Elizabeth Blackburn and the Story of Telomeres
Deciphering the Ends of DNA

Catherine Brady

The MIT Press
Cambridge, Massachusetts
London, England
Adult stem-cell research, 287, 289–290, 292–293
Aging
and disease susceptibility, 144, 218, 221
and medical enhancement, 279–280, 282
studied in mice, 144, 216–217
and telomerase, 142–144, 217
and telomere length, 140–141, 144, 215, 217–218, 221–222, 314
Alberts, Bruce, 63
Alfred P. Sloan Prize, 305
Altman, Sidney, 30, 48, 99, 125, 139, 193
American Society for Cell Biology (ASCB)
E.B.’s service as president of, 170, 172–178, 264
Gall’s influence on, 172, 254
lobbying and advocacy efforts, 174–177
Public Service Award, 310
response to E.B.’s dismissal from bioethics council, 298
role of women in, 172, 258
Senior Award, 310
support for open access, 177
Women in Cell Biology Committee, 172, 332
Amino acids
coded for by DNA, 24
master’s degree thesis on, 20
undergraduate study of, 18–19
Ancillary proteins, defined, 196
Angier, Natalie, 301
Aplastic anemia, 222
Apoptosis, defined, 217
Artandi, Steven, 321
Artavanis-Tsakonas, Spyros, 29, 31, 32
Australian citizenship, 171, 297
Australia Prize, 170
Autexier, Chantel, 192, 254
Autoradiogram, defined, 26
appearance of, 55–56, 69
and evidence of telomerase activity, 85, 86, 89
Bacchetti, Sylvia, 141, 223
Bainton, Dorothy, 156
Banbury Center Conference on Telomeres, 154, 257
Basic science research, 321. See also Translational research
NIH funding for, 129
at UCSF medical school, 129, 155, 160
unanticipated yields for medical treatment, 233, 287–288, 312
Beckendorf, Steven, 65
Benjamin Franklin Medal in Life Science, 311
Benz, Christopher, 327–328
Berman, Judith, 197
Beyond Therapy: Biotechnology and the Pursuit of Happiness, 281, 294, 295
Biochemistry, 22, 51
attraction to, 17–18
compared to other biological approaches, 17
Biomedical research, 174–175, 287–288, 293
Biotechnology, 64
implications of investment for scientific inquiry, 64, 145–146, 150–152
public opinion on, 265, 286
and telomerase, 142–147
Bishop, J. Michael
as colleague at UCSF Medical School, 127, 139, 155, 167
collaboration with, 208
research of, 222
and scientific societies, 172, 174
Blackburn, Harold Stewart, 2, 4–5, 11
Blackburn, Marcia Constance Jack, 2, 4–8, 11, 12, 13
support for E.B. in adulthood, 35, 105
Blackburn, the Reverend Thomas, 2
Blackburn lab (UC–Berkeley). See also Mentoring
NSF site visit, 71–72
planned move, 126–128
social milieu, 66, 70, 87
“theory of the month” conversations, 70
Blackburn lab (UCSF). See also Mentoring
impetus to work with human cells, 129–130
social milieu, 130, 236
warren of rooms, 130
Blasco, Maria, 192, 217, 254
Blastocyst, defined, 266
Blower, Sally, 166–168
Botchkina, Inna, 227
Boyer, Herbert, 37, 63, 64, 74
Bradley, John, 122
Breakage-fusion-bridge cycle, 46
Brenner, Sidney, 23, 29
Broadland House Church of England Girls Grammar School, 5–6, 8–10
Broken chromosomes, 45–46, 76, 83, 203–204
Bruns, Peter, 84, 104, 117
Budarf, Marsha, 68
Bulged stem, 192
Bush (George W.) administration and research on human embryonic stem cells, 263, 266, 274, 286, 291–293
scientific policy, 267–268, 302–305
vetting of scientific appointees, 268–269, 303
C4 run, 52, 56
California Stem Cell Initiative, 297, 309
Callahan, Daniel, 287–288
Cambridge University, 19–20, 29–30. See also Laboratory of Molecular Biology
as doctoral candidate at, 21
Cancer cells. See also Cancer stem cells; Metastasis; Tumors
bypassing successive checkpoints, 141, 222–223, 228
effects of abruptly lowering telomerase levels in, 229–231
effects of telomerase inhibitors on, 142, 149, 225, 228, 231
effects of toxic telomeres on, 225–227, 328–329
influence of telomerase on gene expression in, 230–232
role of telomerase in sustaining, 141, 223–224, 229
shorter telomeres in, 141, 224
up-regulated telomerase in, 223, 228–229, 230
Cancer progression, 222–223, 228, 229
Cancer stem cells, 232–233
Candida albicans, 149–150, 188, 199
Carson, Benjamin, 300
Carter, Stephen, 270, 299
Cawthon, Richard, 217, 315, 317
Cdc13, 183–184, 197
