Index

Abelian group, 402-406, 409
Ab initio methods, 219
Accessible surface area (ASA), 345-346
Acid-denatured ACBP, 58
Active site modification, 97-98; chs. 10, 12, 28, 46
Acyl carrier proteins (ACPs), 249-251
Adenosine monophosphate (AMP), 105, 253-256
α-expansion move algorithm, 318-320, 325-326
All-atom Cartesian coordinates-based model, 191
All-class mean, 188
Alpha shapes, 410-411
Alpha-synuclein, 334
AMBER, 222
Aminoacyl-AMP formation, 254-255
Amprenavir, 246-247
Anisotropic network model (ANM), 214-215
ApoPheATE, 254
Approximation algorithms, ch. 12
Aryl carrier proteins (ArCPs), 249-251
A^{*} search, 106-107, 234, 237, 241-242
Assignment problems, 3, 23; chs. 8, 14, 15-18, 33, 34, 37, 38, 43
Autolink and, 363
energy function and, 315-317
graph cuts and, 315-321, 323
residual dipolar couplings (RDCs) and, 27, 116, 129, 131, 151
ATP, 254-255
AURELIA, 293
Autolink
assignment problems and, 363
fragment and, 363
overview of, 363-365
pair scoring and, 365-367
priority list and, 363, 367, 369-370
random factor bias and, 369
repeat bias and, 369
spin system and, 363, 365-367, 370
AutoStructure
discriminating power (DP) score and, 289-291
distance geometry and, 285-292
final structure assessment and, 289-291
F-measure score and, 289-290
heuristic distance network initialization and, 285-287
initial ambiguous network construction and, 285
initial structure construction and, 288
input data preparation and, 285
input data validation and, 285-287
iterative fold analysis and, 288-289
precision score and, 289-290
recall score and, 289-290
resonance assignment and, 287
Backrubs, 108, 111, 241, 412
Badoiu, M., 310
Bailey-Kellogg, C., 61
Baker, D., 155, 167
Bayesian networks (BN), 228-229
Bayesian probability, 119, 161-162, 172, 228-229
BD algorithm, 104, 107-108, 111, 241
Belief propagation algorithms
Bethe approximations and, 231
dead-end elimination (DEE) and, 234
defined, 229
ensemble properties and, 233
free energy and, 230-232
future directions for, 240-242
generalized belief propagation (GBP) and, 231-233
graphical models and, 229-233
max-marginal probability and, 236-238
max-product, 236-237
mean-field approximations and, 231
multiple low-energy sequences through, 237-238
protein design and, 236-237
region graphs and, 231
Bernado, P., 333, 337
Bethe approximations, 231
Betti number, 402, 404, 407, 410
Between-class variance, 188
Bézier systems, 403
B-factor, 342
BioMagResBank (BMRB), 64, 168, 295-296

Bioterrorism, 160
Bipartite graphs, 23-24, 122, 166-169, 261
Biswas, P., 309
Boltzmann constant, 9
Boltzmann probability, 9, 221, 235, 240, 266, 268, 372
Boltzmann's law, 230, 235
Boltzmann solvation model, 89
Boykov, Y., 318
Bragg's law, 341
Branching factor, 100
brDEE algorithm, ch. 12
BroMAP, 241-242
Brownian normal mode analysis (NMA), 199
Canny, J., 193-194
CAP, 151
Carbonyl carbon, 2, 78
computational protein design and, 94
interatomic vectors and, 47-51
protein-ligand matching and, 261
residual dipolar couplings (RDCs) and, 166 (see also
Residual dipolar couplings)
Carrier proteins, 249-251
Cartesian coordinate-based root-mean-square deviation, 351
CAST, 411
Catalytic machinery, 77, 80-81; ch. 28
CBF β, 65-67
CH bond, defined, 55, 126
Chain groups, 402, 404-407
Chain Tweak, 191-195
CHARMM, 222
Chemical shift, 10-11, 18
CS-Rosetta and, 371-376
JIGSAW and, 59-60, 64
MARS and, 293-300
NOESY data interpretation and, 285, 288
nuclear vector replacement (NVR) and, 119-122
protein-ligand NOE matching and, 261
protein unfolding and, 333
residual dipolar couplings (RDCs) and, 129, 131-132,
135, 145-146, 150, 152, 155, 162, 166-170
resonance assignment and, 355, 365
rotamers and, 371, 373
simulated annealing (SA) and, 371-373
Chen, C.-Y., 99, 105
Chen, I., 111
Chernoff tail bounds, 155
Circular dichroism spectroscopy (CD), 397
Claus, B.I., 259-260, 262
Clustering modulo a group, chs. 14, 17
Cohomology operation, 411-412
Collins, G.E., 409
Computational protein design, chs. 11, 12, 30, 45, 46, 49
complexity analysis and, 92 (see also Dead-end
elimination)
Dahiyat-Mayo protocol and, 87-92
dead-end elimination (DEE) and, 88-92
enumeration and, 89,91
experimental validation and, 92,94
global minimum energy conformation (GMEC) and, 88-92
inverse folding problem and, 87
JIGSAW algorithm and, 94
nuclear magnetic resonance (NMR) and, 92, 94
nuclear Overhauser effect (NOE) and, 94
protein backbone and, 87-92
pruning and, 88-89, 92
residual dipolar couplings (RDCs) and, 94
rotamers and, 87-92
self-energies and, 89
template energies and, 89
zinc finger and, 88, 91-92
Computer-aided resonance assignment (CARA), 363
Conformation sampling, 206-207, 388
Conformation trees, 100, 106-107, 141, 162
Continuum solvent model, 344
Covariance matrix
principal components analysis (PCA) and, 27-44
residual dipolar couplings (RDCs) and, 33-44
Critical values, 410
Cross-rotation analysis algorithm (CRANS), 160, 383-386
Cross-rotation function (CRF), 383-384, 391
Cryptosporidium hominis, 160
CS-Rosetta
all-atom minimization and, 373
correctness and, 372-373
DC and, 374
DP score and, 375
fragment library generation and, 373
fragment replacement and, 373
Monte Carlo procedure and, 372
nuclear magnetic resonance (NMR) and, 371-376
performance analysis of, 374-376
prediction and, 371
Rosetta and, 371-375
side-chain minimization and, 373
SPARTA and, 373-374
termination and, 374
testing set and, 371
CYANA, 371
Cyclic coordinate descent (CCD) algorithm, 220-222
DACS (divide-and-conquer splitting), ch. 12
Dahiyat, D.I., 87
Dead-end elimination (DEE), 84, 175, 265
A^{*} search and, 106-107, 234, 237-238, 241-242
backrub and, 108, 111, 241, 412
BD algorithm and, 104, 107-108, 111, 241
belief propagation algorithms and, 234
brDEE algorithm and, ch. 12
computational protein design and, 88-92
DACS and, ch. 12
ensemble-based protein design and, 99-111
flexible, 104, 107-108, 111, 241
minimized (minDEE), 99-111, 241
negative design and, 109-110
peptide design and, 69-70
protein-ligand binding and, 107
side-chain conformations and, 106, 108
steric filter and, 100
Degrees of freedom (DOFs), chs. 7, 14, 15-18
equilibrium fluctuations and, 220, 222
protein flexibility and, 191-194, 206
rigidity theory and, 201
Delarue, M., 388
Delaunay triangulation, 399
Denatured protein structure, 55-58; ch. 39
Denavit-Hartenberg (DH) local frames, 192
Design of proteins, peptides, small molecules, chs. 9-12, 25-28, 30, 41, 45, 46, 49
Differential scanning calorimetry (DSC), 397
Dihedral angles-based model, 191
Dihydrofolate reductase (DHFR), 109
Dimpleoid, 30
Directed evolution, 83-85
Directional variance, 28-33, 39-44
Distance geometry, 2, 4-5, 92, 130, 157, 344
all distances but with some errors and, 3
all exact distances and, 3
angle information and, 310-311
AutoStructure and, 285-292
divide-and-conquer approach and, 274
graph connectivity and, 274-275
graph embedding and, 310-311
graph partitioning and, 275-276
interval bounds and, 3
molecule problem and, 273
NP-hard problem, 279-283, 308
orientation constraints and, 307, 310-313
residual dipolar couplings (RDCs) and, 311-313
rigidity theory and, 200, 274-277
semidefinite programming and, 307-313
sparse sets of distances and, 3
stress matrix and, 274-275
subgraph realization and, 276
time complexity and, 312
unique realizability conditions and, 274-275
Distance root-mean-square deviation, 351
Domain-swapping, 97-98
Donald, Bruce R., 98-100, 108, 111
flexible backbone DEE and, 107
nuclear vector replacement (NVR) and, 119, 122, 124
residual dipolar couplings (RDCs) and, 55, 58, 127-185
Dunathan's hypothesis, 83
DYANA, 371
Dynein light chain (DLC2A), 301, 303-305
E-approximation algorithms, ch. 12
E. coli, 84,94

