal components analysis (PCA), of audiovisual speech production, 184
Prismatic spectacles, and auditory space
Production-based animation, 185–186
Projectors, in synesthesia, 837, 839–841, 861, 862
Proprioception
in cross-modal dynamic capture, 62
visual dominance over, in cross-modal modulation, 805
PRR (parietal reach region), 288, 289
common spatial representation in area LIP and, 466–474
in movement planning, 464, 465
Pseudophone, for ventriloquism aftereffect, 40
PSPs (postsynaptic potentials), 364, 365, 376
PSTHs (poststimulus time histograms), of auditory/somatosensory evoked potentials, 364, 365
Psychoacoustic accounts, of speech perception, 154
Psychometric function, for ventriloquism aftereffect, 42, 43
Psychophysical staircase methodology, for cross-modal dynamic capture, 58–60
Psychophysical studies, of cross-modal cuing of exogenous spatial attention, 16–17
Putamen
in control of defensive movements, 443, 444, 450
in cross-modal integration, 496
in multisensory processing of near peripersonal space, 802
PV region, 287
PZ (polysensory zone), in control of defense movements, 443, 444–448
Q
Quail(s), sensory development in, 234
Quail chicks, differential effects of unimodal and multimodal stimulation in, 647
intersensory redundancy and perceptual learning in, 649–650
responsiveness to multisensory compounds in, 672
Quala, 244, 688
Quailia, synesthesia and, 878–879
“Rabbit” effect, sound-induced visual, 29
Race models
of response time, 397–400
of saccade reaction times, 379–380, 388
Random dot kinematogram (RDK), apparent motion of, 51
Rat(s)
learning in, 234
multisensory signals in, 234
potentiation in, 673
trace learning in, 674
Rat cortex, multisensory evoked potentials in, 357–368
Rate-based intersensory matching, 670
RBID. See Right brain damage (RBID)
RDK (random dot kinematogram), apparent motion of, 51
RDLS-III (Reynell Developmental Language Scales, 3rd Edition), after cochlear implantation, 760
Reach, coding of, 464, 465–466
Reaching in space, circuit for control of, 432–434
Reaching movements, influence of Coriolis forces on, 415–417
Reaction times, with event-related potentials, 506
Reaction time studies, 16, 16n
Real-time multisensory processing, magnetoencephalography of, 518–519
Receptive fields (RFs)
maturity of multisensory integration and, 631, 633
multiple overlapping, 246–248
of multisensory neurons, 633
in superior colliculus, 246, 247
consolidation during development
Reciprocal stimulus enhancement, 229
Recognition, in speech perception, 155
Redintegration, in odor-taste learning, 79
Red jungle fowl, multisensory signals in, 225, 226
Redundancy, intersensory defined, 664
in early perceptual development, 647, 648–651
Reducant-cue identification task, 505–509
Reducant signal(s), in animals, 227–230
Redundant signal hypothesis, 236
Redundant target effect, 506
Redundant target paradigm, 396
Redundant target task, integration rule assumptions for, 404–405
Red-winged blackbirds, multisensory processes in, 235
Reed warblers, redundant signals in, 228
Reentrant model, of photons, 844–845
Reference condition, in hemodynamic studies, 497, 498
Reference frame(s), 463
advantages of common, 475–476
in area LIP and parietal reach region, 466–467
eye-centered, 466–473
advantages of, 476
of auditory stimuli, 473–475
with eye position gain, 468, 473, 474
transformation of head-centered to, 475
head-centered, 467, 468
transformation to eye-centered of, 475
intermediate, 467, 468, 475
limb-centered, 467, 468
spatial, for cross-modal interactions, 542–546
Reference-frame transformations, 463–464
posterior parietal cortex in, 464–467
Relevant stimuli, 94, 99–100
Reorganization, of polymodal brain areas, 735, 736–737
Repetitive transcranial magnetic stimulation (rTMS), for evaluation of visual cortex in tactile perception, 712
INDEX 907
INDEX

Rhythms, multisensory signals in, 227
Resistance to interference, in odor-taste learning, 76–77
Response bias, in cross-modal dynamic capture, 57
Response depression, with multisensory integration, 249, 251, 252–254, 483, 511
Response enhancement, with multisensory integration, 229–230, 248–249, 252–254
Response priming, in ventrilocquism effect, 143
Response time (RT), 395–407
Receptive fields (RFs), 334–337, 339
Sage grouse, multisensory signals in, 227
Sagebrush sp., multisensory signals in, 228, 233
Schizophrenia, deficits in cross-modal integration in, 496
Second language learners, 174
Scene analysis, 147
Self-motion, illusory, 409, 418
Self-generated inputs, 659–660
Self-motion, illusory, 409, 418
Semi-circular canals, effect of head movement on, 413
Sensitivity periods, 729
Sensorimotor transformation, 463
Sensory compensation, 719
Sensory conflict paradigms, 107
Sensory convergence, VS. sensory integration, 328–329
Sensory cortex, primary, 245