Cech, Thomas
 collaboration with Lingner and Lundblad to isolate TERT gene, 147, 182, 184–185
 research, 68, 132, 139, 192
 research on rRNA, 84, 99–100, 107, 193–194
 response to E.B.’s dismissal from bioethics council, 298
 review of field by, 185
 role in field, 71, 254
 visit to Blackburn lab, 99–100
 winner of race to isolate hTERT, 147
Cell, 82, 92, 107, 138, 185
Cell biology, 48–49
Cell senescence. See also Hayflick limit
 in relation to cancer, 141, 222
 role of telomerase in, 149, 221
 and telomere length, 140–141, 207–208, 215, 222
 triggered in Tetrahymena by mutations to RNA template, 122
Centenarians, 216, 222
Centromere, 40, 75
Challoner, Peter, 66, 70, 84–85, 120
Chan, Simon, 204, 210–211, 221
Charo, R. Alta, 265
Cherry, J. Michael, 66, 70, 87, 242, 244
Christmas Day 1984 autoradiogram, 89, 90 (fig. 4.1)
Chromatin, defined, 63
Chromatography, defined, 26
Chromosomes. See Broken chromosomes; DNA strand; Telomere
Clancy, Dean, 270, 281, 293
Clancy, Maura, 300
Cloning of telomerase genes. See RNA component of telomerase; Telomerase; TERT
codon, defined, 21
Cohen, Philip, 197
Cohn, Marita, 148, 181, 184
Cold Spring Harbor Laboratories, 111, 142, 204
Cold Spring Harbor Telomere and Telomerase meeting, 236
Collins, Kathleen, 182, 192, 218–220, 254
Conflict between research career and family life. See also Gender issues accommodations to family demands, 102–106, 124, 127–128, 159–160, 257, 261–262
either/or dilemma, 52, 61
influence of gender on perceptions of, 251–252
influence of motherhood on career advancement, 43, 52, 249–251
Congressional legislation on human embryonic stem-cell research, 266–267, 274
Cooke, Howard, 140
“Cottage industry” science, 66, 130
Counter, Christopher, 141, 147
Crick, Francis, 23, 30, 31, 58, 241
Critical mass, 258
Crothers, Julia, 230
Daniell, Ellen, 64, 65, 72–73, 155, 178
Davidson, Barrie, 18–19
Debas, Haile, 158, 166, 167, 170, 171
de Lange, Titia
 on E.B.’s work, 81, 94–95
 on field, 255, 258
Pioneer Award recipient, 259
research on cancer cells, 141
research on shelterin, 198–199
research on t loop, 205–207, 209
on women in science, 255, 256
Department of Biochemistry and Biophysics (UCSF), 172
Department of Microbiology and Immunology (UCSF), 63, 130, 166
colleagiality, 162
departmental organization, 160–162
duties of chair, 155–157, 159–161, 169–170
move to Mission Bay campus, 169, 171
DePinho, Ronald, 216–217, 228–229
Dickey Amendment, 266
Dimeric structure. See Telomerase
Discrimination. See Gender discrimination in academia
Disease susceptibility
correlation between lower levels of telomerase in white blood cells and high stress levels, 313–317
correlation between lower levels of telomerase in white blood cells and risks for cardiovascular disease, 318–320
correlation between shorter telomeres and high stress levels, 317
linked to lower levels of telomerase, 218–222
DNA damage-repair enzymes, 87, 203–205, 206
DNA polymerase enzymes, 100–102, 112–113, 114
compared with telomerase, 114, 193–194
DNA sequencing
early methods, 24–25
first published DNA sequence, 33
indirect methods used in Sanger lab, 25–27
refined by Sanger and others, 79–80
restriction enzymes employed in, 26, 47, 55, 57, 75 (see also
Micrococcal nuclease;
Ribonuclease A)
DNA strand
dend-replication problem, 46, 54, 59
molecular structure of, 21, 24–25, 100–101, 324
overhang at 3’ end, 88, 97, 100, 106, 108, 198 (see also
Telomerase, preference for adding to G-rich overhang)
replication of, 101–102
Dopheide, Theo, 18–19
Double helix, 21, 23, 324
Dr. A. H. Heineken Prize for Medicine, 310
Dressen, Rebecca S., 270, 273
“Dr. Jekyll or Mr. Hyde?,” 213, 222, 228
Dyskeratosis congenita, 218–220
E. B. Wilson Medal, 237
Echols, Harrison, 22, 64, 65, 254
Electrophoresis, defined, 18
Elegant solution. See Molecular biology
Eli Lilly Research Award for Microbiology and Immunology, 115, 124–125
End region of chromosome. See Telomere
Epel, Elissa, 313–314, 316–319, 332
Ernster, Virginia, 157
EST1, 139, 182
est1, 145
Est1, 182, 192, 197
Est2, 197
est2, 237
Index 381