Edelsbrunner, Herbert, 410
Edge-weight, 122, 283
EEF1 solvation model, 99, 102-105
Elastic Network Models (ENM), 389-390
Energy functions
class \mathcal{F}^{2} and, 332
class \mathcal{F}^{3} and, 330-332
classification of, 326-327
ensemble-based design and, 102-104
expectation/maximization (EM) algorithm and, 324-326
feature space clustering and, 323-326
graph cuts and, 315-332
nonparametric clustering and, 325
parametric clustering method and, 325
pixel labeling problem and, 323-326
receptor docking and, 344
soft-core, 344
Energy-weighted average, 343
Ensembles
analyzing protein structures using, 351-353
conformational ensemble and, 337-340
dead-end elimination (DEE) and, 106-111
docking and, 343
K^{*} algorithm and, 98-106, 110-111
local sampling and, 333-336
long-range order and, 335
loops and, ch. 24
metric space and, 352-353
minimized, 106-111
nonribosomal peptide synthetase (NRPS) enzymes and,
97-98, 108, 110
principal components analysis (PCA) and, 27
residual dipolar couplings (RDCs) and, 20, 27-28, 34,
222, 226, 333-337, 343, 352
rotamers and, 98-108, 111
small-angle X-ray scattering and, 337-340
steric clash checking and, 333-335
Entropy
amprenavir and, 246-247
using belief propagation, ch. 25
configurational, 245-248
conformational, 104, 232-233, 245-248
design implications and, 247-248
free energy and, 232
K* and, chs. 12, 25
ligand binding and, 245-248
multiplicity and, 245
vibrational, 246
Enzyme redesign
catalytic machinery and, 77, 80-81
computational, ch. 12
directed evolution and, 83-85
Dunathan's hypothesis and, 83
improving promiscuity and, 77, 82-84
interconverting homologous enzymes and, 79-80
minimalist active site and, 77-83
partitioning of reaction intermediates and, 82

Enzyme redesign (cont.)
product and, 77
removal of catalytic nucleophiles and, 81
stereo-and regiochemistry control and, 82
substrates and, 77
subtilsin and, 78
Equilibrium fluctuations, 220-221, 226
Erdmann, Michael, 412
Euclidean geometry
cross-rotation and, 384
distance geometry and, 309
ensembles and, 351
protein flexibility and, 208
residual dipolar couplings (RDCs) and, 134
topology and, 400, 405-409
Euler angle, 120-121
Euler number, 404
Expectation/maximization (EM) algorithm
graph cuts and, 320-321, 324-326
NVR and, chs. 14, 15, 17.2, 18.1.2
protein flexibility and, 208
residual dipolar couplings (RDCs) and, 118-119, 122, 150-152, 166-171
resonance assignment and, 361
X-ray crystallography and, 388
Face, 410
Factor graphs, 229
Feature space, 323-326
Feature vectors, 323-324, 326, 393
FELIX, 293
Finite simplical complex, 400-401
FIRST, 197, 200
Flexible-backbone DEE (BD), 107-108. See also brDEE
Flexible-backbone GMEC, 107
Foldamers, 71-74
Fourier transform, 10, 166, 341, 383, 387
Fragment ensemble method (FEM), 220-221
Framework rigidity optimized dynamic algorithm
(FRODA), 208-210
Free chain complex, 405
Free energy, 247
belief propagation algorithms and, 230-232, 236-237
entropy and, 232
Gaussian summation and, 346
Gibbs, 227-228, 230-231, 245, 394
global minimum energy conformation (GMEC) and, 69,
88-92, 104-110, 233, 235, 237, 240-242, 332, 412
Hessian matrix of, 389
holoPheATE catalysis and, 256-257
K* and, ch. 12
metadynamics and, 346-349
predicting binding energetics and, 345-346, 349
protein-ligand interactions and, 67
pseudoenergy and, 295
Free energy surface (FES), 346, 349
Free induction decay (FID), 9-10

Frobenius inner product, 36-38
Fromer, M., 235, 237-238
Fundamental group, 400-401
Fushman, D., 51
GAPDH, 81
Gaussian distribution, 30-33, 61, 168, 346
Gaussian Network Model (GNM), 167, 213-214
Gaussian summation, 346
GD algorithm, 131, 133, 153, 155, 161, 166, 169
Generalized belief propagation (GBP), 231-233
Generalized Born/Poisson-Boltzmann solvation models, 89
Generalized Potts Model (GPM), 316
Genetic algorithms (GA), 135, 219, 265-268, 393-395
Geometry-weighted average, 343
Georgiev, I., 98-100, 108, 111
Gibbs free energy, 227-228, 230-231, 245, 394
Gilson, M.K., 246-247
Global minimum energy conformation (GMEC), 412; chs. 11, 12
belief propagation and, 233-237, 240-242
computational protein design and, 88-92
ensemble-based protein design and, 104-110
graph cuts and, 332
peptide design and, 69
Global orientational information from RDCs, 19
Gorczynski, M.J., 67
Gramicidin S, 253-258
Graph cuts
α-expansion move algorithm and, 318-320, 325-326
classifying power of, 323-332
computing visual correspondence and, 318-321
energy function and, 315-332
expectation/maximization (EM) algorithm and, 324-326
feature space clustering and, 323-326
Generalized Potts Model (GPM) and, 316
graph construction and, 316-317
grid topology and, 315
Hammersley-Clifford theorem and, 315
hard membership and, 326
MAP estimation and, 315
Markov Random Fields (MRFs) and, 315-316
multiway cut algorithm and, 317
nonparametric clustering and, 325
NP-hardness and, 317, 329
occlusions and, 318-321
parametric clustering method and, 325
pixel labeling problem and, 323-326
residual dipolar couplings (RDCs), 333-334
soft membership clustering and, 326
spatial coherence and, 323-324, 326
super pixel approach and, 326
Graphical models
application in protein design and, 233-242
Bayesian networks and, 228-229
belief propagation algorithms and, 229-233, 236-237
factor graphs and, 229
future directions for, 240-242
marginal probability and, 228
Markov Random Field and, 229-232, 315-316, 318, 325-326
max-marginal probability and, 236-238
probabilistic protein design and, 238-240
protein design problem and, 235-237
region graphs and, 231
Graph partitioning, 275-276
Graph theory
AutoStructure and, 285-292
bipartite graphs, chs. 14, 15-18, 43
distance geometry and, 273, 279
Froda, ch. 22
graph embedding, chs. 31-33, 36
graph cuts, chs. 37,38
JIGSAW and, 59, ch. 8
Laman's theorem, 201
lower bounds and, ch. 32
NOE network, ch. 33
protein flexibility and, 200-202
ROCK, ch. 22
GrsA-PheA, 97-98, 105, 108
Hammersley-Clifford theorem, 315

