Index

Abel, Andrew, 160n, 202
Absolute convergence, in Solow-Swan model, 45–46, 65
Acemoglu, Daron, 20, 53, 288n, 519
Ades, Alberto F., 497
Canada (cont.)
long-term GDP data, 561
R&D outlays versus GDP, 301
stability of factor shares, 12
Cannon, Edmund S., 213n
Canova, Fabio, 495
Capital. See also Human capital; Investment;
Physical capital
in AK model, 207–208
golden rule of capital accumulation, 34–37, 100n, 101n, 196–197
in growth accounting, 434, 436
in Ramsey model, 162–163, 183–184
Capital-saving technological progress, 52
Caselli, Francesco, 19n, 119, 121, 373, 495
Cashin, Paul, 482–483
Cass, David, 18–19, 85
Cass-Koopmans neoclassical growth model, 18–19
Chamley, Christophe, 269n
Chenery, Hollis B., 68
Children
bequests to, 198–200
child-rearing costs in overlapping-generations model (OLG), 412–413, 421
Chile, long-term GDP data, 565
China
economic development in, 350
GDP growth in, 4
income distribution in, 7, 8
long-term GDP data, 564
Chiswick, Barry., 390
Christensen, Laurits R., 12, 438, 440n
Chua, Hak B., 71, 372n
Closed economy. See Neoclassical theory; Ramsey model; Solow-Swan model
Coase, Ronald W., 342
Cobb, Charles S., 29n
Cobb-Douglas production function, 67, 74
capital/output ratio, 118
capital share in, 39
described, 29–30
in one-sector models of endogenous growth, 217–221, 226–229
origins of, 17
savings rate in, 49, 107, 109
technological progress, 43–44
Coe, David T., 452–453
Cohen, Daniel, 166, 166n, 202
Coleman, Wilbur John, 373
Collins, Susan M., 172
Colombia, long-term GDP data, 565
Conditional convergence, in Solow-Swan model, 14, 46–50, 65
Congestion model, in one-sector-models of endogenous growth, 223–225
Connolly, Michelle, 349n
Constant-elasticity-of-substitution (CES) production functions, 68–71, 80–81, 171n, 230–232
Constant intertemporal elasticity of substitution (CIES), 91
Constant returns to scale, 27, 28, 33
Constant terms, GDP growth and, 533–534
Consumer utility. See also Household utility
imitators in follower country, 357
in neoclassical theory, 16–17, 18
in Schumpeterian models of quality ladders, 328–329
Consumption function
as function of wealth, 181–183
in Ramsey model, 93–94, 103–104, 120, 146, 164–165
in Uzawa-Lucas model, 257–258
Control variables, 227, 518–520
Convergence across economies
β convergence
concept of, 14, 462–463
across European regions, 479–482
across Japanese prefectures, 474–478
in panel data with fixed effects, 495–496
quantitative measure of, 56–59
across U.S. states, 466–472
migration of labor and, 492–496
in Ramsey model
correlation coefficient, 114
speeds of convergence, 111–118, 167
σ convergence
concept of, 462–465
across European regions, 482
across Japanese prefectures, 478
across U.S. states, 473–474
in Solow-Swan model, 44–51
absolute convergence, 45–46, 65
conditional convergence, 14, 46–50, 65
convergence coefficient, 57, 59, 78
dispersion of per capita income, 50–51
migration of labor, 388–392
properties, 78
quantitative measure of speed of, 56–61
in technology diffusion, 359–363
Coulombe, Serge, 482
Cournot-Nash equilibrium, 125n, 127n, 333–334
Credit market constraint, 165–177, 188–189
Cummings, Dianne, 12, 438, 440n
Cumulative distribution functions (CDFs), 9n
Cyprus, GDP growth in, 4
David, Paul A., 451
Deaths
imbalance effect and, 245–246
nature of, 179
in overlapping-generations model (OLG), 179–183, 198–200, 412
Debt, in Ramsey model, 88–89, 92
constraint on international credit, 165–177
DeLong, J. Bradford, 14, 462
Democracy, GDP growth and, 528–529, 538
Democratic Republic of Congo, GDP growth in, 3, 4
Denison, Edward F., 12, 58, 433, 437
Denmark, long-term GDP data, 561
Depreciation curve, in Solow-Swan model, 38–40, 386–387
Development modifier, 214
Devechsaucner, Arnaud, 540n
Diamond, Peter, 178, 185, 190
Diffusion of technology. See Technology diffusion
Dinopoulos, Elias, 332
Dixit, Avinash K., 285–286, 286n, 317
Dolado, Juan, 390
Domar, Evsey D., 17, 71, 73–74
Doppelhofer, Gernot, 541, 543n, 543–556
Dougherty, Christopher, 12
Douglas, Paul H., 29n
Dowrick, Steve, 462
Ducznyski, Petr, 173
Durlauf, Steven N., 435n
Dynamic inefficiency, golden rule of capital accumulation and, 36–37, 196–197
East Asia
GDP growth in, 3–4, 23
growth accounting for countries in, 438–441, 443–444, 459–460
income distribution in, 10–11
stability of factor shares, 12
Easterlin, Richard A., 462, 497
Easterly, William, 82, 372n, 529n
Economic growth. See also Growth models
empirical regularities of, 12–16
history of modern growth theory, 16–21
importance of, 1–6
Education
GDP growth and, 524, 537
in two-sector models of endogenous growth
in model with two sectors of production, 247–251
Uzawa-Lucas model, 251–268
Effective labor, 54–55, 95
Elias, Victor J., 12, 440n, 441
Emigration. See Migration of labor
Endogenous growth models, 19–20, 61–77
constant-elasticity-of-substitution (CES) production functions, 68–71, 80–81, 171n, 230–232
dissatisfaction with neoclassical theory, 61–63, 77–78
Leontief production function, 71–74
one-sector models, 205–235
AK model, 63–66, 205–211
constant-elasticity-of-substitution (CES) form, 230–232
with learning by doing and knowledge spillovers, 212–220
with physical and human capital, 211–212, 240–247
with poverty traps, 74–77
public services and, 220–225
and Schumpeterian models of quality ladders, 329–331
Solow-Swan model (see Solow-Swan model)
two-sector models, 239–282
conditions for endogenous growth, 268–271
described, 247–251
with reversed factor intensities, 267–268, 280–282
Uzawa-Lucas model, 251–268, 274–279
Equilibrium
in AK model, 207–208
Cournot-Nash, 125n, 127n, 333–334
in one-sector models of endogenous growth, 216
in overlapping generations model (OLG), 193–200
in Ramsey model, 96, 97–98, 155–160, 164–177, 193–200
in Solow-Swan model, 33
technological progress and, 295–297
Esquivel, Gerardo, 495
Essentiality of inputs, 28, 77–78
Ethier, Wilfred J., 285–286, 286n
Euler equation, 62, 90–91, 144n, 210
Europe. See also specific countries
convergence across regions, 479–482
β convergence, 479–482
σ convergence, 482
income distribution in, 11–12
labor migration across regions, 490–492
regional data sets, 500–506
Exogenous savings rates. See Solow-Swan model
Factor share stability, 12
Faig, Miguel, 279
Family budget constraint, in overlapping-generations model (OLG), 414
Farmer, Roger E. A., 269n
Feenstra, Robert C., 437n
Felicity function, 87
Fertility choice, 407–421
overlapping-generations model (OLG), 408–421
births, 412
child-rearing costs, 412–413, 421
Fertility choice (cont.)
 deaths, 412
 family budget constraint, 414
 optimization conditions, 414–416
 steady state, 416–421
 transitional dynamics, 197–198, 416–421
 utility function, 412