Sensory deprivation, cross-modal plasticity due to magnetoencephalography of, 522–524
model for investigating, 719–720
Sensory development, in blind people, 318–319, 320
Sensory-specific satiety, 314, 315, 318–319, 320
neuroimaging studies of, 568–569, 573, 574
SC. See Superior colliculus (SC)
Scalp current densities (SCDs), 504, 508
SCBNs (superior colliculus burst neurons), 373, 376, 38–382, 388
SCBUNs (superior colliculus buildup neurons), 373, 376, 381–382, 388, 389
Scene analysis, 147
Scene recognition, 132–135
SCFNs (superior colliculus fixation neurons), 373, 376
Schizencephaly, 228, 233
Self-awareness, 459, 460
Semi-circular canals, effect of head movement on, 413
Sensitive periods, 729
Sensorimotor transformation, 463
Sensory compensation, 719
Sensory conflict paradigms, 107
Sensory convergence, VS. sensory integration, 328–329
Sensory cortex, primary, 245
Sensory deprivation, cross-modal plasticity due to magnetoencephalography of, 522–524
model for investigating, 719–720
Sensory development, in superior colliculus, 626, 627
Sensory dominance, 662
in texture perception, 107, 108, 109, 110
Sensory events, detection of changes in, 494
Sensory experience, and multisensory integration, 637–638, 639, 640
Sensory hierarchy, in multisensory convergence, 306–307
Sensory inhibition, 662
Sensory integration, vs. sensory convergence, 328–329
Sensory loss, compensatory plasticity as consequence of, 719–740
for language function, 727–731
mechanisms of, 735–739
for perceptual functions, 723–726
Spatial functions, 731–735
Sensory map changes, 719–740
for language function, 727–731
mechanisms of, 735–739
model for investigating, 719–720
for perceptual functions, 723–726
for spatial functions, 731–735
Sensory map registration, in superior colliculus, 599–610
developmental emergence of, 602–604
Sensory Organization Test (SOT), 787–788, 793–795
Sensory receptive fields
multiple overlapping, 246–248
in superior colliculus, 246, 247
Sensory reference frames, 463–464
Sensory representations, in superior colliculus, 246, 247, 599–601
Sensory response properties, in superior colliculus, maturation of, 626–629
Sensory reweighting, in postural control, 787–789
in fall-prone elderly population, 795–799
inversion test, 791–792, 793
in light-touch/vision paradigm, 789–793
Sensory-specific areas, cross-modal interactions in, 506–508
Sensory-specific satiety, 314, 315, 318–319, 320
neuroimaging studies of, 568–569, 573, 574
Sensory substitution, 719
SEP(s) (somatosensory evoked potentials)
multisensory, mapping of, 361, 362, 365
unimodal
high resolution mapping of, 358, 359
neurogenesis of P1/N1 slow wave of, 359–360, 361
Separable dimensions, in selective attention, 86–87
Separate activation models, of response time, 397–399, 400f
Sexual selection, multisensory processes in, 235–236
SGF (superior frontal gyri), in spatial concordance, 492
SG (suprageniculate nucleus) in audiovisual convergence, 483
histological tracing of multisensory pathways in, 365, 366, 368
Shrimp, multisensory signals in, 234
Signal(s), multisensory. See Multisensory signals
Signal detection theory, 16–17
and cross-modal interactions, 98
for multisensory texture perception, 120
Signal-to-noise ratio (S/N) functional enhancement of, 203, 203n
and sound localization, 387
Sign language
activation of auditory cortex by, 778–779
compensatory plasticity with for language function, 731, 740
for spatial functions, 734–735
processing systems for, 777–778
visual movement detection with, 776
Sign language aphasia, 777–778
Similarity scaling method, 90
Simple cells, of primary visual cortex, 250, 251
Singing, response to, 668–670
ear-field evoked potential mapping of, 360–362
Singular value decomposition (SVD), for audiovisual speech production, 184, 185
Sinusoidal vertical axis rotation (SVAR) technique, 789
SIV region, 254
connection between FAES and, 355
excitatory-inhibitor multisensory neurons in, 351–352
intrinsic cross-modal connectivity of, 349–351
location of, 343
projection to, 345, 346
somatosensory inputs to, 348
Slow-rotation rooms, 410
SMA (supplementary motor area), in detection of changes in sensory events, 494
Snell
anatomy of nose and mouth in, 72–74
defined, 69
synesthesia between taste and, 69–81
Smoothness, multisensory perception of, 115, 114–115
S/N (signal-to-noise ratio) functional enhancement of, 203, 203n
and sound localization, 387
Snakes, multisensory signals in, 233–234
Snapping shrimp, multisensory signals in, 234
SOA, Stimulus onset asynchronies (SOAs)
SOC (superior olivary complex) binaural neurons in, 250–251
interaural time delay (ITD) sensitivity of, 250–251
Softness, multisensory perception of, 120
Somatic representation, of affective value of stimuli, neuroimaging studies of, 570
Somatosensory area (SV), projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
Somatosensory cortex