HANA

Chernoff tail bounds and, 155
Hausdorff distance and, 155
residual dipolar couplings (RDCs) and, 133, 155-158, 171-172
Harmonic approximation, 197-198
Hausdorff distance, 117-118, 155
Hellinga, H., 104
Hendrickson, B., 273-277
Hessian matrix, 199, 214, 389
Heteronuclear single-quantum coherence (HSQC), 13, 23
errors in structure determination and, 303
HX rates and, 355, 357
JIGSAW and, 59-60, 65
NMR structural biology and, 17-20
nuclear vector replacement (NVR) and, 119-121
protein-ligand NOE matching and, 259-260
reductive methylation and, 357-361
residual dipolar couplings (RDCs) and, 130, 150-152, 166, 168
resonance assignment and, 355-357
Heuristic algorithms, chs. 6, 9-11, 20-26, 30, 31, 41, 42, 44, 45, 49
HIV, 246-247, 411
HNH^{α} experiment
JIGSAW and, 59-60, 65
residual dipolar couplings (RDCs) and, 135, 145
scalar (spin-spin) coupling and, 4-5, 15-16, 20, 59-60
HoloPheATE, 254, 256
Homologeous enzymes, 79-80

Homology groups
Abelian groups and, 402-406, 409
alpha shapes and, 410-411
Betti number and, 402, 404, 407, 410
chain groups and, 402, 404-407
cohomology operation and, 411-412
complexity and, 403
computable types and, 402-404
computing, 404-410
critical values and, 410
face term and, 410
free chain complex and, 405
kernels and, 402, 405
mathematical/biological terms for, 399
matrices and, 401-409
reduction algorithm and, 406-409
simplical complexes and, 400-404
Smith normal form and, 402-403, 409
topology and, 399-412
torsion coefficients and, 402, 407
Homology modeling
arginine side-chain and, 306
Bézier systems and, 403
catalytic machinery and, 77
cross-rotation function and, 384
domain-swapping and, 84
dynein light chain and, 301-302
equilibrium fluctuations and, 219-220
free energy and, 227
improving promiscuity and, 82-83
interconverting enzymes and, 79-80
MARS and, 298
mathematical/biological terms for, 399
molecular replacement (MR) and, 387, 391
noncrystallographic symmetry (NCS) and, 383, 391
nuclear vector replacement (NVR) and, 119, 123-124
peptide design and, 68
protein flexibility and, 195
protein-ligand NOE matching and, 259
residual dipolar couplings (RDCs) and, 117-118, 130-133, 149-155, 161, 167, 169-170
Rosetta and, 372
Homonuclear correlation spectroscopy (COSY), 15
Homo-oligomers, 158-159
Hopcroft-Karp algorithm, 24
Hungarian algorithm, 259-263, 361
Hus, J.-C., 151
HX rates, 355, 357
Hydrophobic interactions, 207-208
Iliopoulos, C.S., 409
In-class variance, 188
Inference problems, 235
Initiation module PheATE (GrsA), 253-258
Inner product, 29
Interatomic vectors, 47-51
Intramutation pruning, 100-102

Intrinsically disordered proteins, chs. 7, 39, 42
Intrinsic dimensionality, 188
Inverse folding problem, 87, 234
Inverse kinematics, 117, 164, 175, 191-195, 219, 312
Ion conductance studies and, 158
Isotopic labeling, 132; chs. 2, 3, 8, 14, 15-18, 29, 43
Isupov, M.N., 391
J coupling, 13, 15, 20, 59, 65
J-doubling, 135, 145
JIGSAW
automated NMR peak assignment and, 59-66 chemical shift and, 59-60, 64
computational protein design and, 94
graph representation of atom interactions and, 60-61
HNH^{α} and, 59-60, 65
HSQC and, 59-60, 65
local distance patterns and, 61
match score and, 61, 64-65
NOESY and, 60-64
nuclear Overhauser effect (NOE) and, 65
overview of, 59
pattern discovery and, 61
protein backbone and, 59
secondary structures and, 59, 61-64
side-chain fingerprint alignment and, 64-66
TOCSY and, 60, 66
Jung, Y.S., 293
K^{*} algorithm
basics of, 98-102
branching factor and, 100
EEF1 solvation model and, 99, 102-105
energy functions and, 102-104
ensemble-based protein design and, 98-106, 110-111
graphical models and, 234
intramutation pruning and, 100-102
mutation space filters and, 99
negative design and, 109-110
peptides and, 67
protein backbone and, 99, 102, 104-105
protein-ligand binding and, 98-99
redesigning enzymes with, 105-106
side-chain conformations and, 99, 102, 104
single-structure scoring and, 99
stop-threshold and, 100
synthetic biology problems and, 110
Kamisetty, H., 228, 231-232, 240
Karplus curve, 4, 15, 102
Kay, L.E., 145
Kearsley, S.K., 74
Keller, R., 367
Kernel methods, 381, 402, 405
Kinematic loop closure problem (KLCP), 162

Kinematics, 1, 3n1, 54, 220; chs. 1, 2, 9, 13, 15-18, 20-24, 30
Chain Tweak and, 191-195
Denavit-Hartenberg (DH) local frame and, 192
ensembles and, 108
initiation module PheATE (GrsA) and, 253-258
inverse, 117, 164, 175, 191-195, 219, 312
loop closure problem and, 191-195
Probik and, 191-195
protein flexibility and, 191-194
Ramachandran plots and, 194
residual dipolar couplings (RDCs) and, 117, 123-124, 127, 132, 138, 143-144, 160-164, 173, 175
ROCK and, 205-208, 210
Klein bottle, 403-404
Knegtel, R.M., 344
Kuhn-Munkres matching algorithm, 116
Kullback-Leibler distance, 117-118, 121, 230
Laman's theorem, 201
Langmead, C.J., 122, 155, 167, 169
Lazaridis-Karplus EEF1 pairwise solvation energy, 102
Lebedev, A.A., 391
Liang, J., 410
Lie group, 123, 151, 383
Ligand configurational entropy, 245-248
Ligand-protein binding, 213-217
Ligand-protein docking
accessible surface area (ASA) and, 345-346
K* and, ch. 12
metadynamics and, 346-349
Minkowski sum and, 345
predicting binding energetics and, 345-346
protein flexibility and, 345-349
Lilien, R.H., 98-99, 111
Linear discriminant analysis (LDA), 188
Linker computation, 57
Local distance information, 19
Lock-and-key model, 213
Looger, L., 104
Loop closure problem, 191-195
Loop libraries, 219
L-phenylalanine (L-Phe), 105, 253-257
Manocha, D., 193-194
Markov Random Field (MRF), 229-232, 315-316, 318, 325-326
MARS
backbone assignment and, 293-300
chemical shift and, 293-300
methodology of, 293-296
pseudoresidues (PRs) and, 293-295, 298
residual dipolar couplings (RDCs) and, 296-300
sequential connectivity and, 294-296
Martin, Jeffrey, 127-185
Masse, J.E., 367