Fertility rate, 16, 525

Finland, long-term GDP data, 561

Firm utility. See also Prices in AK model, 206
 in overlapping generations model (OLG), 192
 profit and, 32–33, 96, 212, 215, 221
 in Ramsey model, 94–96, 152–155, 192
 in Schumpeterian models of quality ladders, 346–348
 taxes on firms’ earnings, 146–147
 technological progress and, 285–295

Fischer, Stanley, 88n, 141

Fishburn, Peter C., 121n

Fisher, I., 17, 121

Follower country in technology diffusion, 352–363
 consumers, 357
 dynamic path and convergence, 359–363
 imitating firms, 353–357
 cost of imitation, 353–355
 free-entry condition, 356–357
 optimal pricing, once good copied, 355–356
 implications for growth rates, 370–373
 producers of final output, 352–353
 steady-state growth and, 357–358
 welfare considerations, 376–379

Foreign investment. See also Investment
tech diffusion and, 368–370

France
 domestic investment/saving in, 15
 growth accounting for, 439
 long-term GDP data, 562
 number of R&D scientists and engineers, 310
 R&D outlays versus GDP, 301
 stability of factor shares, 12
 in switchovers of technological leadership, 376

Gezici, Ferhan, 483

Glaeser, Edward L., 497

GNP (gross national product), gap between GDP and,
 172–173

Golden rule of capital accumulation, 34–37, 100n,
 101n, 196–197

Goldman, Steven M., 122

Gollop, Frank M., 12, 58, 60, 437

Goria, Alessandra, 390

Government. See also Taxes
 in one-sector models of endogenous growth,
 222–225
 congestion model, 223–225
 poverty trap, 75–77
 public-goods model, 220–223
 purchases
 GDP growth and, 525–526, 539
 in one-sector models of endogenous growth,
 222–223
 in Ramsey model extension, 147–152
 in Ramsey model extension, 143–152
 effects of government purchases, 147–152
 effects of tax rates, 146–147
 modifications of basic framework, 143–146
 technological change and subsidies, 299–300, 309

Greenwood, Jeremy, 422n, 539

Greenwood, Michael J., 391

Griffith, Rachel, 20, 342n

Griliches, Zvi, 212–214, 354, 433, 437, 438, 442,
 443n, 445, 446, 449–453, 450n, 453

Gross domestic product (GDP). See Per capita gross
 domestic product (GDP)

Grossman, Gene M., 20, 286, 310n, 319n, 344,
 349n

Gross national product (GNP), gap between GDP and,
 172–173

Growth accounting, 433–460. See also Economic
growth; Growth models; Growth rates
dual approach to, 435, 442–444
 problems with, 444–450
 increasing-returns model with spillovers, 445–447
 multiple types of factors, 449–450
 taxes, 447–448
 sources of growth versus, 457–460
 standard primal approach to, 433–442
 capital share, 434, 436
 labor share, 434, 436
 qualities of inputs, 437–438