compensatory plasticity of, 738
evoked potential mapping of, 360–362
spatial organization of, 530
Somatosensory evoked potential(s) (SEPs) multisensory, mapping of, 361, 362, 365
neurogenesis of P1/N1 slow wave of, 359–360, 361
unimodal
high-resolution mapping of, 358, 359
neurogenesis of P1/N1 slow wave of, 359–360, 361
Somatosensory influences, on orientation and movement control, 419–421
Somatosensory inputs, in auditory cortex, 297–298
Somatosensory perception with blindness, 724, 725
with deafness, 726
Somatosensory processing, cross-modal links with in endogenous spatial attention, 552–554, 559–561
in exogenous spatial attention, 558
Somatosensory receptors, in postural control, 785, 786
Somatosensory response properties, in superior colliculus, maturation of, 626–627, 628
Somatosensory stimuli, neuroimaging studies of affective value of, 569–570, 571
Somatotopic coordinates, 449
Somatotopic representation, 379
SOT (Sensory Organization Test), 787–788, 793–795
Sound
alteration of vision by, 27–32
in motion perception, 29
in other aspects, 28
in temporal aspects, 27–28
effect of vision on perceived spatial location of, 27
Sound-induced illusory flash effect, 28–29
Sound-induced visual "rabbit" effect, 29
Sound localization
auditory cortex in, 696
with blindness, 695–699
Sound localization deficit, in neglect, 810
Space
multisensory representations in posterior parietal cortex of, 463–476
peripersonal
cross-modal integration of modulated by mirrors, 828–832 modulated by tool use, 819, 820–827
far, neuronal bases for multisensory processing of, 810–811
near
auditory-tactile interactions in, 809–810
cross-modal interactions in, 805–809
neuronal bases for multisensory processing of, 801–802
neurological deficits related to, 431–432
Space flight, use of rotating vehicles during, 410, 411
Space map auditory. See Auditory space map visual, 613, 614, 731 alignment of auditory and, 599–610, 621
Space perception, circuit for, 426–432, 426–429
Space-specific neurons, in inferior colliculus of owl, 250, 251
Space-time coordinates, pairings based on, 581–582
Spatial acuity, in visual system, 36–37
Spatial attention endogenous
cross-modal links in, 549–561
and activity of supramodal attentional control mechanisms, 559–561
effect on early states of visual, auditory, and somatosensory processing of, 550–554
mediation by coordinates of external space of, 554–556
non-optimal nature of, 556–557
possible control structures for, 536–539, 546
unimodal and multimodal modulations in, 532–539, 545
exogenous
cross-modal cuing of, 3–21
asymmetry of, 6, 7
early studies of, 5–7
electrophysiological evidence for, 17–20
psychophysical studies of, 16–17
using implicit spatial discrimination paradigm, 11–16
using orthogonal spatial cuing paradigm, 7–10, 15–16
cross-modal interactions in, 539–542, 545

cross-modal links in, 557–558
Spatial concordance, hemodynamic studies of, 491–494
Spatial congruence, 102–103
Spatial constraints on audiovisual speech perception, 177–186
on cross-modal object recognition, 135–136
Spatial cuing effect, 6n Spatial density, multisensory perception of, 108, 109
Spatial discrimination task, 6, 7
Spatial disparity, and ventriloquism aftereffect, 45
Spatial distribution, of speech information, 182–183
Spatial frames of reference, for cross-modal interactions, 542–546
Spatial functions, compensatory plasticity as consequence of sensory loss for, 731–735
Spatial information, from event-related potentials, 504
Spatial location(s)
attention based on, 326–328
cross-modal attentional selection of, functional imaging evidence for, 529–546
Spatial neglect, 431
Spatial orientation, multisensory influences on, 409–422
Spatial position, of audiovisual stimulus, 731
Spatial representations within and across modalities, 530–532
in area LIP and parietal reach region, 466–474
integrated multisensory extinction and neglect as probes to investigate, 800–801
neuronal bases for, 801–802
neuropsychological evidence of, 799–814
multisensory functional imaging evidence for, 529–546
omnipresent nature of, 813–814
Spatial resolution in audiovisual speech perception, 179–181
in visual speech perception, 179–182
Spatial rule of integration, 503, 811
Spatial specificity, 539–542, 545
Spatial-temporal interactions, in ventriloquism effect, 39–40
Spatial view, 325–326
Speaking, common currency and categorization in, 155
common currency in, 189–190
cross-modal, 189–199
direct, 155
direct-realist theory of, 190, 197–198, 206
fuzzy logical model of, 198–199, 206–207
identification and discrimination in, 155, 168–174
image characteristics in, 179–184
as communicative activity, 189
frequency spectrum of, 179, 184
rate of, 178–179
special nature of, 153–154
as supramodal or amodal phenomenon, 189–200
Speech articulation dynamics, common format metric based on, 206
