Index

Active inhibition, 53
Afferent projections, 130
Ambient vision, 226. See also Vision, attentive and ambient
defined, 221
evidence for, 221–226
Ambiguous motion. See also Stream/bounce perception; Streaming/bouncing motion
how attention influences, 194–196
Amplification of attention, 204, 207
Amplification principle, 198
Anterior fusiform gyrus (antFus), 16, 17
Anterior intraparietal regions (aIPs), 15–17
Associative learning hypothesis, 252
Attention. See also specific topics
covert shifts of, 159
defined, xi
distributed vs. focal, 92–94, 96–99
distribution across visual space, 298–301, 303
does not change appearance, 200
as mimicking an increase in contrast, 279
primary effect, 41
psychological and neural theories of, xi, 20–21
psychology of, 215–216
task-independence, 236
tracking neural activity during, 2–3
varying importance across different aspects of visual performance, 237–239
Attentional control
as centralized vs. decentralized, 293, 297–298
frontal lobe and, 69, 81–84
measurement of, 77–84
Attentional control center (AC), 293, 297
Attention(al) episodes
multiple, 190–191
two consecutive, 188–190
Attentional field, 298
Attentional focus, frontal cortex and, 76–77
Attentional load, 56. See also Perceptual load
Attentional modulation index (AMI), 35, 98, 100
Attentional modulations, 4–10, 251–254, 262
defined, 5
dissociating them from expectation signals, 12–20
general rules about, 6–7
PET studies, 6–7
sensory interactions and, 123–127
Attentional representations, 115, 272
Attention capture, 251
Attention cues, exogenous, 251, 253, 255
Attention effects, quantitative, bottom-up model of, 231–237
"Attention filter," 172–174
Attention-gating function, 186
Attention-gating model, 185–188
Attention models, 177–178, 211. See also specific topics
extended, 188–192
Attention reaction times (ARTs), 182
measuring, 178–185
Attention windows, determining time course and structure of, 178–192
Auditory context. See Sound
Balint’s syndrome, 60
Behavior, assumptions for comparing fMRI responses and, 41–42
Behavioral performance, and brain activity, 36–43.
See also specific topics
Biased/biasing competition, 69
bottom-up salience, 130
Biased competition model/hypothesis, 20, 123, 130–134
implementation, 128, 129
Bias network, functions of, 292
Bias units, 290, 292
Blood oxygenation level-dependent (BOLD) signals, 7, 12, 14, 19, 21
Bottom-up influences on eye movements, 140
Bottom-up model of quantitative attention effects, 231–237
Bottom-up processing, 216
defined, 140
Bottom-up salience of biased competition, 130
Bouncing judgments, 246–249, 252, 254, 255, 257
Brain, capacity to act as ideal observer, 266–272
Brightness discrimination, 96–98
Cellular response to stimuli, 91
Chance, contribution to target detection, 161–165.
See also Target detection, spatial distribution of probability of
Chromaticity difference, 197
Color, selective attention to, 197–200
Color grabber, 204
Color-sensitive areas, 4
Color-shape combination, searching for target based on, 145
Conjunction search, 145–146
Contextual facilitation, effect of attention on, 93
Contextual influences, attentional modulation of physiology, 95–100
psychophysics, 91–94
Contour integration, 91
Contour saliency, 93–94
Cortical connectivity, 292–293
Cramér-Rao bound, 269–271
Cue + noise/motion trials, 14
Cue trials, 13
‘‘Data limits,’’ 55
Degraded target/sensory information, 56–57
Delay activity, cue-related, 11–12
Delayed match-to-sample task, 104, 105
Demand
 attentional, 217
 brain activation associated with cognitive, 73–77
Directional cue scans, 13
Discrete spotlight model, 190–191
Discriminations, similar vs. dissimilar, 219
Discrimination tasks, attentional requirements of various, 227
Distracting attention
 with concurrent task, 253, 255–258
 with salient event, 252–254
Distraction, endogenous, 251, 255
Distractor effect, 62–64
Distractors. See also Negative priming; Relevant vs. irrelevant stimuli
 compatible vs. incompatible with correct response, 50, 56
 and effect of synchronous sound, 251–254
 ipsilesional stimuli and, 60–62
 neural response to, 57–59
 processing, 55–56
 reduced perception vs. increased inhibition of, 53
 Distributed attention, 92–94, 96–99
 Dorsal stream of processing, 133
 Dorsolateral prefrontal cortex (DLPFC), 18, 19
 Driven vs. undriven responses, 108
 Dynamical systems model of salience and related processes, 201–203
Efficient vs. inefficient searches, 51
Estimators, 265–266. See also Fisher information
Expectations, 11
Expectation signals, 4–6, 10–12
 defined, 5
 dissociating them from attentional modulations, 12–20
 top-down, 18–21
Eye movements, 137, 260–262. See also Saccadic eye movements
 bottom-up influences on, 140
Feature conjunction, 145–146
Feature-integration theory, 228, 238
Feature(s), attention to, 194–196
Feature selection, 286
Feedforward competitive neural networks, 128
 ‘‘Figure’’/‘‘figureness,’’ 194, 196
 Figure-ground, and pattern recognition, 208–209
Fisher information, 266, 267, 272, 278–280
 gain increase and, 275–278
 sharpened tuning and, 272–275
Flanker facilitation, 96–100
Flanking lines, 91–93, 98
Flow fields, 193–196
fMRI, 3
 event-related, 12–20
Focal attention, 92, 94, 96–99
Folding, 184, 185
Frontal activity, ipsilateral to attended field, 72
Frontal cortex, 150, 152
 relations between specific and general functions of, 73–77
Frontal eye field (FEF), xiv, 140, 142–143, 145
 dissociation from saccade production, 142
 functions, 138, 150
 as motor area, 148–149
 motor function, 138–139
 as salience map, 150–152
 visual function, 139–140
Frontal eye field (FEF) neurons, 140–142, 144–148
 visual vs. movement, 149–150
Frontal lobe
 and attention to left and right, 70–73
 and control of visual attention, 69
Frontal lobe functioning, uncertainties in current knowledge of, 84–85
Frontal neurons, 69
Frontal patients, deficits in attentional control, 81–84
Frontal response to diverse cognitive demands, 73–77
Frontal systems, role in working memory, 74–75
Gain increase, 272, 275–278
Gating control units, 290
Gating units, 290
Gaze behavior. See Selection
 Global winner, 287
Grabbing items for short-term memory, 180–182
Grabbing response and grabbing procedure, 178–182
Guided search model, 20
Habituation/dishabituation, 260, 261
Hemodynamics and hemodynamic signals, 2–3
Hierarchical neural networks, 285. See also Winner-take-all (WTA) selection processes, hierarchical
 Hue discrimination, with ambient vision, 223, 224
Ideal observer, neural implementation of, 266–272
Ideal observer models, 266, 279–280
Information processing. See Processing
 ‘‘Inhibition of return,’’ 292
Inhibitory zone, 287
Integration procedure, 170–171
Interpretive units, 290
Index