regression-based estimates of TFP growth, 441–442
long-term GDP data, 562
 number of R&D scientists and engineers, 310
 R&D outlays versus GDP, 301
 stability of factor shares, 12
 in switchovers of technological leadership, 376
results from, 438–441
setup, 433–435
TFP growth and research and development (R&D), 450–456
quality-ladders models, 454–456
varieties models, 451–454
Growth models. See also Economic growth;
 Endogenous growth models; Growth accounting;
 Technological progress; Technology diffusion
with consumer optimization (see Ramsey model)
 neoclassical, 18
Growth rates, 521–566. See also Economic growth;
 Growth accounting; Growth models
empirical analysis, 515–520
control variables, 518–520
environmental variables, 518–520
state variables, 517
of follower country in technology diffusion, 370–373
long-term data on GDP, 13–16, 23, 559–566
losers and winners, 1960–2000, 511–515
for models with expanding variety of products, 297, 451–454
regression results, 521–541
additional explanatory variables, 535–541
basic regression, 521, 524
stability of factors, 12
Hossain, Akhtar, 483
Household utility. See also Consumer utility
 in AK model, 205–206
 labor/leisure choice, 422–428
 in overlapping-generations model (OLG), 190–192, 412, 414–416
 in Ramsey model, 16–17, 86–94
 heterogeneity, 118–121
 model setup, 86–89
 technological progress and, 295
 Howitt, Peter, 20, 63, 317, 319n, 322n, 332, 333n, 342n
Hsieh, Chang-Tai, 442, 443
Human capital. See also Education; Labor supply;
 Migration of labor
 adjustment costs for accumulation, 173–177, 246–247
 growth rate in two-sector model, 258–250
 knowledge and, 23–24, 212–220
 in one-sector models of endogenous growth,
 211–212, 240–247
 in Solow-Swan model, 59–61
 Ichino, Andrea, 390
 Imbalance effect, 244–247
 Immigration. See Migration of labor
 Inada, Ken-Ichi, 27n
 Inada conditions, 27, 29, 72, 95, 233
 Income distribution
 convergence and dispersion of per capita income,
 50–51
 world, 6–12
India
 domestic investment/saving in, 15
 GDP growth in, 1
 income distribution in, 7
 long-term GDP data, 564
 Indonesia
 GDP growth in, 4
 long-term GDP data, 564
 Inflation rate, GDP growth and, 532–533
Innovation. See also Research and development (R&D); Technological progress; Technology diffusion
behavior of imitators in follower country, 352–363, 370–373, 376–379
behavior of innovators in leading country, 351–352
categorization of inventions, 51–53
research by sector leader, 333–338, 346–347
switchovers of technological leadership, 333–334, 373–376
Insurance, in overlapping generations model (OLG), 179–180
Intellectual property rights, technology diffusion and, 368–370
Intensive form, 28
of Cobb-Douglas function, 29–30
in Uzawa-Lucas model, 267–268, 280–282
Interest rates
in Ramsey model, 88–89, 94, 129, 155–159, 168, 181
in Solow-Swan model, 40–41
Intergenerational transfer, 179–183, 198–200
Intermediate goods. See also Schumpeterian models of quality ladders
for producers of final output, 285–289
subsidies to purchase, 299–300, 309
International credit constraint, 165–177, 188–190
International openness, GDP growth and, 529–530
Investment. See also Adjustment costs for investment;
capital; human capital; physical capital
foreign, technology diffusion and, 368–370
interest rates
in Ramsey model, 88–89, 94, 129, 155–159, 168, 181
in Solow-Swan model, 40–41
Intergenerational transfer, 179–183, 198–200
Intermediate goods. See also Schumpeterian models of quality ladders
for producers of final output, 285–289
subsidies to purchase, 299–300, 309
International credit constraint, 165–177, 188–189
International openness, GDP growth and, 529–530
Investment. See also Adjustment costs for investment;
capital; human capital; physical capital
foreign, technology diffusion and, 368–370
GDP growth and, 531–532
in one-sector models of endogenous growth
investment tax credit, 217, 218
transitional dynamics with inequality restrictions, 271–274
Involuntary unemployment, 88
Irreversible investment, 134–135
Italy
growth accounting for, 439
long-term GDP data, 562
R&D outlays versus GDP, 301
stability of factor shares, 12
Jaffe, Adam B., 364n
Japan
convergence across prefectures, 474–478
\(\beta \) convergence, 474–478
\(\sigma \) convergence, 478
domestic investment/saving in, 15
GDP growth in, 1–2, 4
growth accounting for, 439
imbalance effect post-World War II, 244
income distribution in, 7
labor migration across prefectures, 486–490
long-term GDP data, 562
number of R&D scientists and engineers, 310
R&D outlays versus GDP, 301
regional data sets, 506–509
stability of factor shares, 12
in switchovers of technological leadership, 376
Jaumotte, Florence, 372, 373
Jefferson, Thomas, 24n, 290
Jeffreys, Harold, 544
Johnson, Simon, 519
Jones, Charles I., 20, 297, 301, 305n, 310, 408, 412
Jones, Larry E., 66, 226
Jones, Ronald W., 375, 382
Jorgenson, Dale W., 12, 58, 60, 433, 437, 438, 440n, 442, 443n, 449–450
Jovanovic, Boyan, 349n, 364n, 375, 539
Judd, Kenneth L., 306n
Judson, Ruth, 118
Kaldor, Nicholas, 12–14, 118, 169
Keefer, Philip, 526
Kendrick, John W., 248, 433
Kimball, Miles S., 199
King, Robert G., 116, 423–424, 539
Knack, Stephen, 526
Knight, Frank K., 16, 20, 63n
Knowledge
in Solow-Swan model, 23–24
spillovers, in one-sector models of endogenous growth, 212–220
Koopmans, Tjalling C., 18, 19, 85, 87n, 121n
Koroch, Javier Adolfo, 483
Kremer, Michael, 159n, 177, 219, 297
Krugman, Paul, 269n, 335n, 349n, 375, 376, 381
Kurlat, Sergio, 540n
Kurz, Mordecai, 66n, 135
Kuznets, Simon, 12n, 450
Kydland, Finn E., 293
Labor-saving technological progress, 52, 53–56
Labor supply, 383–407. See also Human capital;
Migration of labor; Population growth; Wage rates
in growth accounting, 434, 436
labor/leisure choice, 422–428
in Ramsey model, 86, 393–398
Lach, Saul, 349n, 364n
Laibson, David, 122, 123, 127, 127n, 129–131
La Porta, Rafael, 540
Latin America. See also specific countries
GDP growth in, 2–3, 4, 5–6
growth accounting for countries in, 438–441
income distribution in, 10–11
Leamer, Edward E., 542n, 544
Leapfrogging, in switchovers of technological leadership, 333–334, 373–376
Learning by doing, in one-sector models of endogenous growth, 212–220
Lee, Frank C., 482
Lee, Jong-Wha, 408, 516
Lefort, Fernando, 495
Leisure, labor/leisure choice, 422–428
Leontief, Wassily, 71
Leontief production function, 71–74
Levine, Ross, 372n, 539, 542n, 542–543, 547n
Lewis, William Arthur, 74n
Lichtenberg, Frank, 453
Lie, Rolv Terje, 544
Life expectancy, GDP growth and, 524–525, 537–538
Life insurance, in overlapping generations model (OLG), 179–180
Loans, in Ramsey model, 88–89, 92
constraint on international credit, 165–177
Loayza, Norman, 483
Loewenstein, George, 122n, 128n
Long run, 33–34
Lopez-de-Silanes, Florencio, 540
Lucas, Robert E., Jr., 19, 212–214, 219, 239, 251, 267, 270, 283, 408n, 445, 446
Luxembourg, GDP growth in, 1, 3
McCallum, Bennett T., 141, 293
McPherson, Isaac, 24n, 290
Maddison, Angus, 1n, 12, 13, 15, 58, 118, 559–566
Madigan, David, 544
Magalhaes, Andre, 483
Malthus, Thomas R., 16, 17, 20, 407, 407n
Mankiw, N. Gregory, 14, 60, 78, 166n, 171n, 521
Mansfield, Edwin, 354, 355, 364n, 450n
Manuelli, Rodolfo E., 66, 226
Marcet, Albert, 495
Marginal product of capital, in one-sector models of endogenous growth, 215, 218, 221–222, 224
Markets, See also Monopoly power in Solow-Swan model, 31–33
Markusen, James R., 437n
Mas-Colell, Andreu, 428
Matsuyama, Kiminori, 269n, 273n
Mauritius, economic development in, 350
Mauro, Paolo, 538n
Mexico economic development in, 350
GDP growth in, 1
long-term GDP data, 565
Middle East and North Africa (MENA), income distribution in, 10–11
Migration of labor, 383–407
Braun model, 398–407
convergence across economies and, 492–496
across European regions, 490–492
across Japanese prefectures, 486–490
Ramsey model, 393–398
Solow-Swan model, 383, 384–392
to urban areas, 450
across U.S. states, 483–486
Miller, Ronald, 541, 543–544, 547–556
Minasian, Jora R., 450n
Minhas, Bagicha S., 68
Mino, Kazuo, 247n, 267n
Modified golden rule, 101n
Molle, Willem, 500, 506
Monopoly power erosion of, in models with expanding variety of products, 305–310
in research and development (R&D) process, 290–292, 322–324, 336–338
in Schumpeterian models of quality ladders duration of monopoly position, 324–325, 345–346
interactions between sector leader and outsiders, 333–336
sector leader as monopoly researcher, 336–338
Mulligan, Casey B., 114, 177n, 260, 268
Murphy, Kevin M., 74n, 185–186, 413n
Nallari, Raj, 350
Negative dividends, 153n
Nelson, Richard R., 349n, 355, 373
Neoclassical production function, 17, 26–31
characteristics, 27–29
Cobb-Douglas example of (see Cobb-Douglas production function) essentiality of inputs, 77–78
Neoclassical theory, 16–21. See also Ramsey model; Solow-Swan model
AK model, 63–66
consumer optimization in, 16–17, 18
diffusion of technology, 20
dissatisfaction with, 61–63
neoclassical production function, 17, 26–31, 77–78
population growth, 16, 20–21
problems with, 18
technological progress and, 18–20
Netherlands growth accounting for, 439
long-term GDP data, 562
stability of factor shares, 12
Neutral technological progress, 52–53
Nguyen, Duc Tho, 462
Nonrival goods, 24, 24n
Norway, long-term GDP data, 562
Nyarko, Yaw, 375
OECD. See Organization for Economic Cooperation and Development (OECD).