Speech gestures evidence for perception of, 192–194 recognition by infants of, 191–192
Speech information, spatial distribution of, 182–183
Speech-in-noise perception tasks, 177–181, 183–184
Speech modalities, varying ambiguity of, 156–159
Speech module, 153–154
Speech movements, temporal characteristics of, 183
Speech pathway auditory, 211–213
visual, 211, 213–214
Speech perception as amodal, 190, 194–198 audiovisual after cochlear implantation, 749–768 interactions during, 530
McGurk effect in, 177, 205, 207–208 spatial and temporal constraints on, 177–186
INDEX 911

by infants, 191–192
modularity in, 155
motor theory of, 154–155, 190, 194–197, 206
pattern recognition in, 155–156, 158–159
psychoacoustic accounts of, 154 recognition in, 155
selective adaptation and, 196 as special case of multisensory processing, 153–174
as supramodal, 190–192
theories of, 154–156
visual. See Lipreading
Speech production audiovisual, 184–185
compatibility effects in, 197
as perceptually guided, 189
Speech-reading. See Lipreading
Speech signal(s)
in audiovisual speech perception, 209–210
parsing of, 193–194
Speech tutoring
for children with hearing loss, 172–174
in second language, 174
Speeded classification
cross-modal interactions in, 85–103
paradigm of, 85–86, 101
Speeded texture task, 110–111
Spermophilus beecheyi, multisensory signals in, 226
Spiders, multisensory signals in, 227, 228, 233
SPL (superior parietal lobule), in spatial concordance, 494
Split-brain patients, cross-modal dynamic capture in, 55–57
Spoken language, audiovisual properties of, 765–767
Spoken word recognition
after cochlear implantation, in postlingually deaf adults, 752–754
with oral communication vs. total communication, 755, 757–758, 763–765
SQUIDs (superconducting quantum interference devices), 516
Squirrels, multisensory signals in, 226
Sr. Saccade reaction times (SRTs)
Stagewise processing, 141–142
Staircase methodology
for cross-modal dynamic capture, 58–60
for ventriloquism effect, 143, 144–145
Static events
influence on perceived trajectory of motion of, 49–50
influence on perception of apparent motion of, 49–50
multisensory integration between dynamic and, 49–50, 52
Statistical facilitation, 379–380, 397
STG (superior temporal gyrus)
in auditory speech pathway, 212
in speech-reading, 774–775
Stiffness, multisensory perception of, 113, 120–121, 186
Stimuli, relevant vs. irrelevant, 94, 99–100
Stimulus congruence, perceptual vs., 101–103
Stimulus-driven cross-modal interactions, 599–601
Stimulus enhancement, reciprocal, 229
Stimulus information processing, 210–211
Stimulus onset asynchronies (SOAs), 207–208
in multichannel diffusion model, 402, 403
in multisensory integration between moving events, 51, 58–60
in superposition model, 401
in time-window-of-integration model, 404, 406
Stimulus preexposure effect, 77
Stimulus-reinforcer learning, in orbitofrontal cortex and amygdala, neuroimaging studies of, 633, 635–637, 639
Stimulus-response compatibility effects, 6
STP (superior temporal polysensory area), 286
multisensory convergence in, 296–297, 301, 303, 304, 305, 306
Streptopelia risoria
multisensory communication in, 226
multisensory signals in, 232
Striate cortex, compensatory plasticity of, 738
Strychnine, in crickets, 227
Stroop dilution effect, 858
Stroop effect, for grapheme-color synesthesia, 861–862
in projectors vs. associates, 840–841, 861, 862
reverse, 861–862
selective attention and, 860
Stroop task, for grapheme-color synesthesia, 838–839, 853, 854
Stroop task interference
crosswiring and, 874
and ventriloquism effect, 142
Structure-based object recognition, 128
STS. Sr. Superior temporal sulcus (STS)
Subjective experience, visual cortex in, 125
Subjective impression, 244
Substantia nigra, inhibitory signal to deep superior colliculus from, 279
Subthreshold conditioning, 674
Summation, law of heterogeneous, 229
Superconducting quantum interference devices (SQUIDs), 516
Superior colliculus (SC)
aligning visual and auditory maps in, 600–603
in audiovisual convergence, 483, 810–811
in audiovisual integration, 503, 508, 656
in audiovisual speech perception, 162, 211, 214
auditory consequences of altered visual experience in, 604–606
in coordinated movement, 246
cross-modal interactions in, 508
functions of, 265
location of, 245
modality-specific neurons in cortex
send converging inputs to individual neurons in, 254
multiple overlapping receptive fields of multisensory neurons in, 246–248
multisensory development of absence in early developmental stages of, 630–631, 632
future directions in, 638–640
maturation of corticotectal influences in, 635, 636–638
maturation of integrative properties in multisensory neurons in, 631–635
maturation of receptive fields and, 635
role of cortical inputs in, 634–635
role of experience in, 637–638, 639, 640
stages of development of, 635, 638