Intraparietal regions (IPs), 15, 16
Ipsilesional stimuli and distractors, 60–62
Laminarity, 184, 185
Lateral neglect. See Unilateral neglect
Learning. See also Associative learning hypothesis perceptual, 94–95
Location of flashed stimuli, 7, 8
Masking, visual, 147–148, 217, 218
Medial temporal cortex (MT), 7, 15, 26, 37, 133, 265
Memory
access to, 209–210
short-term
achieving primacy in, 185
grabbing items for, 180–182
working, 74–75
Memory-guided search for stimulus, 131–133
Mid-fusiform gyrus (mFus), 15
Motion aftereffect, 58–59
Motion analysis, standard, 206
Motion discrimination tasks, 26
Motion localizer scans, 13, 14
Motion processing, 58–59
Motion-sensitive areas, 4, 7, 12, 18
Motion (stimulus), 133
attention-driven apparent, 193–196
how attention influences ambiguous, 194–196
task-irrelevant, 58–59
Motion systems, 12, 193
first- vs. second- vs. third-order, 193–198, 202–203, 206, 207
Motor reaction times (MRTs), indirect measures of, 178–182
Multiplicative scaling, consequences of expanded model of, 111–115
simple model of, 109–111
Negative priming, 52–55
Neural networks, 269–270
attention in, 192
feedforward competitive, 128
hierarchical, 285
Neuroimaging, 2–3. See also specific topics
Neuronal firing rates, 41–42
Neuronal representation of behavioral significance of information, 115
Neuronal responses. See also specific topics
effects of attention on, 103–104, 115
Neuronal tuning curves, sharpening/enhancing, 272–275
Noise, 266, 269, 276–280
and the decision process, 205
flat vs. proportional, 269–271
Gaussian, 266
Poisson, 272–275, 277
suppression, 7
Object identification, with ambient vision, 224–226
Occipital lobe, spatially directed attention and, 72
Orientation discrimination, 229–231
Orientation tuning/selectivity, attention and, 104–108
Overtraining, and brightness discrimination, 96
Parietal lesions, bilateral, 60
Parietal lobe, attention controlled by lateralized activity of, 72
Passive vs. active viewing/detection tasks, 7–8
Pass zone, 287
Pattern recognition, figure-ground and, 208–209
Perceptual continuity, 91
Perceptual learning and attention, 94–95
Perceptual load, 50, 55
and the aging brain, 62–65
and unilateral neglect, 59–62, 65
Perceptual load model, xvi, 64–65
empirical support for, 50–57
and neural response to distractors, 57–59
‘‘Pop-out’’ phenomenon, 216
‘‘Pop-out’’ search, 140–142, 144
Posterior intraparietal regions (pIPs), 17
Postsynaptic potentials (PSPs), 276–279
Prefrontal activity, 148
spatially directed attention and lateral, 72
Preparation enhancement, 244
defined, 244–245
Prime load. See Perceptual load
Priming, negative, 52–55
Probability summation, defined, 244
Probe stimuli, 124, 125
Processing, information stages, 287
strategies for modeling biological, 303
Processing capacity
limits, 49–50, 65, 121–122
reduced/restricted, 60, 62
Receptive fields, shrinking/shifting, 113–114
Receptive field stimulus, attention to a single, 130
Red advantage, 199
Reference lines, 91, 92
Relevant vs. irrelevant stimuli, focusing on and processing, 49–50
Repetition
attended, 53
ignored, 53
Representation of attended stimuli, 115, 272
‘‘Resource limits,’’ 55
Response competition, 50–52, 56, 62, 63
Response conflict, 74
Retrieval cues, 189–190