Mass spectrometry classification algorithms (MSCAs), 187-189
Mass spectrometry (MS), chs. 19, 43
${ }^{13} \mathrm{C}$-methylated proteins and, 357-361
HX rates and, 355, 357
NMR assistance and, 355-361
proteomic disease classification algorithm and, 187-189
resonance assignment and, 355-361
Matching modulo a group, ch. 14
Mathematical equations
anistropic network model (ANM), 214-215
Autolink, 367
belief propagation, 230
Bragg's law, 341
chemical shift, 11
dead-end elimination (DEE), 69, 89, 91
dipolar coupling constant, 19
Elastic Network Model (ENM), 389-390
energy function, standard form, 327
energy function with occlusion, 318
ensemble representation, 351-352
expectation/maximization NVR algorithm, 122
Gaussian Network Model (GNM), 213
Generalized Potts Model, 316
generalized quality factor, 48-49
generalized sampling parameter, 48
graph cuts, 315-316, 318, 324-325, 327-330
Hammersley-Clifford, 315
K^{*} algorithm, 98-99
ligand configurational entropy, 245-246
max-marginal probability, 236
quantum energy difference, 8
quartic RDC, 53-54, ch. 15-18
nonparametric clustering, 325
normal mode analysis (NMA), 197-198, 213, 215
nuclear Overhauser effect (NOE), 18
orientational sampling, 48-49
parametric clustering, 325
posterior energy function, 316
principal components analysis (PCA), 28-44
protein design problem, 235-237
protein ensemble method (PEM), 222
pseudoenergy, 295
residual dipolar couplings (RDCs), 19, 34-44, 115-117, 137, 162-165, 173
resonance assignment, 121-122
ROCK algorithm, 206
rotamer probability term, 104
sampling tensor, 48
semidefinite programming, 308-309
sequential connectivity, 295
tensor estimation, 120
topology, 402-403, 405-409
Wang-Donald, 146, 163-164
Yan-Donald tensor notation, 137
Z-score, 394

Matrices
Hessian, 214, 389
Kullback-Leibler distance and, 117, 121, 230
positive semidefinite (PSD), 307n1
principal order frame (POF) and, 19, 31-32, 53-54, 57, 116-117, 120, 151-152, 162-163, 166
probability, 121-122
quaternions and, 69, 121, 383-384, 391
Saupe, 19, 27-28, 34-37, 43, 55, 57, 115, 137, 162-163, 334
semidefinite programming and, 307-310
special linear group $\operatorname{SL}(3)$ and, 121
special orthogonal group SO (3) and, 121, 384
stress, 274-275
topology and, 401-409
within-class scatter, 188
Matthews correlation coefficient (MCC), 378
Maximum a posteriori (MAP) estimation, 241, 315
Maximum bipartite matching (MBM), 23-24, 116
Max-marginal probability, 236-238
Mayo, S.L., 87
Mean-field approximations, 231
Meccano algorithm, 340
Membrane proteins
computational topology and, 411
peptide design and, 70
residual dipolar couplings (RDCs) and, 129-133, 158, 172-173
Metadynamics, 346-349
Methionine residues, 104
Metric space, 352-353
Metropolis sampling, 216, 265, 268, 373
MinBounds, 237n1
minDEE (minimized dead-end elimination) algorithm, ch. 12
Minkowski sum, 345
Missing loops, 219
Molecular dynamics (MD), 27, 346
metadynamics and, 346-349
protein flexibility and, 191
simulated annealing (SA) and, 129, 132, 141, 145, 173, 279
Molecular replacement (MR)
cross-rotation and, 383
nuclear vector replacement (NVR) and, 119
residual dipolar couplings (RDCs) and, 127, 130-131, 150, 160, 166-167, 173
X-ray crystallography and, 387-391
Moment (nuclear spin angular momentum), 7-12
Monte Carlo methods, chs. 6, 20, 30, 34, 39, 41, 44, 45, 49
CS-Rosetta and, 372
equilibrium fluctuations and, 219
peptide design and, 69-70
protein-ligand binding and, 344
residual dipolar couplings (RDCs) and, 129, 135, 145
side-chain/backbone flexibility and, 265-266, 268