Est3, 197
Est phenotype, 197, 207
Euplotes aediculatus, 147, 182, 184
Euplotes crassus, 110–111, 115, 128
Ever shorter telomeres (EST), 139, 185. See also Est phenotype

Federation of American Scientists, 285, 304
Ford, Gerald, 268
Foster, Daniel, 270, 277, 278, 302
Fractionation, defined, 26
Franklin, Rosalind, 21, 23, 31
Freedom, 2, 9, 29–30, 33, 42–43, 148, 330
Fukuyama, Francis, 270, 273
Fundamentally conserved principles, defined, 47

Gairdner Foundation Award, 170
Gall, Joseph
on E.B.'s work, 60, 233–234, 299
coauthored paper, 59
collaboration, 45, 56, 206
contributions to field, 40, 172, 254, 311
influence on E.B., 131–132, 241–242
recipient of Lasker Award, 311
relationship with E.B., 27, 38–40, 56, 110
reputation as a mentor, 40–41, 43–44, 131, 254–255
research of, 39–40, 48–49, 120
social milieu of lab, 40–41, 42
Gall's gals, 41
Ganem, Donald, 312–313
Gasser, Susan, 199
Gazzaniga, Michael
appointed to bioethics council, 270
coaauthored editorial in Science, 278
coaauthored letter to Science, 282–284
criticism of council proceedings, 276, 277, 288, 298, 302