Ohyama, Michihiro, 375, 382

O’Leary, Eoin, 483

One-sector models of endogenous growth, 205–235

AK model, 63–66, 205–211
constant-elasticity-of-substitution (CES) form, 230–232
with learning by doing and knowledge spillovers, 212–220
Cobb-Douglas example, 217–218
equilibrium, 216
Pareto nonoptimality, 216–217
policy implications, 216–217
scale effects, 218–220
technology component, 212–215
with physical and human capital, 211–212, 240–247
public services and, 220–225
congestion model, 223–225
poverty trap, 75–77
public-goods model, 220–223
and Schumpeterian models of quality ladders, 329–331

Open economy, Ramsey model extension, 161–167, 168–189

economic growth with finite horizons, 179–189
model setup, 161–162
small economy capital stock and output, 162–163
small economy consumption and assets, 163–164
variations in preference parameters, 177–178
world economy, 164–177

Organization for Economic Cooperation and Development (OECD)
convergence of GDP across economies, 46
GDP growth in, 2–6
growth accounting for countries in, 438–441
number of R&D scientists and engineers, 310
R&D outlays versus GDP, 301

Output per worker, in AK model, 207–208
Overlapping-generations model (OLG), 178, 179, 186–189, 190–200, 408–421
births, 412
child-rearing costs, 412–413, 421
in continuous time, 411–421
deaths, 412
equilibrium in, 193–200
family budget constraint, 414
firms in, 192
golden rule of capital accumulation, 196–197
households in, 190–192, 412, 414–416
optimization conditions, 414–416
population growth, 179, 194, 412

savings rate, 193, 196–197
steady state, 194–195, 416–421
transitional dynamics, 197–198, 416–421
utility function, 412
Oversaving
in overlapping-generations model (OLG), 196–197
in Solow-Swan model, 101