multisensory enhancement in, analysis and modeling of, 263–281
behavioral relevance and decision theory in, 279–280
deriving testable prediction from, 271–274
future directions for, 278–280
information theoretic analysis of, 274–278
for multisensory neuron, 268–271
for unimodal neuron, 266–268
multisensory integration in, 254–257
appearance of, 631
in multisensory processing, 373–376
organization of, 265
in orientation behavior, 245–246
plasticity of auditory spatial processing in, 604–605, 606
receptive field consolidation during development in, 629–630
response enhancement and response depression in, 250, 252–254
in saccadic reaction time, 391
sensory and multisensory development in, 626, 627
sensory map registration in, 599–610
developmental emergence of, 602–604, 605
sensory representations in, 246, 247, 599–601
in temporal correspondence, 491
temporal integration in, 395–396
in visual fixation, 384–386
Superior colliculus (SC) (continued)
visual instruction of auditory space map in, 613–623
visual signals in shaping of auditory responses in, 605–607
in vitro study of visual-auditory convergence in, 607–609
Superior colliculus buildup neurons (SCBUNs), 375, 376, 381–382, 388, 389
Superior colliculus burst neurons (SCBNs), 375, 376, 381–382, 388
Superior colliculus fixation neurons (SCFNs), 375, 376
Superior frontal gyri (SFG), in spatial concordance, 494
Superior parietal lobule (SPL), in spatial concordance, 494
Superior temporal sulcus (STS)
in auditory speech pathway, 212
in speech-reading, 774–775
Superior temporal polysensory area (STP), 286, 288
multisensory convergence in, 296–297, 301, 303, 304, 305, 306
Superior temporal sulcus (STS)
in audiovisual associative learning, 520, 521
audiovisual convergence in, 296–297, 483, 484
in audiovisual speech perception, 216, 217, 530
in auditory speech pathway, 212–213
in awareness of self and others, 459
connections of multisensory cortex of, 288
in cross-modal mental imagery, 522
in endogenous covert spatial attention, 537, 538, 546
integration of phonetic information in, 486–488
in perception of face and body movements, 454
in spatial concordance, 492
in speech-reading, 774–775
in visual speech pathway, 213
Superposition models, 400–402, 403
Supervised learning, of auditory space map, 617
Supplementary motor area (SMA), in detection of changes in sensory events, 494
Suprageniculate nucleus (SG)
in audiovisual convergence, 483
histological tracing of multisensory pathways in, 365, 366, 368
Supramodal attentional control systems, 21, 546, 559–561
Supramodal systems, in spatial concordance, 492
SV (somatosensory area), projections to anterior ectosylvian sulcus from, 344, 345, 346, 347
SVAR (sinusoidal vertical axis rotation) technique, 789
SVD (singular value decomposition), for audiovisual speech production, 184, 185
Sweetness enhancement, 70, 71–72, 74
Sweet odors, 69–72
liking and, 72
odor-taste learning and, 74
Syllables, synthetic, 194–195
Synchonry, amodal properties of, 644
Synesthesia
alphabetic, and multisensory processing, 847–848
angular gyrus in, 875, 877
artists, poets, and, 876–877
auditory-visual, 93
behavioral and brain correlates of multisensory experience in, 851–852
color-phonemic, neural correlates of, 862–863
color-word, 70
cross-activation hypothesis of, 870–872
cross-wiring in, 870–872
vs. disinhibition, 872
cross-modal form, 837–848
defined, 839, 840
evidence for reality of, 868–869
general principle of, 868–869
rivalry within, 871–872
effect of attentional load and rivalry on, 856–861
effects of visual masking of inducing stimuli on, 853–856
general principles of, 857, 838
measures of competition for, 853, 854
photons in, 851–852
proportion of, 852–853
crowding effect and, 869–870, 871–872
effects of attentional load and rivalry on, 856–861
effects of visual masking of inducing stimuli on, 853–856
general principles of, 857, 838
measures of competition for, 853, 854
photons in, 851–852
as automatic consequence, 838–839
cross-linkage model of, 844, 845
form and meaning in determining, 844–847
location of, 837
perceptual aspects of, 841–844
reentrant model of, 844–845
pop-out in, 869
projectors vs. associators in, 837, 839–841, 847, 861, 862
Stroop effect in, 840–841, 860, 861–862
higher vs. lower, 874–876
hyperconnectivity hypothesis of, 872
and emotions, 877–878
and metaphor, 876, 877
neural correlates of, 851–852, 862–864
number line in, 875–876
as perceptual vs. conceptual, 869–870, 875
Perky effect in, 873–874
and philosophical riddle of qualia, 878–879
psychophysical investigations into, 869–870
stability of associations over time in, 868–869
Stroop interference in, 869
between taste and smell, 69–81
in temporal lobe epilepsy, 878
theories of causation of, 867–868
top-down influences in, 872–873
and visual imagery, 873–874
Synesthesia threshold, 872