opposition to moratorium, 277
response to E.B.'s dismissal from bioethics council, 298
Gearhart, John, 289, 304
Gender discrimination in academia. See also Conflict between research career and family life
in biased evaluation of research, 165, 258, 330–331
in tenure and promotion policies, 72–73, 249–253
at UCSF, 163–164, 165–167, 251–252
at U.S. medical schools, 157, 164–165
Gender issues. See also Conflict between research career and family life; Protective coloration
denial as survival strategy, 39, 43, 73, 77, 178
effort to be “one of the boys,” 32, 78, 104, 164, 179
factor in career choice and satisfaction, 255–256, 251–252
impact of role models, 163–164, 254–256, 258–262
influence on achievement in competitive field, 252–254, 256–257, 260, 331–332
playing the “woman’s card,” 162, 170
pressure to accommodate status quo, 165, 167–168, 170
Genderless self, 16, 32, 77
Gene expression, 226–227, 230–231
Genentech, 64, 142, 169
General Motors Cancer Research Foundation awards ceremony, 305–307
Gene sequencing. See DNA sequencing
Genetic code, 24
Genomic instability, 141, 211, 214–215, 217
George, Robert P., 269, 270
Geron
interest in stem-cell research, 290–291
interest in telomerase as cure for aging, 143–144
interest in telomerase as cure for cancer, 144–145
investment in telomere research, 143–148, 154, 186
overture to Blackburn lab, 149–152
and race to isolate human genes for telomerase, 147, 216
Gilley, David
on E.B.'s work, 225, 234
on field, 129, 253
on lab's shift to translational research, 214
relationship with E.B., 163, 239, 243, 247, 248, 253
research of, 195, 225, 254
Gilson, Eric, 199
Gladstone Institutes, 169, 296–297
Glendon, Mary Ann, 270
Gómez-Lobos, Alfonso, 270
Gordon Research Conferences on Nucleic Acids, 73, 154, 247, 258
Gottschling, Daniel, 68, 188, 210
Grand Prix Charles-Leopold Mayer Award, 170, 171
Greider, Carol W.
cancer-related research, 141, 223, 228–229
coauthored papers and biologists' responses, 92–95, 107–108, 114–115
collaboration to demonstrate activity of telomerase, 87–95
collaboration to identify RNA component of telomerase, 98–100, 106–107
collaboration to sequence RNA template of telomerase, 108–109, 111–115
contributions to field, 125, 154, 238, 253, 311
as co-recipient of Lasker Award, 311–312
on field, 146, 254, 258
research of, 140, 146–147, 182, 189, 192, 216–217, 311–312
on women in science, 256, 259, 260–261
Griffith, Jack D., 205–206
Gross, Carol, 155, 166, 174
on E.B. as administrator, 155–156, 162
on lab work, 235
relationship with E.B., 162, 166
Grunberg-Manago, Marian, 116
Guthrie, Christine, 154, 224
Hahn, William, 223, 229
Haploinsufficiency, 220–221
Haqq, Christopher, 230
Harley, Calvin, 140, 141, 146, 154, 223
Harvard University, 330–331, 332
Hawthorne, Nathaniel, 271
Hayflick limit, 140–141, 144
Helix, 188, 189. See also Double helix; Proven helix
Herskowitz, Ira, 166
Hird, Frank, 16–17, 19, 20
Homeostasis, defined, 196
Hopkins, Nancy, 331
Howard, Elizabeth, 66, 70
hTERT. See TERT
Human Cloning and Human Dignity: An Ethical Inquiry, 271, 278
Human embryonic stem-cell research.
See also California Stem Cell Initiative; President's Council on Bioethics
advocacy for federal funding of, 176, 295
availability of viable stem-cell lines for federally funded research on, 286–287, 291
ethical dilemmas posed by, 265, 272, 307–308
potential for treating disease, 265, 290
public opinion on, 265–266, 285–286
Hurlbut, William B., 269, 273
Hypomorphic telomerase. See Telomerase, hypomorphic versions of
Impact factor, 138–139
In situ hybridization, 40
In vitro fertilization (IVF), defined, 266
Jack, Robert Lockhart, 3
Jack, Robert Logan, 3
Jaenisch, Rudolf, 273, 289
Joint Steering Committee for Public Policy (JSC), 174–176
Journal of Molecular Biology, 59, 61
Journal of Molecular Biology of the Cell, 139
Kapler, Jeff, 120
Karrer, Kathy, 42, 47, 48, 71
Kashani-Sabet, Mohammed, 231–232
Kass, Leon R.
as chair, President’s Council on Bioethics, 263, 274, 279, 287, 294, 298
hostility toward biomedical research, 269, 279–280, 288
remarks on E.B.’s dismissal from bioethics council, 299, 302
views on therapeutic cloning, 273, 274, 292
Kelly, Thomas, 306
Kerry, John, 297
King, Mary-Claire, 219, 250
Kirk A. Landon Prize for Basic Cancer Research, 310–311
Klug, Aaron, 23
Kluyveromyces lactis, 188–189, 199–200, 225
Kornberg, Roger, 197
Knockout mice, 216–217, 228
Krauskopf, Anat, 200–202, 225
Krauthammer, Charles, 269–270, 274
Ku, 204
Lab management. See Primary investigator
Laboratory of Molecular Biology (LMB). See also Sanger, Fred
influence on E.B.’s career, 34–35, 51, 241
reputation of, 20, 23, 31, 34–35
social milieu of, 29, 30–31
women faculty and students, 31
Lab-rat culture, 30, 50, 158–159, 235–237, 253, 261
Lambda bacteriophage, 44, 47, 58
Larsen, Drena, 104, 120
Lasker Award for research in basic medical science, 311
Lasker Award for special achievement in medical science, 311
Launceston (Tasmania), 4, 6