Pakistan
GDP growth in, 1, 4
long-term GDP data, 564

Pareto optimality
nature of, 98–99
in one-sector models of endogenous growth, 211, 216–217, 222, 224–225
in Ramsey model, 98–99, 150–151
in Schumpeterian models of quality ladders, 339–342
technological progress and, 297–300
subsidies to final product, 300
subsidies to purchases of intermediate goods, 299–300
subsidies to research, 300
in technology diffusion, 377–379

Park, Won Am, 172
Patents, as proxy for learning, 213
Per capita gross domestic product (GDP). See also Economic growth; Growth accounting; Growth models; Growth rates
basic regression of growth, 521–534
initial per capita GDP, 521–523
tests of stability of coefficients, 534–535
variables measured, 521–534, 535–541
convergence across economies, 44–51. See also Convergence across economies
gap between GNP and, 172–173
growth of, 1–6, 13–15, 210–211, 219, 223
long-term data on GDP, 13–16, 23, 559–566
robustness of growth, 541–559
Bayesian Averaging of Classical Estimates (BACE), 543–547, 559
Levine and Renelt model for measuring, 542–543
robustness analysis, 556–559
Sala-i-Martin, Doppelhofer, and Miller model for measuring, 547–556
world, 6–12

Peretto, Pietro, 305n
Perpetual-inventory method, 436
Persson, Joakim, 482–483
Peru, long-term GDP data, 565
Petakos, George, 483
Phelps, Edmund S., 35, 80, 125n, 127, 349n, 355, 373
Philippines
GDP growth in, 1
long-term GDP data, 564
Physical capital
adjustment costs for accumulation, 246–247
growth rate in two-sector model, 258–250
human capital versus, 168–175, 241–242
in one-sector models of endogenous growth, 211–212, 240–247
basic setup, 240–242
constraint of nonnegative gross investment, 242–247
in Ramsey model, 117, 118, 166–167, 168–173
in Solow-Swan model, 59–61
Plosser, Charles I., 423–424
Poland, GDP growth in, 1
Policy
and Ramsey model, 105–106
and Solow-Swan model, 41–43
and Uzawa-Lucas model, 256–257
Pollak, Robert A., 122, 124n, 125n, 127
Population growth. See also Fertility choice labor/leisure choice, 422–428
in neoclassical theory, 16, 20–21
in overlapping generations model (OLG), 179, 194, 412
in Ramsey model, 129–130
in Solow-Swan model, 26, 42
Posterior inclusion probability, 547
Poverty, world income distribution and, 6–12
Poverty line
defined, 6–7, 9n
world, 6–12
Poverty traps
defined, 74
growth models with, 74–77
Prelec, Drazen, 122n, 128n
Prescott, Edward C., 293, 408n
Present-value factor, in Ramsey model, 93–94
Prices. See also Monopoly power optimal for imitating firms, 355–356
for invention, 290–292, 322–324
shadow price, 92, 249–250
in Solow-Swan model, 40–41
Producers of final output
behavior of imitators in follower country, 352–353
levels of quality in production technology, 319–321, 343–345
subsidies to final product, 300
technological progress and, 285–289, 300
Production functions
AK function, 63–66, 67
capital-augmenting, 52–53
Cobb-Douglas (see Cobb-Douglas production function)
constant-elasticity-of-substitution (CES), 68–71, 80–81, 171n, 230–232
Leontief, 71–74
neoclassical, 17, 26–31, 77–78
Productivity slowdown, 13, 438–441
Profit
in one-sector models of endogenous growth, 212, 215, 221
in Ramsey model, 96
in Solow-Swan model, 32–33
Public goods
nonrival goods versus, 24n
in one-sector-models of endogenous growth, 220–223
Quah, Danny T., 51, 77, 249n, 543n
Quality. See Schumpeterian models of quality ladders
Raftery, Adrian E., 544
Ramsey, Frank, 16–18, 85, 87n, 121–122, 122n, 132
Ramsey model, 85–139, 143–200
adjustment costs for investment, 152–160
behavior of firms, 152–155
equilibrium for closed economy with fixed saving rate, 159–160
equilibrium with given interest rate, 155–159
alternative environments for, 98–99
commitment
degree of commitment, 132
results under commitment, 123–124
results without commitment under log utility, 124–129
equilibrium in, 96, 97–98, 155–160, 164–177, 193–200
finite-horizon version, 179–189
closed economy, 183–186
open economy, 186–189
firm utility, 94–96, 152–155, 192
government in, 143–152
effects of government purchases, 147–152
effects of tax rates, 146–147
modifications of basic framework, 143–146
household utility, 16–17, 86–94
first-order conditions, 89–94
heterogeneity, 118–121
model setup, 86–89
irreversible investment, 134–135
with labor migration, 393–398
model setup, 393
optimization conditions, 394–395
steady state, 395–398
transitional dynamics, 395–398
Ramsey model (cont.)
labor supply in, 86, 393–398
log-linearization, 111–113, 132–134
open-economy model, 161–167, 168–189
economic growth with finite horizons, 179–189
model setup, 161–162
small economy capital stock and output, 162–163
small economy consumption and assets, 163–164
variations in preference parameters, 177–178
world economy with constraint on international credit, 165–177
world equilibrium, 164–165
savings rate in, 103–104, 106–110, 135–139, 159–160, 185–186
time-preference rates, 121–134
results under commitment, 123–124
results without commitment under log utility, 124–129
zero rate of time preference, 121
transitional dynamics, 102–121
convergence, 111–118, 167
decline in economy, 137–139
household heterogeneity, 118–121
migration of labor, 395–398
paths of capital stock and output, 110–111
phase diagram, 103–104
policy functions, 105–106
population growth, 129–130
results under isoelastic utility, 130–131
savings rate behavior, 85, 106–110, 135–139
technological progress, 129–130
transversality condition, 90, 91–92, 97–98, 101, 103–105, 135–136
Rapping, Leonard, 213
Rational-expectations revolution, 19
Razin, Assaf, 428
Rebelo, Sergio, 19, 116, 247, 423–424, 424n, 519n
Reciprocal of the elasticity of intertemporal substitution, 90–91
Regional data sets, 461–509
convergence across economies, 462–483
\(\beta \) convergence, 14, 462–463, 466–472, 474–478, 479–482, 495–496
measurement error, 472–473
\(\sigma \) convergence, 462–465, 473–474, 478, 482
Europe regions
cconvergence across economies, 479–482
description of data sets, 500–506
migration of labor across, 490–492
Japanese prefectures
cconvergence across economies, 474–478
description of data sets, 506–509
migration of labor across, 486–490
long-term data on GDP, 559–566
migration of labor, 483–492
other regions, convergence across economies, 482–483
U.S. states
cconvergence across economies, 466–474
description of data sets, 497–500
migration of labor across, 483–486
Reinganum, Jennifer F., 309, 313, 325n
Renelt, David, 542n, 542–543, 547n
Replication argument, 27
Research and development (R&D), 20, 289–295, 321–328. See also Technological progress;
Technology diffusion
classification of inventions, 51–53
costs of R&D, 300–305
rising costs, 303–305
scale effects in, 300–302
decision to devote resources to invention, 289, 321–326
decision to enter R&D business, 292–295, 321–322
duration of monopoly position, 324–325, 345–346
dr free-entry condition, 293–295, 302, 326–328
growth accounting and, 450–456
quality-ladders models, 454–456
varieties models, 451–454
optimal price determination of invention, 290–292, 322–324
sector leader as researcher, 333–338, 346–347
interaction between leader and outsiders, 333–336
leader as monopoly researcher, 336–338
subsidies to research, 300
TFP (total factor productivity) growth and, 450–456
Rhee, Changyong, 155n, 158
Ricardo, David, 16, 17
Rivera-Batiz, Luis A., 293n
Roback, Jennifer, 487
Robinson, James A., 519
Robustness of growth, 541–559
Bayesian Averaging of Classical Estimates (BACE) of, 543–547, 559
Levine and Renelt model for measuring, 542–543
robustness analysis, 556–559
“strong” variables that become “weak,” 556–558
“weak” variables that become “strong,” 558–559
Sala-i-Martin, Doppelhofer, and Miller model for measuring, 547–556
Rogerson, Richard, 422n
Romer, David, 14, 60, 78, 521
Romer, Paul M., 18–19, 20, 63, 65n, 212–214, 237, 285–286, 293n, 310n, 310–313, 350, 445, 446
Index