Saccade execution, 150
Saccade latency, 137, 150
Saccades, 138, 140, 148, 149
production of, 137, 139, 142, 144
Saccadic amplitude distribution (SAD), 165–167
Saccadic eye movements, 137
Saliency/salience (of features)
attentional amplification of, 197–200
constraints on top-down control of, 210
contour, 93–94
dynamical systems model of, 201–203
and effect of synchronous sound, 251–253
varying, 197, 199
Saliency/salience maps, 193–197, 205, 207–210
Saliency/salience theories, 207
as central to thinking about attention, xiv–xv
Salient event, distracting attention with a, 252–254
Scanning process, covert
See “Attention filter”
Search load, 51
Selection (process), visual, 272. See also Orientation
tuning/selectivity; Spatial selection; Winner-take-all (WTA) selection processes
of ambiguous targets, 147–150
of conspicuous targets, 140, 141
early vs. late, 64
feature, 286
knowledge and, 143–147
multilevel, perceptual consequences, 215–217, 237–239
psychological theories about, 3–5
stages, 142
timing, 142
top-down factors influencing, 137, 143
visual conspicuousness and, 140–143
Selective attention, 8, 49
capacity limits, 49–50, 65
to color, 197–200
Selective modulation of task-relevant pathways, 6–9
Selective tuning model, 285–298, 303–305
Sensory information, degrading, 56–57
Sensory representations, 115, 272
Sensory synchronization, for stream/bounce perception, 258–262
Shape-sensitive areas, 4
Shifting receptive fields, 113–114
Shrinking receptive fields, 113–114
Signal enhancement, 7, 11
Signal enhancement mechanisms, 20–21
Signal enhancement models, 11
Single-unit experiments, 10