Lavett, Diane K., 43, 50, 60–61
Lawler, Peter, 300
Levy, Daniel, 211, 325–326
Li, Shang, 229–232
Lin, Jue, 189, 315–316, 319
Linear plasmid, 75–76
Lingner, Joachim, 147, 182, 184–185
Liposome, defined, 327
Lundblad, Vicki
collaboration with Lingner and Cech to clone TERT gene, 147, 182–185, 237
on E.B.’s work, 238, 255, 257
on field, 242, 254–255, 257–258
relationship with E.B., 244, 245, 260
research of, 84, 95, 139, 145, 148–149, 154, 254
on women in science, 253, 255–256
Ly, Hinh, 189, 219
Mapping of human genome, 265
Marburger, John H., 303–304
Marincola, Elizabeth
on E.B.’s role in scientific lobbying
and advocacy, 174–175, 177
on board of directors, Public
Library of Science, 178
during E.B.’s tenure on bioethics
council, 265, 280–281, 283, 299,
301
as executive director, American
Society for Cell Biology, 173
relationship with E.B., 173–174
Marsden, Katherine, 5, 6, 7, 11, 12
Marx, James, 327–328
Massachusetts Institute of Technology
(MIT), 229, 251, 331
Material transfer agreement, 146
May, William F.
appointed to bioethics council, 270
criticism of council proceedings,
275, 292
departure from council, 297–299
opposition to moratorium, 272, 277
respect for Kass, 302
views on stem-cell research, 272,
273
McClintock, Barbara, 45–46, 73, 83,
253
McEachern, Michael J.
relationship with E.B., 149–150,
224
research, 145, 188, 199–200, 202,
206, 225
on field, 214, 257
McHugh, Paul, 270, 272, 273
Medical Research Council (MRC).
See Laboratory of Molecular
Biology
Meilander, Gilbert C., 270
Meiosis, 73–74
Menjivar, Sonia, 105, 159
Mentoring. See also Scientific
integrity, personal ethos in the lab
balancing risk taking and rigor,
237–238, 244–245
challenging “tough approach,”
131–132, 239–240, 246–247
fostering objectivity and originality,
111, 240–242, 244
impacting egalitarianism, 70,
239–240, 242–243, 248
inculcating collegiality 70, 260–262
Messenger RNA (mRNA), 24–25, 33,
99, 117, 209
Metastasis, 229
role of telomerase in, 229–234
Micrococcal nuclease, 57, 91, 98–99
Minichromosomes. See Tetrahymena
thermophila, rDNA
minichromosomes of
Mitosis, 210, 326
Molecular and Cellular Biology, 154
Molecular biology
compared to other biological
approaches, 17, 22, 51
early history of, 21–22
predilection for elegant solution, 23,
46, 98, 186
Molecular Biology of the Cell, 177
Monitoring Stem Cell Research, 292,
294, 295
Monster cells, 225
Morin, Gregg, 115, 140
Moyzis, Robert K., 115
mRNA. See Messenger RNA
Muller, Hermann, 45
Murnane, John, 145
Murray, Ken, 44, 47
Murray, Noreen, 44, 47
Mutant-template RNA of telomerase
creating monster cells and toxic
telomeres, 225–226
damaging functioning of enzyme,
195
disrupting length regulation,
199–202
dramatically lowering growth rate
of cancer cells, 226–227,
328–329
leading to cell senescence,
121–122
National Academy of Sciences, 125, 153, 267, 293
Award for Molecular Biology, 125
National Advisory Council on Aging, 236, 280, 309
National Bioethics Advisory Commission, 264, 267, 268
National Institute on Aging, 236, 280
National Institutes of Health (NIH), 61
appointments to, 268–269
competition for grant funding by, 129, 131, 236
congressional funding for, 174–175
importance in sustaining range of scientific inquiry, 146, 151–152, 287–289
gender bias at, 135–136, 251, 258–259
peer review of grant applications, 133–135
pilot program for young investigators, 131, 133–134
Pioneer Awards, 258–259
policy on stem-cell research, 266–267, 268
providing oversight, 293, 308
National Science Foundation (NSF), 71, 249
Nature, 59, 80, 138, 209, 321, 323
Nature Medicine, 168
New England Journal of Medicine, 301
“Nice girl” demeanor, 1–2, 6, 13, 16, 32
and diffidence, 93, 115, 124, 126, 150, 158, 163
Nobel Prize, 45, 99, 155, 193, 222 awarded to Sanger, 23, 34
and E.B.’s work, 170, 234, 311
Noller, Harry F., Jr., 118, 159, 186–188
Nucleases, defined, 25–26
Nucleosome, 57, 68
Okarma, Thomas, 290–291
Oligonucleotide, defined, 25
Olovnikov, A. M., 140
Oncogenes, defined, 222
Open access to scientific literature, 177–178
Orias, Eduardo, 77, 84, 110, 117
collaboration on drug-resistant Tetrahymena mutants, 117–120
Overhang. See DNA strand
Pan, Wei-Jun, 119
Pardue, Mary-Lou, 40, 41, 43–44, 71, 172, 254
Park, John, 327–328
Patents on scientific discoveries, 146–148, 151
Peer review
at the NIH, 133–135
at scientific journals, 136–138
Perspectives in Biology and Medicine, 300
Perutz, Max, 23
Petes, Thomas, 79, 203
Phix174, 25, 27, 38, 51
indirect method to sequence DNA of, 25–27, 29, 33
Pioneer Awards, 258–259
Plasmid, defined, 74
Plasmid vector, 74, 117, 226
created by Yu to insert mutant-template RNA genes in Tetrahymena, 117–121
PLoS Biology, 178, 295
Preer, John, 49, 239, 243
Preer, Louise (Bertie), 49, 239
Prentice, David, 289, 292, 293
Prescott, David, 82–83, 108, 110, 115
Prescott, John C.
relationship with E.B., 239, 244, 247
research of, 184, 213
research on hypomorphic telomerase, 207–208, 214
Index