Romero’s model of technological change, 212–214, 310–313
Rubinstein, Ariel, 121n
Rule of Law, GDP growth and, 526–528, 538
Rustichini, Aldo, 269n
Rybczynski, T. M., 201
Ryder, Harl E., 74
Sachs, Jeffrey D., 166, 166n, 202, 538, 540
Sahay, Ratna, 482–483
Saint-Paul, Gilles, 235
Sala-i-Martin, Xavier, 6n, 7, 7n, 8, 9n, 10, 11, 14, 50n, 78, 114, 166n, 171n, 173, 223, 236, 260, 268, 314, 351, 389, 391, 462, 466n, 471, 474, 479, 484, 541, 543–544, 546n, 547–556
Samuelson, Paul A., 178, 190
Sanchez-Robles, Blanca, 483
Santos, Manuel S., 279
Saratsis, Yannis, 483
Savings rate, 15–16
in overlapping-generations model (OLG), 193, 196–197
oversaving, 101, 196–197
in Ramsey model, 103–104, 106–110, 135–139, 159–160, 185–186
in Solow-Swan model, 25, 38–40, 41–42, 44, 49, 85, 97, 101, 109
in transitional dynamics, 85
in Uzawa-Lucas model, 263–264
Scale effects
constant returns to scale versus, 27, 28, 33
in one-sector models of endogenous growth, 218–220, 223
in Schumpeterian models of quality ladders, 331–332
in technological progress, 297, 300–302
Schmookler, Jacob, 213
Schultz, T. Paul, 408
Schumpeter, Joseph A., 16, 317
Schumpeterian models of quality ladders, 317–347
growth accounting, 454–456
innovation by the leader, 333–338, 346–347
levels of quality in production technology, 319–321, 343–345
market value of firms, 346
model components, 319–322
aggregate quality index, 329–331
consumers, 328–329
producers of final output, 319–321, 343–345
research sector, 321–328
scale effects, 331–332
model setup, 317–319
monopoly power
duration of monopoly position, 324–325, 345–346
interactions between sector leader and outsiders, 333–336
sector leader as monopoly researcher, 336–338
Pareto optimality, 339–342
Schwartz, Mark, 354, 355, 364n
Searle, Allan D., 213
Segerstrom, Paul S., 305n, 349n
Shadow price
of human capital, 249–250
nature of, 92
Shell, Karl, 19n
Sheshinski, Eytan, 18, 19, 213
Shioji, Etruso, 496
Shleifer, Andrei, 74n, 540
Short run, 33–34
Sidrauski, Miguel, 88n, 141
σ convergence
concept of, 462–465
across European regions, 482
across Japanese prefectures, 478
across U.S. states, 473–474
Singapore
economic development in, 350
growth accounting for, 440, 444, 459–460
stability of factor shares, 12
Smit, Hans, 500, 506
Smith, Adam, 16
Social planner. See Pareto optimality
Solow, Robert M., 17, 25, 30, 52–53, 68, 80, 433–435, 437
Solow residual, 434–435, 452–454
Solow-Swan model, 23–61
basic structure, 17, 23–26
Cobb-Douglas production function examples, 29–30, 43–44, 49
convergence across economies, 44–51
absolute convergence, 45–46, 65
conditional convergence, 14, 46–50, 65
convergence coefficient, 57, 59, 78
dispersion of per capita income, 50–51
migration of labor, 383, 388–392
properties, 78
quantitative measure of speed of, 56–61
dynamic inefficiency, 36–37
extended model with physical and human capital, 59–61
fundamental equation, 30–31, 37–38, 44
golden rule of capital accumulation, 34–37
input prices during transition, 40–41
with labor migration, 383, 384–392
convergence, 388–392
migration rate, 385–387
model setup, 384–385
Solow-Swan model (cont.)
steady state, 387–388
transitional dynamics, 388–392
labor supply in, 23–24, 26, 31–33, 53–56, 78–80, 383, 384–392
markets in, 31–33
neoclassical model of, 26–30
Cobb-Douglas example, 29–30
neoclassical production function, 26–31, 77–80, 383, 384–392
policy experiments, 41–43
steady state, 33–34, 34n, 43–44, 387–388
with technological progress, 23–24, 43, 51–56
capital-augmenting, 52–53
classification of inventions, 51–53
labor-augmenting, 53–56, 78–80
transitional dynamics
behavior of input prices during transition, 40–41
with labor migration, 388–392
nature of, 37–40
South Korea
domestic investment/saving in, 15
GDP growth in, 4
growth accounting for, 440, 443, 459–460
long-term GDP data, 564
stability of factor shares, 12
Speed of convergence, 56–61, 111–118, 167. See also β convergence
Spence, Michael, 285–286, 286n, 317
Spillovers
in increasing-returns model of growth, 445–449
in one-sector models of endogenous growth, 212–220
Srinivasan, T. N., 248n, 265
State variables, 227, 256, 517
Steady state
defined, 33–34
and migration in models of economic growth, 387–388, 395–398, 403–405
in overlapping-generations model (OLG), 194–195, 416–421
in Solow-Swan model, 33–34, 34n, 43–44, 387–388
in technology diffusion, 357–358, 364–368
in two-sector models of endogenous growth, 12n
Uzawa-Lucas model, 252–253
Stein, Jerome L., 462
Stone, Richard, 178
Strotz, Robert H., 122
Structural transformation, 12n
Subsidies
to purchase intermediate goods, 299–300, 309
to research, 300
Substitution
constant-elasticity-of-substitution production
functions, 68–71, 80–81, 171n, 230–232
constant intertemporal elasticity of substitution (CIES), 91
reciprocal of the elasticity of intertemporal substitution, 90–91
Summers, Lawrence H., 155n, 158
Summers, Robert, 1n, 2, 6n, 22, 23n, 511n, 512, 532n, 560
Swan, Trevor W., 17, 25, 30
Sweden, long-term GDP data, 563
Switzerland
GDP growth in, 2
long-term GDP data, 562
Taiwan
GDP growth in, 1, 4
growth accounting for, 440, 459–460
long-term GDP data, 564
stability of factor shares, 12
Tamura, Robert, 413n
Tanzania, GDP growth in, 2, 3, 4
Taxes
in growth accounting, 447–448
in one-sector models of endogenous growth
capital income taxes, 222
consumption taxes, 221
labor taxes, 221
in Ramsey model extension, 143–147
distortionary tax rates, 147–152
effects of tax rates, 146–147
Technological progress. See also Research and development (R&D); Technology diffusion
behavior of imitators in follower country, 352–363
consumers, 357
dynamic path and convergence, 359–363
imitating firms, 353–357
implications for growth rates in follower countries, 370–373
producers of final output, 352–353
steady-state growth, 357–358
welfare considerations, 376–379
behavior of innovators in leading country, 351–352
constant (slowly rising) costs of imitation, 353–355, 363–364
as exogenous, 61–63
foreign investment and, 368–370
intellectual property rights and, 368–370
leapfrogging in, 333–334, 373–376
models with expanding variety of products, 285–313
baseline model with variety of products, 285–305
competition and, 305–310
determinants of growth rate, 297
erosion of monopoly power, 305–310
general equilibrium in, 295–296
growth accounting, 451–454
households in, 295
Pareto optimality, 297–300
producers of final output in, 285–289
R&D costs, 300–305
research firms in, 289–295
Romer’s model, 212–214, 310–313
scale effects, 300–302
in neoclassical theory, 18–20
in one-sector models of endogenous growth, 212–215
in Ramsey model, 129–130
Schumpeterian models of quality ladders, 317–347
duration of monopoly position, 324–325, 345–346
growth accounting, 454–456
innovation by the leader, 333–338, 346–347
intermediates of quality grades, 343–345
market value of firms, 346
model components, 319–332
model sketch, 317–319
Pareto optimality, 339–342
in Solow-Swan model, 23–24, 43, 51–56
capital-augmenting, 52–53
classification of inventions, 51–53
labor-augmenting, 53–56, 78–80
steady state for, 364–368
determination of, 364–365
imitators in follower country, 357–358
transitional dynamics in, 365–368
switchovers of technological leadership, 333–334, 373–376
transitional dynamics for, 359–363, 365–368
Technology diffusion, 20, 349–379. See also Research and development (R&D).
Teece, David J., 355, 368n
Temple, Jonathan, 543n
Temple, Robert, 376n
Terleckyj, Nestor E., 450n
Terms of trade, GDP growth and, 530–531
TFP (total factor productivity) growth, 434–435. See also Growth accounting
dual approach to growth accounting, 435, 442–444
regression-based estimates of, 441–442
research and development (R&D) and, 450–456
standard primal approach to growth accounting, 433–442
Thailand
GDP growth in, 4
long-term GDP data, 565
Thaler, Richard, 122n
Thompson, Peter, 332
Thomsen, James, 159n, 177
Time-elimination method, 114
Time-preference rates in Ramsey model, 121–134
results under commitment, 123–124
results without commitment under log utility, 124–129
zero rate of time preference, 121
Tobin, James, 155
Total factor productivity (TFP) growth. See TFP (total factor productivity) growth
Trajtenberg, Manuel, 451
Transitional dynamics
defined, 33–34
and migration in models of economic growth, 388–392, 395–398, 403–405
nature of, 37–40
in one-sector models of endogenous growth, 216, 226–232
AK model, 66–68, 208–209
inequality restrictions on gross investment, 271–274
in overlapping-generations model (OLG), 197–198, 416–421
in Ramsey model, 102–121
convergence, 111–118, 167
decline in economy, 137–139
household heterogeneity, 118–121
migration of labor, 395–398
paths of capital stock and output, 110–111
phase diagram, 102–104
policy function, 105–106
population growth, 129–130
results under isoelastic utility, 130–131
savings rate in, 85, 106–110, 135–139
technological progress, 129–130
transversality condition, 90, 91–92, 97–98, 101, 103–105, 135–136
in Solow-Swan model
behavior of input prices during transition, 40–41
endogenous growth models, 66–68
migration of labor, 388–392
for technology diffusion, 359–363, 365–368
in two-sector models of endogenous growth,
Uzawa-Lucas model, 253–256
Transversality condition
importance of, 104–105
in Ramsey model, 90, 91–92, 97–98, 101, 103–105, 135–136
Trejo, Stephen J., 390, 390n, 391
Tsiddon, Daniel, 335n, 375, 376
Turkey, GDP growth in, 4
Two-sector models of endogenous growth, 239–282
conditions for endogenous growth, 268–271
described, 247–251
Two-sector models of endogenous growth (cont.)
Uzawa-Lucas model, 251–268
basic framework, 251–252
generalized version, 266–267
inequality restrictions on gross investment, 264–266
policy functions, 256–257
with reversed factor intensities, 267–268, 280–282
saving rate, 263–264
solution, 274–279
steady-state analysis, 252–253
transitional behavior of growth rates, 257–263
transitional dynamics, 253–256