Multiple receptor conformations (MRCs), 215-217
Multiple-ring closure, 206-207
NADPH-dependent family, 79-80
Native protein structure, 53-55
Newtonian physics, 134, 144
NH bond vectors, $50-51,53,124,140,334,343$
Nilges, M., 161-162, 343
NMRView, 293
Noncrystallographic symmetry (NCS), 160
cross-rotation analysis algorithm and, 383-384
Elastic Network Model (ENM) and, 389-390
molecular replacement and, 387-391
oligomeric models and, 390-391
self-rotation function and, 383-384, 390-391
X-ray crystallography and, 387-391
Nondeterministic Polynomial-time (NP) hard problem
3SAT reduction and, 280-282
adding dimensions and, 282
annealing schedule and, 372-373
computational protein design and, 92
CS-Rosetta and, 372
distance geometry and, 279-283, 308
graph cuts and, 317, 329
k-embeddabiltiy and, 282-283
1-embeddability and, 280-282
partition reduction and, 280
residual dipolar couplings (RDCs) and, 145
rotamer assignment and, 234
subgraph realization and, 276
Nonparametric clustering method, 325
Nonribosomal peptide synthetase (NRPS), 83-85;
chs. $10,12,27,28,46$
active site modification and, 97-98
carrier protein and, 249-251
computational redesign of, ch. 12
domain-swapping and, 97-98
ensemble-based protein design and, 97-98, 108, 110
kinetic studies and, 253
peptide biosynthesis and, 249-251
phenylalanine (Phe) adenylation domain and, 97-98
signature sequence and, 97-98
site-directed mutagenesis and, 97-98
support vector machine (SVM) and, 377
Normal mode analysis (NMA)
anistropic network model (ANM) and, 214-215
Brownian, 199
coarse-grained, 199
different modes for, 199
Elastic Network Model (ENM) and, 389-390
essential dynamics, 199
FIRST and, 197, 200
Gaussian Network Model (GNM) and, 213-214
harmonic approximation and, 197-198
Laman's theorem and, 201
ligand-protein binding and, 213-217
lock-and-key model and, 213
molecular replacement (MR) and, 387-391
multiple receptor conformations (MRCs) and, 215-217
noncrystallographic symmetry (NCS) and, 387-390
Pebble Game and, 200-202
preexisting equilibrium model and, 213
protein flexibility and, 213-217
protein-protein binding and, 213-217
receptor ensemble docking (RED) and, 215-217
relevant normal model and, 215-217
residual dipolar couplings (RDCs) and, 167, 169
rigidity theory and, 197-202
side-chain optimization and, 216
vibrational, 199
virtual screening and, 216-217
X-ray crystallography and, 387-390
Nuclear magnetic resonance (NMR), chs. 1-8, 13-18, 29,
31, 33-35, 39, 43-45
${ }^{13} \mathrm{C}$-methylated proteins and, 357-361
Autolink and, 363-370
automated assignment and, 59, 119, 122-123, 129-133,
145, 149-158, 162, 166 (see also Resonance assignment)
basic principles of, 7-13
chemical shift and, 10-11, 371-376
combinatorial precision and, 146
computational protein design and, 92, 94
CS-Rosetta and, 371-376
distance geometry and, 2-5, 92, 130, 157, 200, 273-283, 307-313, 344
dynein light chain (DLC2A) and, 301, 303-305
electromagnetic properties and, 7-9
ensemble averages and, 20, 27-28, 34, 222, 226,
333-337, 343, 352
expectation/maximization (EM) algorithm and, 118-119,
122, 150-151, 166, 208, 324
free induction decay (FID) and, 9-10
frequency signals and, 2
heteronuclear single-quantum coherence (HSQC) and,
13, 17-20, 23, 59-60, 65, 119-121, 130, 150-152, 166, 168, 259-260, 303, 355-357
high-throughput, 129-130
homonuclear correlation spectroscopy (COSY), 15
isotope labeling scheme and, 132
J coupling and, 13, 15, 20, 59, 65
JIGSAW and, 59-66
mass spectrometry and, 355-361
methodological development of, 127-128
moment (nuclear spin angular momentum) and, 7-12
multidimensional, 13, 20
NOE, 3, 15 (see also Nuclear Overhauser effect (NOE))
physical basis of, 8-10
protein backbone and, 17-20, 304-306, 371-376
protein-ligand binding and, 341-344
RDCs, 19-20, 34, 115-118, 127 (see also Residual dipolar couplings (RDCs))
scalar coupling, 4-5
spectrometer, 11-12
structure-activity relation (SAR) by, 21, 131, 411
structure determination errors and, 301-306
SYMBRANE and, 132-134, 158-160, 172-177
symmetric homo-oligomers and, 158-159, 172-176
three-dimensional $\mathrm{HNH}^{\alpha}, 4-5,15,20,59$
total correlation spectroscopy (TOCSY), 17-18, 20,
59-60, 64-65, 172
unassigned data, 129-133, 151, 161
uncertainty of data, 2-3
X-ray crystallography and, 7
Nuclear Overhauser effect (NOE)
Autolink and, 365
automated assignment, 3, 155-158, 171-173
AutoStructure and, 285-292
computational protein design and, 92-94
CRANS NCS method, 160
CS-Rosetta and, 371-376
distance geometry and, 279-283, 312-313 (see also
Distance geometry)
errors and, 303
filtering and, 156
graph cuts and, 321
graph representation of atom interactions and, 60-61
homology computation and, 400
interaction intensity and, 18-19
JIGSAW and, 59-65
limitations of, 25
MARS and, 294
NMR structural biology and, 15, 18-20
nuclear vector replacement (NVR) and, 119-121
pattern discovery and, 61
protein-ligand matching and, 259-263
redundant, 175
residual dipolar couplings (RDCs) and, 55, 115,
129-135, 142-162, 166, 169-176
resonance assignment and, 121
rotamers and, 155-158
secondary structure and, 61-64
side-chain conformations and, 133, 155-157, 171-172
spectrum matching and, 261-262
symmetric oligomers and, 172-177
topology and, 285-292, 400
Nuclear vector replacement (NVR), 26
chemical shift and, 119-122
expectation/maximization algorithm, 122
experimental input, 119
fold recognition and, 166-171
heteronuclear single-quantum coherence (HSQC) and, 119-121
as matching problem, 123-124
nuclear Overhauser effect (NOE) and, 119-121
principal order frame (POF) and, 120
protein backbone and, 119-120
quaternions and, 121
residual dipolar couplings (RDCs) and, 119-124, 131-133, 149-153, 160-161, 166-171
resonance assignment and, 119-123
structure refinement and, 119
tensor estimation and, 119-121
three-dimensional structural homology detection and, 123
time complexity and, 121-123
unassigned NMR data and, 123-124
Oligomeric number, 176-177
Oligomeric state, 176-177
Outer product, 29
Pande, V.S., 352-353
Paramagnetic quenching and, 168
Paramagnetic relaxation effect (PRE) and, 55-56
Paramagnetic relaxation enhancement (PRE), 55-56, 162
Parametric clustering method, 325
Parametric family, 167
Partition function, 12, 25
Pebble Game, 200-202
Peptides
backbone and, 2, 67-73
biosynthesis and, 249-251
carrier protein structure and, 249-251
CBF β and, 65-67
dead-end elimination and, 69-70
design algorithm for, 69-71
design of, 67-74
foldamers and, 71-74
force field and, 69
global energy minimum conformation (GMEC) and, 69
initiation module PheATE (GrsA) and, 253-258
K^{*} algorithm and, 67
membrane proteins and, 70
monomer frameworks and, 72
nonribosomal peptide synthetase (NRPS), 83-85, 97-98, 108, 110, 249, 251, 253, 377
protein-protein interactions (PPIs) and, 67
short amino acid sequences and, 67
structure generation and, 69
targeting transmembrane helices, 70-71
Peptidyl carrier proteins (PCPs), 249-251
PheATE (GrsA), 253-258
Phenylalanine (Phe) adenylation domain, 97-98, 105, 108
Pixel labeling problem, 323-326
Polyketide synthase (PKS), 249-251
Polymerase chain reaction (PCR), 84
Potluri, S., 158, 175
Preexisting equilibrium model, 213
Principal components analysis (PCA), 23, 188
calculating by SVD, 25
covariance matrix and, 27-44
description of, 25
directional variance and, 28-33, 39-44
efficient computation of, 44-45
ensemble averages and, 27
Gaussian distribution and, 30-33