President’s Council on Bioethics. See also Bush (George W.) administration
bias and inaccuracy in reports by, 276–277, 281–282, 292–293, 294–295
confidentiality strictures of, 271, 284
deliberations on assisted reproductive technologies (ARTs), 293–294
deliberations on cloning, 271–279
deliberations on monitoring stem-cell research, 286–292
deliberations on regulation of new biotechnologies, 279–281
E.B.’s dismissal from, 296
E.B.’s views on her dismissal from, 300–302
makeup of, 269–270
mandate of, 270–271
responses to E.B.’s dismissal from, 297–302
Price, Carolyn, 223
Primary investigator. See also Mentoring
Mentoring and family life, 260–262
as manager, 132–133, 235–237, 245–246
Proceedings of the National Academy of Sciences, 317, 318
Protective coloration, 32, 60, 73, 126, 158, 256
Protein cap. See Telomere structural proteins
Protein component of telomerase. See TERT
Proven helix, 188, 189–190
Pseudoknot, 190, 219–220, 221
Ptashne, Mark, 28
Public Library of Science (PLoS), 177–178
Public Service Award. See American Society for Cell Biology
PubMed Central, 177
Pursley, William, 290
“Queen of the telomeres,” 154
Radioactive labeling of DNA, defined, 26
“a little extreme,” 55
Rap1, 197, 199, 200–202, 211, 324–326
rDNA genes, defined, 44
Readable phenotype, defined, 202
Reagan, Ronald, 306
Recombinant genetics, 64, 74, 108, 116, 142, 143
Recombination, defined, 73
as backup mechanism for telomerase, 145, 204, 223, 229 (see also Telomere, proposed as product of recombination)
Reichardt, Louis, 63
Repeat sequence among eukaryotes, fundamentally conserved, 97–98
in Glaucoma, 69
in humans, 115
irregular, 107
role in binding proteins to telomere, 140
in Saccharomyces cerevisiae and slime mold, 80
in Tetrahymena, 56, 106
Replication origin, 49, 74–75, 119–120
Reporter genes, 329
Reproduction and Responsibility: The Regulation of New Biotechnologies, 271
Restriction enzymes. See DNA sequencing, restriction enzymes employed in; Micrococcal nuclease; Ribonuclease A
Retrovirus, 100
Reverse transcriptase, 94, 100, 107, 114, 116, 149, 184
Reverse transcriptase inhibitor, 149
Rhodes, Daniela, 325
Ribonuclease A (RNase A), 99–100
Ribonucleoprotein (RNP), 99, 107, 114
Ribosomal RNA (rRNA), 39, 44, 99, 117, 185–186
Rif1, 199, 211, 324–325, 326–327
Rif2, 199, 211, 324–325
Ring chromosome, 45–46, 47, 53, 54
Risk factors for cardiovascular disease, 318–319
Rivera, Melissa, 219, 226–228, 229–230
RNA. See Messenger RNA; Mutant-template RNA of telomerase; Ribosomal RNA; RNA component of telomerase; RNA template of telomerase; Transfer RNA RNA component of telomerase binding regions for TERT and ancillary proteins, 191 (fig. 8.2), 192
conserved sequences in, 185–190
effects of mutations in, 190–192
effects of mutations in pseudoknot, 219–220
existence first demonstrated in vitro in Tetrahymena, 100, 107
gene for, isolated in humans, 147
gene for, isolated in Tetrahymena, 112
role in enzyme’s activity, 192–195 (see also RNA template of telomerase)
universal model for structure of, 189–190
varying size in different organisms, 188–189
RNA interference, 230
RNase A. See Ribonuclease A
RNA sequencing, 26
RNA structure, 118, 186, 187 (fig. 8.1)
in telomerase, 186–190, 192 (see also Helix; Pseudoknot)
RNA template of telomerase. See also Mutant-template RNA of telomerase
alignment region of, 112, 119
first clue to existence of, 92
first sequenced in Tetrahymena, 112
primer recognition properties of, 102, 106–107, 112–113
role in constructing tandem repeat patterns, 97, 100
role in elongation and translocation, 112–114, 113 (fig. 5.3)
singular role in enzymatic activity, 195
RNP. See Ribonucleoprotein
Romero, Daniel, 186, 188
Rowley, Janet
appointed to bioethics council, 270
coaauthored editorial in PLoS Biology, 295–296
coaauthored editorial in Science, 278
coaauthored letter to Science, 282–284
criticism of council proceedings, 276, 281, 302
defense of public funding for research, 288
opposition to moratorium, 277
recipient of Dorothy P. Landon Prize for Translational Cancer Research, 311
response to E.B.’s dismissal, 298
Royal Society of London, 103, 153
RNA. See Ribosomal RNA
Saccharomyces cerevisiae, 76, 102, 107, 210, 324
Salk Institute, 242, 309
Sandel, Michael, 273, 277, 279
Sanger, Fred
influence on E.B., 20–21, 28, 34–35, 53
Nobel Prizes, 23, 34
research, 22–25, 34, 80
social milieu of lab, 20, 24, 25, 27–29
Sarin, Kavita, 321
Schatten, Gerald, 307–308
Schaub, Diana, 300
report on bioethics council, 275, 279, 295
Scientific American, 143, 150
Scientific integrity. See also Scientific policy
in conduct of research, 148, 150–152, 177, 244, 288–289, 307–308, 323
as personal ethos in the lab, 125, 242–244, 247–248, 261
Scientific policy. See also American Society for Cell Biology; Bush (George W.) administration; Joint Steering Committee for Public Policy
governmental advisory bodies, 266–269, 285–286, 288–289, 290, 301, 303–304
lobbying efforts by scientists and scientific organizations, 174–176, 293, 295, 310
Scientific prizes, 125, 305
Scientific thinking. See also Scientific integrity
Mentoring; Scientific integrity
ambivalence about competition, 40, 84, 123–124
breadth of knowledge, 51, 87, 114, 234, 243
lateral thinking, 82, 330
love of bench work, 70, 106, 245
opportunism, 98–99, 117–118, 119, 199
optimism, 88, 94, 111, 137
originality, 20, 56, 59, 94, 243–244
receptivity to any results, 87, 111, 244–245
reluctance to theorize in advance, 34, 58, 316
sense of play, 58, 126, 213, 323
skepticism toward established truths, 82
standards of proof, 93, 148, 206–207, 208, 322
tenacity, 86, 89–91, 126, 150–151
tendency to “roam data”, 82, 322–323, 330
tension between risk-taking and rigor, 75, 82, 94, 208–209, 237–238, 244–245
trial-and-error approach, 108–109
Sedat, Ben
childhood, 176–177, 239, 261–262, 279
Sedat, John, 27
courtship with E.B., 31–32, 33, 38–39
domestic life, 52, 60–61, 63–64, 70, 78–79, 98, 171
fatherhood, 102, 105, 159–160, 239
research, 27, 33, 34, 327
views on science, 28–29, 64, 139, 327
Senior Award. See American Society for Cell Biology
Shaggy mice, 321
Shampay, Janis
collaboration with Szostak, 77, 79–80, 82
relationship with E.B., 240, 243, 246–248
research on telomere length, 102, 196
on women in science, 256, 259
Shannon, Kevin, 215
Shapiro, Lucille, 156
Shay, Jerry W., 143, 257
Shelterin, 198–199
Shippen, Dorothy
desire to work with a woman primary investigator, 110
Index 389