Unemployment, involuntary, 88
United Kingdom
domestic investment/saving in, 15
growth accounting for, 439
long-term GDP data, 562
number of R&D scientists and engineers, 310
R&D outlays versus GDP, 301
stability of factor shares, 12–13
in switchovers of technological leadership, 376
United States
convergence across economies, 466–474
β convergence, 466–472
measurement error, 472–473
σ convergence, 473–474
domestic investment/saving in, 15
GDP growth in, 1, 4, 13
growth accounting for, 439, 443
income distribution in, 7
labor migration across states, 483–486
long-term GDP data, 562
number of R&D scientists and engineers, 310
R&D outlays versus GDP, 301
regional data sets, 497–500
stability of factor shares, 12
in switchovers of technological leadership, 376
USSR, former, income distribution in, 7
Utrera, Gaston Ezequiel, 483
Uzawa, Hirofumi, 19, 117, 239, 248n, 251, 265, 267, 270
Uzawa-Lucas model, 251–268
basic framework, 251–252
generalized version, 266–267
inequality restrictions on gross investment, 264–266
policy functions, 256–257
with reversed factor intensities, 267–268, 280–282
saving rate, 263–264
solution, 274–279
steady-state analysis, 252–253
transitional behavior of growth rates, 257–263
transitional dynamics, 253–256