Principal components analysis (PCA) (cont.)
inner product and, 29
introduction to, 28-33
inverse kinematics and, 193
outer product and, 29
pseudo covariance matrix and, 29-30, 36, 38-39, 42-43
residual dipolar couplings (RDCs) and, 38-44
Saupe matrix and, 27-28, 34-37, 43
set point variance and, 28
Principal order frame (POF)
nuclear vector replacement (NVR) and, 120
principal components analysis (PCA) and, 31-32, 38-44
residual dipolar couplings (RDCs) and, 19, 53-54, 57,
116-117, 151-152, 162-163, 166
Probabilistic classifier, 188-189
Probik, 191-195
Proline, 1-2, 18, 58, 78, 80, 87
Promiscuity design, 77, 82-84
Protein backbone, 2, 3n1. See also Protein flexibility alignment tensors and, 55
all-atom Cartesian coordinates-based model and, 191
BD algorithm and, 104, 107-108, 111, 241
brDEE algorithm, ch. 12
Chain Tweak and, 191-195
closure-constrained refinement and, 221
computational protein design and, 87-92
computational topology and, 412
continuous flexibility DEE and, 107
Denavit-Hartenberg (DH) local frame and, 192
dihedral angles-based model and, 191
errors in structure determination and, 304-306
flexibility in DEE and, 107-108, 111
generalized belief propagation (GBP) and, 231-241
genetic algorithm (GA) and, 265-268
JIGSAW algorithm and, 59
K^{*} algorithms and, 99, 102, 104-105
ligand-protein docking and, 346
MARS algorithm and, 293-300
modeling equilibrium fluctuations and, 220-221, 226
native, 54-55
NMR structural biology and, 17-18, 20
nuclear magnetic resonance (NMR) and, 304-306, 371-376
nuclear vector replacement and, 119-120
Probik and, 191-195
protein modeling and, 265-266
residual dipolar couplings (RDCs) and, 53-58, 116,
130-153, 156-166, 169-171, 175, 333, 337-340
secondary structure elements and, 55 , ch. 8
semidefinite programming and, 307
side-chain flexibility and, 265-271
SoftROC and, 265-271
structure-based protein-ligand binding and, 342-343
Protein Data Bank (PDB), 301, 303, 410
Protein design, chs. 11, 12, 30, 45, 46, 49
belief propagation algorithms and, 236-237
entropy and, 247-248
future directions for, 240-242
global minimum energy conformation (GMEC) and, 69, 88-92, 104-110, 233, 235, 237, 240-242, 332, 412
graphical models and, 227-242
as inference problem, 235
negative design and, 109-110
probabilistic, 238-240
rotamers and, 231-241, 265-270
side-chain flexibility and, 265-271
support vector machine (SVM) and, 377-381
synthetic biology problems and, 110
Protein ensemble method (PEM), 221-226
Protein flexibility, chs. 5, 9-12, 20-26, 30, 41, 42,47
ab initio methods and, 219
Chain Tweak and, 191-195
coiled-coil core motifs and, 265-266
cyclic coordinate descent (CCD) algorithm and, 220-222
database methods and, 219
Denavit-Hartenberg (DH) local frame and, 192
docking and, 208
ensemble docking and, 343
equilibrium fluctuation models and, 219-226
fragment ensemble method (FEM) and, 220-221
genetic algorithm (GA) and, 265-268
graph theory and, 200-202
hydrophobic interactions and, 207-208
inverse kinematics and, 191-195
ligand-protein docking and, 345-349
loop closure problem and, 191-195
metadynamics and, 346-349
missing loops and, 219
Monte Carlo methods and, 219
mutation and, 267-268
normal mode analysis (NMA) and, 213-217
protein ensemble method (PEM) and, 221-226
protein-ligand binding and, 343-344
receptor ensemble docking (RED) and, 215-217
ROCK algorithm and, 205-208, 210
side-chains and, 221, 265-271
SoftROC and, 265-268, 265-271
stochastic selection and, 266
Protein folds, 21, 303
AutoStructure and, 288-289
backrubs and, 108
computational protein design and, 87-88
cross-rotation and, 384
CS-Rosetta and, 372
ensembles and, 333-336, 351, 353
errors in published, 301
free energy and, 227, 233
initial fold analysis and, 285
inverse folding problem and, 87, 234
K^{*} algorithm and, 104, 109
ligand configurational entropy and, 247
local sampling and, 333-336
long-range order and, 335-336
low energy and, 237
MARS and, 296
NOESY data interpretation and, 285, 288, 290
nuclear vector replacement (NVR) and, 123
orientational sampling and, 47
peptide biosynthesis and, 249
peptide design and, 67-68
PheATE and, 255
protein core design and, 266
protein interface and, 77-78, 83-84
protein unfolding and, 333-340
residual dipolar couplings (RDCs) and, 129-134, 139, 142-143, 147, 151, 153-155, 161, 164, 166-175, 333-340
simple-ring closure and, 206
small-angle X-ray scattering and, 333-334, 337-340
surface charge-charge interactions and, 394-397
434 cro protein, 269-270
Protein interface
catalytic machinery and, 77, 80-81
directed evolution and, 83-85
Dunathan's hypothesis and, 83
interconverting homologous enzymes and, 79-80
minimalist active site redesign and, 77-83
partitioning of reaction intermediates and, 82
product and, 77
promiscuity improvement and, 77, 82-84
removal of catalytic nucleophiles and, 81
stereo-and regiochemistry control and, 82
substrates and, 77
subtilsin and, 78
Protein kinematics, chs. 1, 2, 9, 13, 15-18, 20-24, 30
Protein-ligand binding, 345 , chs. $9,10,12,25-29,40,41$, 46
continuum solvent model and, 344
dead-end elimination (DEE) and, 107
density mapping and, 341
energy-weighted average and, 343
ensemble docking and, 343
geometry-weighted average and, 343
K^{*} algorithm and, 98-99
nuclear Overhauser effect (NOE) matching and, 259-263
protein dynamics and, 342-343
protein flexibility representation and, 343-344
receptor docking and, 344
residual dipolar couplings (RDCs) and, 131
ROCK and, 208
soft-core energy function and, 344
structure-based, 341-344
temperature factor and, 342
uncertainty in NMR structures and, 342
uncertainty in X-ray structures and, 341-342
Protein-ligand matching, 259-263
Protein loops, chs. 20, 22, 24

Protein-protein interactions (PPIs), 67, 251, 254-255;
chs. $9,10,23,27,28$
lock-and-key model and, 213
normal mode analysis (NMA) and, 213-217
preexisting equilibrium model and, 213
Protein structure, chs. 1-18, 21-25, 27, 29-36, 39-45, 47-50
alpha shapes and, 410-411
carrier, 249-251
Cartesian coordinate-based root-mean-square deviation and, 351
denatured, 55-58
distance geometry and, 310-313 (see also Distance geometry)
distance root-mean-square deviation and, 351
ensemble representation and, 351-353
foldamers and, 71-74
glycine and, 1-2
inverse folding problem and, 87, 23
native, 53-55
metric space and, 352-353
NMR determination errors and, 301-306 (see also
Nuclear magnetic resonance (NMR))
orientational sampling of interatomic vectors and, 47-51
predicting binding energetics from, 345-346
proline and, $1-2,18,58,78,80,87$
RDCs and, 47-51, 127-177 (see also Residual dipolar
couplings (RDCs))
topology and, 399-412
triangulation and, 399-403, 410-411
Proteomic disease classification algorithm, 187-189
Pseudo covariance matrix
principal components analysis (PCA) and, 29-30, 36, 38-39, 42-43
residual dipolar couplings (RDCs) and, 36, 38-39, 42-43
Pseudoenergy, 295
Pseudoresidues (PRs), 293-295, 298
PSIPRED, 295
P. syringae syringomycin, 84

Pyridoxal phosphate (PLP), 83
Q5 algorithm, 188-189
Quaternions, 69, 121, 383-384, 391
Ramachandran plots, 55
hydrophobic interactions and, 207-208
inverse kinematics and, 194
protein flexibility and, 205, 207-210
residual dipolar couplings (RDCs) and, 141-142,
161-162, 165, 194
ROCK and, 207-208
RDC-EXACT
protein unfolding and, 340
residual dipolar couplings (RDCs) and, 130, 132-133, 145-149, 156-158, 161-162, 165, 171-172
Receptor ensemble docking (RED), 215-217