research of, 110, 115–116, 182
role in field, 238
Shore, David, 199, 200, 324
Smith, Christopher, 210, 320, 322
Smith, Dana
research associate in Blackburn lab, 235, 321
Snug (Tasmania), 3
Somatic cell nuclear transfer (SCNT), 265–266, 296, 307
Spangler, Beth, 117, 137
Stanford University, 127–128, 156, 237, 309
Steitz, Joan, 31, 42, 48, 111, 115
Stem-cell research. See Human embryonic stem-cell research; Adult stem-cell research
Stereotype threat, 256
Stewart, Sheila, 229
Strahl, Cathy, 130, 149, 227
Stress, effects on cellular mechanisms, 314–318
Suk, Hwang Woo, 296, 307–308, 323
Summers, Lawrence, 330–332
Survivor cells, 141, 145
Szostak, Jack W.
collaboration to create linear plasmid, 73–76
collaboration to use linear plasmid to obtain yeast telomeric fragments, 76–77, 81
collaboration with Lundblad, 84, 139, 182
as co-recipient of Lasker Award for research in basic medical science, 311–312
research, 73, 95, 139, 145, 181

Tandem repeat pattern. See Repeat sequence
Tel1, 203–204

Telomerase. See also Aging; Cancer cells; Disease susceptibility
activity demonstrated in Euplotes crassus and Oxytricha, 115
activity demonstrated in human cancer cells, 115
activity demonstrated in vivo in Tetrahymena, 120–122
activity first demonstrated in vitro in Tetrahymena, 86–94
activity found in human cancer cells, 115, 141
activity in types of human cells, 140–141, 144–145
adding to telomeres by elongation and translocation, 102, 106, 112–114 (see also RNA template of telomerase)
dimeric structure of, 323–324
enzymatic action of, 194–195 (see also RNA component of telomerase; TERT)
as evolutionary relic, 108, 114
first experimental evidence of, 83–86
first proposed model for, 81–82
first suggestive evidence of, 76, 79–81
hypomorphic versions of, resulting in “immortal” cell lines, 207–208
as novel enzyme, 92, 100, 107, 114, 116, 193–194
preference for adding to G-rich overhang, 88, 106
proposed model for additional functions of, 208–210, 322
protective functions of, in addition to lengthening telomeres, 207–211, 320–322
role in preserving protein cap, 220–221
term coined by Wyman, 98
Telomerase inhibitors, 142. See also Cancer cells
Telomere. See also Aging; Cancer cells; Disease susceptibility
consequences of becoming uncapped, 200–202, 210–211, 221
Telomere (cont.)
copied de novo, 69, 76
ending in a t loop, 205–206
first sequenced in *Tetrahymena*, 52–57
heterogeneity of, 53, 102
length regulation of, 102, 141, 196–197 (see also Telomere structural proteins)
proposed as product of recombination, 74, 79, 81, 83, 93
role in protecting integrity of chromosome, 45, 140, 144, 202–203
structural characteristics of, 53, 56–58 (see also Repeat sequence)
term coined by Muller, 45
two-state model of capping and uncapping, 202
Telomere research field. See also Geron
early years of, 123–124, 255, 257
E.B.’s role in, 154, 185, 254–255, 260
expansion of, 141–142, 153, 241
launched by a handful of labs, 254
leaders of, 185, 238
rigor in, 241, 257–258
role of Blackburn lab in, 185, 238, 254–255, 309
women in, 154–155, 252–257
Telomere structural proteins. See also Rap1; Shelterin
architecture of, 324–325
as cap on shoelace, 140, 197
and defective length regulation, 200–202
as distinct from chromatin on rest of DNA strand, 57, 68, 197
as fortress, 203
as interactive complex regulating access of enzymes to telomere, 196–207, 211
observed in living cells, 205
Telomere terminal transferase, 94, 98