Synesthetic colors
measures of competition for, 853, 854
measures of consistency of, 852–855
Synesthetic priming task, 853–856
Systhetic Stroop task, 853, 858
Syntactic priming, with blindness, 729–730
Syntax development, in blind people, 727, 728–731
Synthetic syllables, 194–195
Synthetic talking face, 172–174
T
Tactile apparent motion, 61–62
Tactile discrimination
by blind subjects, 712–715
of grating orientation, visual cortical involvement in, 703–704
visual cortex in, 30–31
Tactile extinction, by visual modulation, 802–805, 806, 807, 808–809
Tactile forms, visual cortex in perception of three-dimensional, 706
two-dimensional, 704–706
Tactile location, vision effect on, 27
Tactile object agnosia, 127, 128
Tactile perception
with blindness, 724, 725
contralesional enhancing, 804–805
reducing, 803–804
cross-modal interactions in, 92–93
cross-modal modulation of, 805
with deafness, 726
visual cortex in, 705–708
with blindness, 711–716
for grating orientation, 703–704
for mental rotation of two-dimensional form, 704–706
for motion, 706
for three-dimensional forms, 706
visual modulation of, 802–805
with fake hand, 805–807, 825
near face, 807–809
Tactile reference frames, 463–464
Tactile visual-auditory stimulus, test of separate activation model with, 398–399, 400
Tadoma method, of speech-reading, 789
Vibrato action of auditory cortex in, 777
Tadpoles, multisensory signals in, 233
Talking face, synthetic, 172–174
Target-present prior probabilities, possible effect of orienting behavior on, 272–274
Target stimulus, attention and, 279
Task constraints, influence on multisensory integration by, 383–386, 389–390
Task dependency, of audiovisual integration, 510
Taste(s)
activation of amygdala by, 567
anatomy of nose and mouth in, 72–74
defined, 69
five basic sensations of, 69, 314
hunger and pleasantness of, 314
representation in orbitofrontal cortex of, 318–320, 565–567
synesthesia between smell and, 69–81
Taste cortex
primary, 312
secondary, 313, 314
Taste neurons, response to texture of food by, 319–321
Taste-odor combination, intensity of, 73
Taste processing, in primate brain, 312–315
TC (total communication), audiovisual speech perception with, 755, 757–758, 763–765
Teleost fishes, multisensory signals in, 233
Template-based signal, for auditory space map, 617
Tempo
amodal properties of, 644
intersensory redundancy in learning of, 649
Temporal acuity, 38
Temporal aspects of vision, alteration by sound of, 27–28
Temporal characteristics, of speech movements, 183
Temporal constraints on audiovisual speech perception, 177–180, 214–215
on cross-modal object recognition, 156
Temporal correspondence, hemodynamic studies of, 491
Temporal cortex, multisensory convergence areas in, 321–324
Temporal dynamics, of cross-modal processes, 509
Temporal information, from event-related potentials, 504
Temporal integration rules, 395–396
Temporal lobe, ventral pathway to, 126
Temporal lobe epilepsy (TLE), synesthesia in, 878
Temporal order of judgment (TOJ) task modal dominance in, 62n
for tool use, 827
Temporal parameters, of multisensory convergence, 295–296, 303–306
Temporal rule of integration, 503, 811
Temporal-spatial interactions, in ventriloquist effect, 39–40
Temporal stem, in cross-modal learning, 338
Temporal synchrony
amodal properties of, 644, 664–665
and conditioning effects, 673–674
in infant perception of multimodal information, 644, 645, 661
intersensory, 674–675
model of intersensory integration based on, 652
and multisensory confusion, 673
and response of infants to bисensory changes, 671
Temporofrontal scalp regions, cross-modal interactions in right, 508–509, 510
Temporoparietal association cortex (Tpt), in audiovisual convergence, 483, 484
Temporoparietal cortex, in auditory speech pathway, 212
Temporoparietal junction (TPJ) in detection of changes in sensory events, 494
in endogenous covert spatial attention, 536, 537, 538, 546
in exogenous spatial attention, 541–542
non-spatial bimodal effects for vision and touch in, 531, 532
Territorial behavior, multisensory signals in, 230
Texture
defined, 107
of food, response of orbitofrontal taste and olfactory neurons to, 319–321
Texture perception, multisensory, 107–121
effect on performance of, 112–116
empirical findings on, 107–116
integration of information in, 107–112
modeling of, 116–120
practical implications of, 121
results of studies on, 108
Thalamic axons, in audiovisual speech perception, 214
Thalamic modality-specific relay nuclei, compensatory plasticity of, 738
Thalamus
in audiovisual convergence, 483
histological tracing of multisensory pathways in, 365–366, 368
in taste pathway, 312
visual responsiveness in auditory, 659
Thamnophis radix, multisensory signals in, 233–234
Theta power, in object recognition, 127
Three-dimensional tactile forms, visual cortex in perception of, 706