Reduction algorithm, 406-409
Reductive methylation, 357-361
Region-based approximations, 231
Region graphs, 231
Residual dipolar couplings (RDCs), 23
algorithms and, 160-167
alignment tensor and, 19, 55, 57, 116-123, 131, 136,
$142,144,150,152,162,167-168,171$
assignment problems and, 27, 116, 129, 131, 151
CAP and, 151
CH bond and, 136-137
chemical shift and, 129, 131-132, 135, 145-146, 150,
152, 155, 162, 166-170
combinatorial precision and, 146
computational protein design and, 94
conformational ensemble and, 337
covariance matrix and, 33-44
CRANS NCS method and, 160
defined, 25
denatured proteins and, 55-58
dihedral angles and, 127-130, 136, 140-146, 161-166
dipolar coupling constant and, 19
distance geometry and, 311-313
EM algorithm and, 122, 150-152, 167-171
ensemble averages and, 20, 27-28, 34, 222, 226, 333-337, 343, 352
error and, 128, 143-144, 155, 171, 175-176
estimation of alignment tensor and, 117
exact solutions for, 161-166
expectation graph and, 169
fragment computation and, 56-57
future development and, 43-44, 160-167
GD algorithm and, 131, 133, 153, 155, 161, 166, 169
global orientation and, 19, 150-151
HANA and, 133, 155-158, 171-172
high-throughput methods and, 129-130
inner product and, 36-38
isotope labeling scheme and, 132
kinematics and, 123-124, 127, 132, 138, 143-144, 160-164, 173, 175
Kuhn-Munkres matching algorithm and, 116
Kullback-Leibler distance and, 117-118
limitations and, 144
linker computation and, 57
local sampling and, 333-336
long-range order and, 335-336
MARS and, 296-300
maximum bipartite matching and, 116
mean tensor consistency and, 167
membrane proteins and, 129-133, 158, 172-173
methodological development of, 127-128
molecular coordinate frame and, 35
molecular replacement (MR) and, 127, 130-131, 150, 160, 166-167, 173
native proteins and, 53-55
NMR structural biology and, 115-118
nuclear Overhauser effect (NOE) and, 55, 115, 129-135,
142-162, 166, 169-176
nuclear spin and, 115
nuclear vector replacement (NVR) and, 119-124,
131-133, 149-153, 160-161, 166-171
optimization and, $139,142-144,144,160,162,167$, 171, 175
orientational sampling of interatomic vectors and, 47-51
physics of, 27
power of exact solutions and, 134-144
principal components analysis (PCA) and, 38-44
principal order frame (POF) and, 19, 53-54, 57,
116-117, 151-152, 162-163, 166
protein backbone and, 53-58, 116, 130-153, 156-166,
169-171, 175, 333, 337-340
protein folds and, 129-134, 139, 142-143, 147, 151,
153-155, 161, 164, 166-175, 333-340
protein-ligand binding and, 131
protein unfolding and, 333-340
pseudo covariance matrix and, 36, 38-39, 42-43
Ramachandran plots and, 141-142, 161-162, 165, 194
RDC-EXACT and, 130, 132-133, 145-149, 156-158,
161-162, 165, 171-172
resonance assignment and, 145, 150-152, 155-156, 161, 167-168, 172
rigidity theory and, 167
RNA and, 151, 158
rotamers and, 155-158, 160, 165, 171-172, 175
Saupe matrix and, 19, 34-37, 43, 55, 57, 115, 137,
162-163, 334
side-chain conformations and, 133, 146, 155-157, 165,
171-172, 175
simulated annealing (SA) and, 129-132, 135, 146, 149, 165, 173
small-angle X-ray scattering and, 333-334, 337-340
sparse data and, 127, 129-130, 133, 145-149, 152-153,
173; chs. 15-18
steric clash checking and, 333-335
structural biochemistry and, 34-38
structural homology detection and, 117-118
structure-based assignment (SBA) and, 130-131, 133, 149, 167, 332
structure determination problem and, 116-117
SYMBRANE and, 132-134, 158-160, 172-177
symmetric oligomers, homo-oligomers and, 158-159, 172-177
symmetry configuration space (SCS) and, 158-159, 173-175
tensor computation and, 57
time complexity and, 151-152
theorems for, 163-165, 171-172
TRIANGLE and, 155-158, 171-172
unassigned, $150-155,166-171$
well-packed satisfying (WPS) structures and, 159
X-ray crystallography and, 130-132, 143-148, 151, 153, 157, 160, 167, 173, 333, 337

Resonance assignment, 3, 15, chs. 8, 14, 15-18, 33, 34, 37, 38, 43
Autolink and, 363-370
AutoStructure and, 287
chemical shift and, 355,365
graph cuts and, 332
JIGSAW and, 59, 66
MARS and, 293-300
mass spectrometry and, 355-361
nuclear vector replacement (NVR) and, 119-123
protein-ligand matching and, 259-262
residual dipolar couplings (RDCs) and, 145, 150-152, 155-156, 161, 167-168, 172
topology and, 285, 287, 290
Rigidity Optimized Conformational Kinetics (ROCK), 205-208, 210
Rigidity theory
distance geometry and, 200, 274-277
FRODA and, 208-210
Laman's theorem and, 201
normal mode analysis (NMA) and, 197-202
Pebble Game and, 200-202
percolation and, 200
residual dipolar couplings (RDCs) and, 167
ROCK and, 205-208, 210
RNA, 55
CAP and, 151
foldamers and, 71-72
residual dipolar couplings (RDCs) and, 151, 158
Romeo, Fabio, 372-373
Root mean square deviation (RMSD)
atomic coordinates, ch. 42
backbone, ch. 42
CS-Rosetta and, 374-375
ensembles and, 351-353
equilibrium fluctuations and, 226
ligand-protein docking and, 349
peptide design and, 69-70
protein flexibility and, 194, 268, 270
protein-ligand matching and, 262, 344
residual dipolar couplings (RDCs) and, 57, 141-142, 147, 153, 157, 169; chs. 15-18
X-ray crystallography and, 390
Rosetta, 371-375
Rotamers, 70
automated NOE assignment and, 155-158
chemical shift and, 371,373
computational protein design and, 87-92
energy minimization and, 332
ensembles and, 98-108, 111
ligand configurational entropy and, 246
pairwise, 89
protein design and, 98-108, 111, 231-241, 265-270
protein-ligand binding and, 344
sparse residual dipolar couplings and, 155-158, 160, $165,171-172,175$
structure determination errors and, 304-308
template energies and, 89
ROTCHK, 305n1
Sampling tensor, 47-51
Sangiovanni-Vincentelli, Alberto, 372-373
Saupe alignment tensor, 27-28, 35, 47, 51
distance geometry and, 311-312
equilibrium fluctuations and, 227
MARS and, 298
orientational sampling and, 47, 51
principal components analysis (PCA) and, 27-28, 35-38, 43
protein unfolding and, $334,337,339$
residual dipolar couplings (RDCs) and, 19, 34-37, 43, 55, 57, 115, 116-123, 131, 136, 137, 142, 144, 150, 152, 162-163, 167-168, 171, 334
Saxe, J.B., 3, 279-280, 282-283
Scalar couplings, 4-5
residual dipolar couplings (RDCs) and, 115, 131, 135, 145
spin-spin coupling constant ${ }^{3} J_{\mathrm{HNH} \alpha}, 4-5,15-16,20$, 59-60
Schwartz, J., 402
Selenosubtilsin, 78
Self-energies, 89
Self-rotation function, 383-384, 390-391
Semidefinite programming, 307-310
Sensor network localization problem, 309-310
Sequential connectivity, 295-296
Sharir, M., 402
Shen, Y., 373
Side-chain conformations, 17-18, 231, 242
backbone flexibility and, 265-271
computational protein design and, 87-88
CS-Rosetta and, 373-375
dead-end elimination (DEE) and, 106, 108
entropy estimation and, 232-233
equilibrium fluctuations and, 221
exploration for fixed backbone and, 221
fingerprint alignment and, 64-66
graph cuts and, 332
K^{*} algorithm and, 99, 102, 104
minimization and, 373-374
nuclear Overhauser effect (NOE) and, 133, 155-157, 171-172
optimization of, 215-216
positioning problem and, 307-308
protein-ligand binding and, 343
residual dipolar couplings (RDCs) and, 133, 146, 155-157, 165, 171-172, 175
Side specificity problem, 380
Signature sequence, 97-98
Simplical complexes, 48, 400-404
Simulated annealing (SA)
chemical shift data and, 371-373
computational protein design and, 92, 94