TERT

first isolated, 147, 182–185
first isolated in humans (*hTERT*), 147, 194
sequence of, 193–194
transcribed into different types of mRNA, 209
TERT

binding to ancillary proteins, 196–197
binding to RNA component, 191 (fig. 8.2), 192
excess of, stimulating stem cell proliferation in mice, 321–322
role in enzyme’s activity, 193–195
Tetrahymena thermophila. See also Telomerase, activity first demonstrated in vitro; Telomere, first sequenced in cell senescence induced in, 120–122
characteristics of, 45, 46–47, 69, 84, 121
E.B.’s feelings for, 46–47
heterogeneous length of telomeres in, 53, 57, 102, 196
replication origins in, 117–120
rDNA minichromosomes of, 44, 47, 68, 74–75, 117–120
rDNA telomeres first sequenced, 52–57
self-splicing rRNA of, 100
telomeric fragment of, extended in yeast cells, 75–76, 79–81
Tilghman, Shirley, 252–253, 258
Touch powder, 10
Tournament mentality, 125
Toxic telomeres

in contrast to telomerase inhibitors, 228
as potential cancer therapy, 225–226
Transfer RNA (tRNA), 33, 109, 117
Translational research, 129, 214
Trekking in Nepal, 39, 61, 63–64
TRF1, 199
TRF2, 199, 206
tRNA. See Transfer RNA
Truett, Martha, 41, 48–49, 51, 120, 242

Tumors
decreased metastasis in mice in response to telomerase knockdown, 231–232
developing in mice lacking telomerase gene, 228–229
shrinking in mice in response to treatment via liposome, 328–329

Two-dimensional (2D) separation. See Chromatography, defined

Tzfati, Yehuda, 189

UCLA/Keystone Symposium on Genome Rearrangements, 86
UCLA/Keystone Symposium on Nucleic Acids, 154

Union of Concerned Scientists, 285, 302–303, 304
University High School (Melbourne), 11–12

University of California at Berkeley, 63–64, 126, 128. See also Blackburn lab (UC–Berkeley)
departure from, 126–128
hired on faculty, 64–65
teaching duties, 66–67
tenure granted, 72–73, 78–79
women faculty and students, 42, 72

University of California at San Francisco, School of Medicine, 37. See also Blackburn lab (UCSF);
Department of Microbiology and Immunology (UCSF)
annual research budget, 161
basic sciences at the School of Medicine, 129, 155, 160
campus politics, 158, 161, 163, 170–172, 178–179
consortium of breast cancer researchers and clinicians, 224, 327
Mission Bay campus, 168–169, 178–236
Parnassus Street campus, 166, 168, 171
soft-money position, 63–65
structure of graduate programs, 160, 238
tenure-track position, 127–128
women faculty and students, 156–157, 163–167, 251–252
University of Melbourne, 15–16
graduate study, 19–20
undergraduate study, 15–19

Varmus, Harold
as colleague at UCSF, 155, 159, 170, 174
as consultant to E.B., 265
as director of NIH, 177
research of, 222

Verfaille, Catherine, 290, 292

Wang, He, 208
Watson, James, 23, 31
Waxman, Henry A., 297
Weinberg, Robert, 147–148, 229
Werb, Zena, 156
West, Michael, 143, 149–150, 215
White House Office of Presidential Personnel, 264, 267, 296
Williams, Tanya, 211, 325–326
Wilson, James Q., 269, 273, 274, 277, 294, 299

Winning the exhibitions, 12
Wittmer, Helen, 67, 78, 103

Women in administrative ranks in academia
sole female department chair at UCSF medical school, 156–158, 159–160, 162, 163
at UCSF in 1990s, 156–157, 159–160
at U.S. medical schools, 157

Women in research science. See also Gender discrimination in academia;
Telomere research field, women in drop-off rate in promotion and career advancement, 249–251
in elite scientific societies, 153
at Laboratory of Molecular Biology, 31
Women in research science (cont.)
as percentage of those employed in
the field, 249
at UC–Berkeley in 1980s, 72
at UCSF medical school, 157,
164–167, 251–252
at U.S. medical schools, 157
at Yale in 1970s, 41, 43
Women in Cell Biology Committee.
See American Society for Cell
Biology
Wu, Ray, 47
Wyman, Claire, 98

X-ray crystallography, 21, 325, 326
Xu, Lifeng, 219, 326–327

Yale University, 38, 50–52. See also
Gall, Joseph
postdoctoral training at, 38–40, 42,
44–45, 59–61
women faculty and students, 41–42,
43
Yao, Meng-Chao, 57, 121
Yu, Guo-Liang, 120–122, 126, 195,
225

Zakian, Virginia, 41, 42
research of, 49, 68, 139, 181, 197,
254, 320
as role model, 105, 259
Zaug, Alan, 99, 107
Zhu, Jiyue, 208
Ziff, Edward, 27, 32, 33, 34
Zijlmans, J. Mark, 205