Sound, synchronous
auditory context and effect of, 244–251
visual distractors and effect of, 251–253
Sound omission, 250
Spatial attention
models for (see Multiplicative scaling)
used for stream/bounce perception, 258–262
Spatial attention task, effect on activity of visual cortex, 31–36
Spatial filter, 205
Spatial frequency thresholds, 229–231. See also Attention effects, quantitative
Spatially directed attention
regional cerebral activity during, 70–73
Spatially selective effects of attention on area V1, 40–41
Spatial selection, 286
“Spatial uncertainty” experiment, 36, 40
Spatial vision thresholds, 228–231. See also Attention effects, quantitative
computational model of, 232–235
Speed discrimination model, 37–40
Spontaneous activity, 108, 130
Stimulus/stimuli
attention filtering out unattended, 126, 127
attention to a single receptive field, 130
cellular response to, 91
competition between, 304
distances between, 166, 167
ipsilesional, 60–62
location of flashed, 7, 8
memory-guided search for, 7, 8
preferred vs. poor, 122–128, 131
processing unattended, xvi–xvii
relevant vs. irrelevant, 49–50 (see also Distractors)
Stream/bounce perception, 253, 255, 261–262. See also Sound, synchronous
Streaming/bouncing ambiguous motion
ambiguous motion display for, 245, 251, 252, 259, 260, 262
development of, 258–262
Streaming/bouncing ambiguous motion, 243–245.
See also Sound, synchronous
Stream perception, 262
Stroop effect, 74
Superior colliculus (SC), 134
Suppression, cortical, 8

Target detection
contribution of chance and attention to, 161–165
probability of, deduced from spatial distribution, 169–172
spatial distribution of probability of, 165–168
Target lines, 91, 92
Task-independence of attention, 236
Task-relevant vs. task-irrelevant pathways, modulation of, 6–9
Template signals. See Expectation signals
Temporal attention window, model for
engine, 185–187
full model, 186–188, 206–207
Temporal cortex, inferior, neuronal responses in during memory-guided search, 131–133
Temporal recruitment hypothesis, 243–244
Temporal recruitment of motion signals, 262
Texture grabber, 204
Top-down biasing signals, 20–21
Top-down control of salience, 210
Top-down expectation signals, 18–21
Top-down factors influencing selection, 137, 143
Top-down processing, 216
defined, 143
Treisman’s feature-integration theory, 228
Tsotsos’s model, 20

Unilateral neglect, 59–60
perceptual load and, 59–62

Variance, minimum. See Cramér-Rao bound
Ventral intraparietal regions (vIPs), 15
Ventral MT+, 17
Ventral stream, attentional modulation of neuronal responses in, 122–130
Vision, attentive and ambient, 216–226, 238. See also specific topics
qualitative difference between, 216, 226–228
quantitative differences between, 216, 228–231
Visual cortex
contextual influences in, 89–91
spatial attention and, 31–36
spatially selective effects of attention on, 40–41
Visual expectations. See Expectation signals
Visual experience, phenomenal, sources, 238
Visual field, central and peripheral, 139
Visual focal attention, 251
Visual search, 159–160
active, 160
research on, 159
Visual search paradigm, 140
Visual task performance, visual cortex activity, 29–31

Winner-take-all (WTA) circuits/networks, 294, 304
network structure and function, 290–292
neural correlate of, 292–296
Winner-take-all (WTA) selection processes, hierarchical, 286–289, 304
“Winning,” 185
Wolfe’s guided search model, 20