Simulated annealing (SA) (cont.)
distance geometry and, 279
equilibrium fluctuations and, 219
molecular dynamics (MD) and, 129, 132, 141, 145, 173, 279
peptide design and, 70
protein backbone and, 265-266
protein-ligand NOE matching and, 261
residual dipolar couplings (RDCs) and, 129-132, 135,
146, 149, 165, 173
Rosetta and, 371-373
side-chain/backbone flexibility and, 265-266
SoftROC and, 266
Single-ring closure, 206
Singular value decomposition (SVD)
basics of, 23-26
distance geometry and, 312
MARS and, 298
residual dipolar couplings (RDCs) and, 55, 57, 116, 144, 152
Saupe matrix and, 19
Site-directed mutagenesis, 97-98
SLIDE, 208
SLIDEWIN, 194
Small-angle X-ray scattering (SAXS), 333-334, 337-340
Smith normal form, 402-403, 409
Smith, H.J.S., 409
Soft repacking of cores (SoftROC)
energy calculations and, 268-269
experiments on 434 cro and, 269-270
experiments on T4 lysozyme and, 270
fitness evaluation and, 266
genetic algorithm (GA) optimization and, 266-268
Monte Carlo sampling and, 268
mutation and, 267-268
protein flexibility and, 265-271
ROC settings and, 269
stochastic selection and, 266
SPARKY, 293
SPARTA, 373-374
Spatial coherence, 323-324, 326
Spectrum matching, 261-262
Spin-spin coupling, 4-5, 15-16, 20, 59-60
Spin system, 363, 365-367, 370
Staphyloccus aureus, 109
Steady-state assays, 254-255
Steric clash checking, 333-335
Steric filter, 100
Stochastic algorithms, chs. 6, 9, 10, 11, 20, 22-26, 30, 31,
41, 43, 44, 45, 49
Stochastic selection, 266
Stop-threshold, 100
Structure-activity relation (SAR) by NMR, 21, 131, 411
Structure-based assignment (SBA), 130-131, 133, 149, 167, 332
Structure refinement, 119, 151, 290
STYX protein, 80

Subgraph realization, 276
Subtilsin, 78
Support vector machine (SVM), 377-381
Surface charge-charge interactions, 393-397
Surface residues, 89, 393, 395, 397
SYMBRANE, 132-134, 158-160, 172-177
Symmetric oligomers, 172-177
Symmetry configuration space (SCS), 158-159, 173-175

T4 lysozyme, 270
TALOS, 162
Temperature factor, 342
Tensors
3-alpha-HSD, 79-80
alignment, 19, 27-28 (see also Alignment tensor)
linker computation and, 57
mean consistency and, 167
merging of, 57
nuclear vector replacement (NVR) and, 119-121
orientational sampling and, 47-51
updating of, 57
Yan-Donald notation for, 137
Thin-layer chromotography (TLC), 255-256
Thiolsubtilsin, 78
Three-dimensional $\mathrm{HNH}^{\alpha}\left({ }^{3} J_{\mathrm{HNH} \alpha}\right), 4-5,15-16,20$, 59-60
Time complexity
Autolink and, 367
computational protein design and, 92
cross-rotation analysis algorithm and, 384
distance geometry and, 280, 312
Laman's theorem and, 201
multiple receptor conformations (MRCs) and, 215
nuclear vector replacement (NVR) and, 121-123
residual dipolar couplings (RDCs) and, 151-152
surface charge-charge interactions and, 395
TK-SA model, 1178
Topology
Abelian groups and, 402-406, 409
alpha shapes and, 410-411
AutoStructure and, 285-292
Betti number and, 402, 404, 407, 410
Bézier systems and, 403
chain groups and, 402, 404-407
cohomology operation and, 411-412
complexity and, 403
computational, 399-412
critical values and, 410
distance geometry and, 273
edges and, 399
Euler number and, 404
faces and, 410
free chain complex and, 405
fundamental group and, 400-401
Gaussian network model and, 213-214
grid, 315, 321
homology modeling and, 399-412
image and, 402
invariance and, 399
kernels of map, 402, 405
Klein bottle and, 403-404
matrices and, 401-409
meaning of term, 399
NOESY data interpretation and, 285-292
orientation and, 399, 401, 404, 407
protein folds and, 175 (see also Protein folds)
reduction algorithm and, 406-409
simplical complexes and, 400-404
Smith normal form and, 402-403, 409
torsion coefficients and, 402, 407
triangulation and, 399-411
Torsion coefficients, 402, 407
Total correlation spectroscopy (TOCSY)
JIGSAW and, 59-60, 64-66
NMR structural biology and, 17-18, 20
residual dipolar couplings (RDCs) and, 172
Transductive support vector machine (TSVM), 378, 381
Trees, 4
belief propagation and, 236, 238, 241
conformation, 100, 106-107, 141, 162
ensembles and, 100, 106-107
residual dipolar couplings (RDCs) and, 141-142, 162
TRIANGLE algorithm, 155-158, 171-172
Triangle inequality, 352
Triangle relationship, 156
Triangles
orientational sampling and, 48,50
simplex, 48
topology and, 399-401
Triangulation
complexity and, 403
definition of, 400-401
Delaunay, 399
edges and, 399
as finite simplical complex, 400-401
fundamental group and, 400-401
matrices and, 401-409
orientation and, 399, 401, 404, 407
simplical complexes and, 400-402
topology and, 399-411
Trichloroacetic acid (TCA), 255-256
Unfolding, 58; chs. 7, 39
ensemble computation and, 333-336
local sampling and, 333-336
long-range order and, 335-336
residual dipolar couplings (RDCs) and, 333-340
small-angle X-ray scattering and, 333-334, 337-340
Urea-denatured eglin C, 58
van der Waals force, 88-89, 207, 227, 410

Wang, Lincong
nuclear vector replacement (NVR) and, 119, 124
residual dipolar couplings (RDCs) and, 55-56, 58, 130, 133, 138, 145-146, 157, 162-165, 172
Well-packed satisfying (WPS) structures, 159
Wiggle loops, 193
Within-class scatter matrix, 188
XEASY, 293
X-ray crystallography, 7
analysis and use of crystal structures, chs. 9-12, 14, 20-30, 40, 41, 49, 50
Bragg's law and, 341
computational protein design and, 87
cross-rotation function and, 160, 383
data resolution and, 341
diffraction and, 160, 341, 383
ensembles and, 110
equilibrium fluctuations and, 219
errors and, 301
Fourier moduli and, 387
ligand configurational entropy and, 245
methodology, chs. 40, 47, 48
molecular replacement and, 387-391
noncrystallographic symmetry (NCS) and, 387-391
normal-mode analysis (NMA) and, 387-390
nuclear vector replacement (NVR) and, 119
phase problem and, 387
principal components analysis and, 43
protein flexibility and, 7
protein-ligand binding and, 341-342
protein-ligand NOE matching and, 259
residual dipolar couplings (RDCs) and, 130-132,
$143-148,151,153,157,160,167,173,333,337$
Yan, Anthony K., 27-45
Yanover, C., 235, 237-238
Zabih, R., chs. 37-38
Zargovic, B., 352-353
Zeng, J., 147, 155
Zinc finger, 88, 91-92
Z-scores, 305-306, 394-395
Zweckstetter, M., 152, 293