Time course of multisensory affect perception, 585–586
of multisensory interaction, 395–407
Time-window-of-integration (TWIN) model, of response time, 403–407
Timing problems, with auditory localization system, 621–622
TLE (temporal lobe epilepsy), synesthesia in, 878
TMS (transcranial magnetic stimulation) for evaluation of visual cortex in tactile perception, 703–704, 707, 712, 715, 716
of selectivity in audiovisual affect pairing, 590, 591
TOJ (temporal order of judgment) task modal dominance in, 62n
for tool use, 827
Tongue movements, in visual speech perception, 209n
Tongue protrusion, imitation by infants of, 190–191
Tonotopic code, 576, 577
Tool use, 453–460
behavioral evidence of "generalization" in, 458–459
body image developed through, 455–457
brain imaging studies of, 458
cross-modal integration modulated by, 819, 820–827
effects on normal visual-tactile spatial interference of, 825–827
effects on spatial nature of cross-modal extinction of, 820–825
molecular processes in, 457–458
Top-down influences, in synesthesia, 872–873
Total communication (TC), audiovisual speech perception with, 755, 757–758, 763–765
Total dominance model, of multisensory texture perception, 118
Touch
cross-modal dynamic capture across audition, vision, and, 60–64
cross-modal extinction between mirror reflections and, 831–832
cross-modal interference between mirror reflections and, 828–831
cross-modal links with in endogenous spatial attention, 502–554, 559–561
in exogenous spatial attention, 558
TPJ. See Temporoparietal junction (TPJ)
Tpt (temporoparietal association cortex), in audiovisual convergence, 483, 484
Trace learning, in rats, 674
Training, in odor-taste learning, 77–78
Trajectory, 402
Transcranial magnetic stimulation (TMS) for evaluation of visual cortex in tactile perception, 703–704, 707, 712, 715, 716
of selectivity in audiovisual affect pairing, 590, 591
Transmodal gateways, 210–211, 217, 217

INDEX 913
Transverse temporal gyrus
 activation by visual stimuli of, 778
 in auditory speech pathway, 211, 212
Trimodal neurons, 343
 in premotor cortex, 247
 in superior colliculus, 246
Trimodal stimulus, test of separate activation model with, 399–400
Tropical wandering spider, multisensory signals in, 232
Turn-and-reach movements, self-generated Coriolis forces during, 416
TWIN (time-window-of-integration) model, of response time, 403–407
Two-dimensional tactile forms, visual cortex in mental rotation of, 704–705, 706
Two-layer connectionist model, of multisensory texture perception, 119–120
Two-point discrimination tests, 715

U
Umami, 314
Ungulates, multisensory signals in, 227
Unilateral neglect syndrome, 453
Unimodal cortex, multisensory neurons in
 contribution of local inputs to, 348–352
 correspondence with organization of external inputs of, 344–348
Unimodal stimulation, differential effects of multimodal and, 646–648
Unization, in odor-taste learning, 79
Unreliable-signal hypothesis, 236
Use-dependent plasticity, 736

V
ViA area, 426, 433–434
VAE. See Ventriloquism aftereffect (VAE)
Vectorview neuromagnetometer, 516
Ventral intraparietal area (VIP) anatomical location and functional properties of, 426, 430
 in audiovisual convergence, 483, 484
 connections to, 287
 in control of defensive movements, 443, 444, 448–449
 cortex of, 286
 and deficits related to peripersonal space, 432
multisensory convergence in, 296, 505
 representations of face in, 807
 role of multisensory integration in, 430–431
 in spatial concordance, 492
 Ventral pathway, to temporal lobe, 126
 Ventral posterior nucleus (VP), histological tracing of multisensory pathways in, 365, 366, 368
 Ventral prefrontal (PMv) zone in control of defensive movements, 443, 444–447
 multisensory responses of, 289
 Ventral somatosensory (VS) area, multisensory convergence in, 287, 298, 299–300
Ventriloquism aftereffect (VAE), 40–42
 cognitive strategies in, 143
 experiments in nonhuman primates on, 42–45
 functional implications of, 45–47
 persistence of, 45
 spatial disparity and, 45
 in unimodal condition, 46–47
Ventriloquism aftereffect (VAE) ratio, 43–44
Ventriloquism effect, 35–47, 142–146
 cognitive strategies in, 143
 cross-modal selective attention in, 89
 defined, 36, 142
 dominance of vision in, 27, 28
 examples of, 36
 functional implications of, 45–47
 hemodynamic studies of, 491
 measurement of, 142
 model of neural substrate of polysensory integration in, 36–38
 with movement, 39, 55–57
 odor-taste synesthesia vs. 73
 parameters necessary for, 36
 perceptual level in, 142–146
 as pre-attentive phenomenon, 146
 response reversals in, 143
 spatial disparity in, 36
 staircase procedure for, 58, 143
 144–145
 standard explanation of, 142
 strategic or cognitive factors in, 142
 Stroop task interference and, 142
 with changes in, 39–40, 41–42
 visual distraction in attention to, 144–145