Van Holst, Bas, 500, 506
Ventura, Jaume, 19n, 119, 121, 201, 248n
Vickers, John, 322n, 342n
Villaverde, Jose, 483
Vishny, Robert W., 74n, 540
Von Furstenberg, George M., 155n
Von Neumann, John, 63n
Wacziarg, Romain, 540n
Wage rates. See also Labor supply; Migration of labor
in A K model, 206
in Ramsey model, 88, 180–182, 185
in Solow-Swan model, 40–41
taxes on wages, 146
Wagner, Samuel, 354, 355, 364n
Wahl, Jenny Bourne, 408
Wang, Ping, 247n, 266n, 267n
Wealth. See also Income distribution
consumption function as function of, 181–183
in Schumpeterian models of quality ladders, 346
Weeks, Melvyn, 483
Weil, David N., 14, 60, 78, 408n, 413n, 521
Weil, Philippe, 183, 199, 393, 395
Welch, Finis, 185–186
Welfare, technology diffusion implications, 376–379
Williamson, Jeffrey G., 389, 391
Woodberry, Robert D., 519–520
World economy
convergence across regions of world, 482–483
cross-country growth in. See Growth rates
equilibrium in Ramsey model extension, 164–177
income distribution, 6–12
migration of labor in, 383–407
Braun model, 398–407
Ramsey model, 393–398
Solow-Swan model, 383, 384–392
steady state, 187
Wright, Randall, 422n
Wright, Theodore P., 213
Xie, Danyang, 269n
Yaari, Menahem E., 179–180
Yao, Yudong, 483
Yip, C. K., 247n, 266n, 267n, 440n
York, Jeremy C., 544
Young, Alwyn, 12, 13, 16, 332, 350, 376n, 440n, 441, 443
Zaire. See Democratic Republic of Congo
Zeira, Joseph, 74n