 ignoring of, 142–143
 not conscious seeing of, 145–146
 with visual neglect, 145–146
Ventrobasal complex, in somesthesis, 245
VEPs (visual-evoked potentials), auditory–visual interactions in, 30, 31
Verbalism, of language function in blind people, 727
Verbal mediation, in object recognition, 134–135
Vernier acuity, 36–37
Vertical linear oscillation, 417–419, 422
Vestibular system, in postural control, 765, 766
Vestibulocolic reflexes, 414
Vestibulospinal reflexes, effect of gravitoinertial force on, 409–410
Vibrotactile activation, of auditory cortex, 777
Video primacy effect, 233
View dependency in object recognition, 130–131
in scene recognition, 133–134
Viewing distance, in audiovisual speech, 178, 179–181
VIP. See Ventral intraparietal area (VIP)
Virtual body effect, 825
Visceral representation, of affective value of stimuli, neuroimaging studies of, 570
Visible speech. See Lipreading
Vision
 alteration by sound of
 in motion perception, 29
 other aspects of, 28
 in temporal aspects, 27–28
 alteration of other modalities by, 27
 cross-modal dynamic capture across audition, touch, and, 60–64
 development of cortical networks for, 681–683
 Vision:place, audition:manor (VPAM) hypothesis, 750
Visual agnosia and object recognition, 126–127
 recognition of facial expressions in, 590–591
Visual apparent motion, 50–52, 54–57
Visual association areas, in visual speech pathway, 213
Visual-auditory convergence, in vitro study of, 607–609
Visual-auditory focused attention task, test of separate activation model in, 398, 399
Visual bias, in ventriloquism effect, 144–145
Visual calibration, of auditory space map, 614–616
Visual capture, 36, 129
Visual cortex activation in blind subjects of, 124, 125
auditory-visual interactions in, 30–32
 compensatory plasticity of, 738
 connection of auditory cortex with, 285–287
cross-modal processing in, 124
 remapping of cross-modal interactions in, 544
 simple cells of, 250, 251
 in tactile discrimination, 30–31
 in tactile object recognition, 124–127
 in tactile perception, 703–708
 with blindness, 711–716
 of grating orientation, 703–704
 for mental rotation of two-dimensional form, 704–706
 of motion, 706
 of three-dimensional forms, 706
 in visual speech pathway, 213
Visual cues, in auditory spatial representations, 731–734
Visual deprivation
 anterior ectosylvian cortex with, 696–697
 auditory behavior with, 695–696
Visual perception
Visual networks, in auditory cortex,
Visual modulation, of tactile perception,
Visual masking, of inducing stimuli, in
Visual localization, errors in, 411–412
Visual instruction, of auditory space map
Visual information processing, in
Visual system, spatial acuity in, 36–37
Visual-tactile-auditory neurons, in
Visual structure, auditory “capture”
Visual-tactile-auditory neurons, in
Visual-tactile extinction cross-modal, 802–805, 826, 827,
effects of tool use on spatial nature of,
Visual-tactile integration, 107–111, 113–115
modulated by tool use, 819,
spatial nature of, 825–827
Visual-tactile interaction, in focused attention, 405–406
Visual-tactile neurons, in polysensory zone of precentral gyrus, 446, 447
Visual-tactile spatial interference, effects of tool use on, 825–827
Visual target processing, effect of auditory cues on, 19, 20
Visual-to-taste convergence, 311, 316–318
Visual-vestibular illusions, 244
Visual Wulst area, 647
Visuomotor transformations, 543
Visuotactile integration, magnetoencephalography of, 519
Visuotactile interactions, near face, 807–809
Visuotactile processing, reference system in, 808–809
Vocal expression, of emotion, 165, 582–584
Vocal gestures, evidence for perception of, 192–194
Vocal imitation, by infants, 191
Vocal tract, acoustic transfer function of, 206
Vocal tract motion, in audiovisual speech perception, 184, 185
Voice dynamic range of, 179
fundamental frequency of, 184
Voicing feature, in speech perception, 204n, 205
W Vowel gestures, evidence for perception of, 192–194
Vowels, description of differences among, 196–197
VP (ventral posterior nucleus), histological tracing of multisensory pathways in, 365, 366, 368
VPAM (vision:place, audition:manner) hypothesis, 750
VS (ventral somatosensory) area, multisensory convergence in, 287, 298, 299–300
W
Waiting time, 400
Warblers, multisensory processes in, 235, 236
Warning effect, 379
Warning sound, for visual neglect, 812
Weighted average models, of multisensory texture perception, 119
Wernicke’s area in audiovisual speech perception, 217
in auditory speech, 211, 212
response depression in, 511
in sign language processing, 777–778
“Where” pathway, 126
“Where” pathway, 126
Window of integration, 403
Within-compound associations, in odor-taste learning, 79
Wolf spiders, multisensory signals in, 228, 233
Wood warblers, multisensory processes in, 236
Wulst area, 647
INDEX 915