
1 Introduction

The Kalman filter is probably the single most useful piece of mathematics developed in this century.
—John L. Casti, 2000 [Cas00]

1.1 Overview

This morning you awoke to a not unreasonable weather forecast. The last airplane you flew
on may well have landed using a computer controlled autolander. These are examples of
the power of modern control theory to both observe (weather) and control (airframes).

Such control techniques have several features. First, we embody our knowledge of a
natural or manmade system into a mathematical computer model. It’s hard to keep track in
your head of atmospheric dynamics throughout the planet, just as it is hard to keep track
of all the airframe control surfaces and dynamics of a large airplane. Our recent successes
exhibit the confluence of several factors: We have increasingly powerful computers, we
have increasingly powerful numerical methods to perform calculations, and we have bet-
ter models. Boeing spent a fortune to develop the airframe model of the 777—it was an
airframe developed almost entirely on computers. Similarly, we have a very good grasp of
the physics of the atmosphere—the Euler equations [Kal03]; these convection equations
are hard to solve, and one has to apply them in many places simultaneously to model the
weather.

But building great models of systems is not enough.
First, all of our models are wrong. We are not interested in fitting data from the past; who

cares that you could have predicted yesterday’s weather given what you know today. Your
model, born of past data, needs to interact with your system in real-time moving forward.
You don’t get a lot of data to work with—most sensor systems give a sparse sampling,
in space and time, of the things you wish to measure. Many parts of the globe have little
coverage of temperature, pressure, and wind speed, just as there are many portions of a
modern airframe with no sensors nearby. So, if your model represents the whole system, it
will need to reconstruct the parts that are inaccessible to measurement.
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Second, all measurements are bad. Sensors are noisy, imprecise, and deteriorate, and
the amplifiers change their properties with age, temperature, and calibration. So we need a
way of optimally feeding our bad data to our wrong models.

Last, our computers are never fast enough. Nature runs along in continuous time, while
our digital circuitry and computers chug along in saltatory bursts. Even if your model
and sensor data were perfectly aligned at the last reading, the model’s forward iteration
takes place while nature does its own thing. A random air gust blows a plane sideways.
Thermal stochastic effects, or chaotic sensitivity to conditions, create an atmospheric state
whose trajectory differs from the one your model is creating. In a robotic system such as
an airplane, the models are simple enough, and the computations fast enough, that many
iterations can take place per second. In numerical weather forecasting, 6 hours is a typical
window for North American and European agencies. And in both cases, we never use our
best models. Speed is traded for accuracy—it does no good to take two days to predict
tomorrow’s weather.

There are two key concepts here: observability and controllability. Rudolf Kalman
[Kal60] demonstrated that these concepts are linked: If you can observe the state of a
system, you have just determined the extent to which you can control it. For all complex
systems, theory and modeling is not a luxury or the province of the socially impaired. It is
the only way you can observe such a system. It is the lens through which your observation
changes from vague subjectivity to a comprehensive estimation of what you are observing.1

Airframes are, if my colleagues in aerospace engineering will forgive me, simple. We have
also poured an incredible amount of funding into building very good models of these struc-
tures. The weather is complex, but compared with biological systems, it is simple. Gas and
fluid dynamics are characterized by neighbor-to-neighbor interactions only, the molecules
are all indistinguishable, and were it not for nonlinear dynamics such as turbulence, fore-
casting would be a breeze.

Brains are the most complex structures in the known universe. So on the one hand, you
would never want to observe raw data without the benefit of modeling. But if all models
are bad, models of brains are terrible.

This book is a gamble—a race between our gathering knowledge of neuroscience and its
embodiment in computational neuroscience, and our growing sophistication in computa-
tional engineering tools that can handle the complexity of brain dynamics. At some point,
the convergence of these two areas of knowledge will make the fusion of computational
neuroscience and control theory absolutely required just to record from a neuron, or deci-
pher an epileptic electroencephalogram (EEG). Are we there yet? Probably. The rest of this
book will try to justify this statement.

1. I was sure that this lens metaphor was suggested to me by Partha Mitra [MB08] in one of his talks, but neither
he nor I are certain anymore. I will cite him more for inspiration if not fact.
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1.2 A Motivational Example

The ultimate Figawi event.

In 1916, Ernest Shackleton was marooned with his crew in a place called Elephant Island
after his ship sank in the Antarctic. They spent over a year there, and it looked like they were
going to be trapped for another year as the winter again closed in. They had a photographer
with them, and figure 1.1 shows the small lifeboat that they launched in an effort to traverse
800 miles across the worst ocean in the world to reach a tiny dot called South Georgia
Island where there was a whaling station. By then the rest of the world had assumed that
Shackleton, as had many other Antarctic explorers, been long dead. He took a sextant and
a navigator, Frank Worsley, and a few strong men [Ale98].

Shackleton and Worsley had a near perfect model—a map of the position of land masses
and oceans, and the navigational equations that could compute where Shackleton would
be on a given day based on his previous position and his velocity. But perfect models, and
deductive reckoning, can be terrible in implementation. Once he left Elephant Island his
position grew increasingly uncertain. The only way to address this was to use additional
data measurements to improve his estimation of position—his state. He needed to fuse
new data, his position readings of the sun, with his existing model (map and estimates of
position). He needed to assimilate data.

Shackleton had to take measurements at a time when the sky was clear and he could hold
his sextant still. But in this part of the oceans, waves are often 40 feet high, and the wind
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Figure 1.1
Voyage of the James Caird, 1916. Panel A reproduced from [Sha19], in public domain. Panel B courtesy of E.
Schiff.
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typically howls at 40 to 60 miles per hour. He was trying to grab a mast in the middle of
the small boat to steady himself. The clouds broke only four times during the trip. There
was enormous uncertainty about whether the position he measured in this turbulent world
was accurate or not. Does he keep yesterday’s prediction of where he expected to be that
day, or use the measurement he just took? Compromising between model and data is a
constant theme of this book. Flipping a coin to choose between estimate and data is not
optimal—even bad measurements tell you something.

Data assimilation is a relatively new term forged out of two too common words. It is
the fusion of data with your preexisting knowledge [WB07]. It is an act as old as nav-
igation itself. Bayes’s theorem (equation 1.73) tells you how to combine your previous
guess with your new measurement, and this establishes a fundamental component of all
data assimilation. But it would not be until the advent of the space program in the 1950s
and 1960s that Kalman [Kal60] optimized how to apply Bayes’s formula recursively to a
dynamical process.

Let’s simplify Shackleton’s navigational nightmare a bit. Assume you are living in a one-
dimensional world, and you only need to fix your position along a line (figure 1.2). Make
the first measurement. I’m going to assume that when you made the first measurement,
y, this is the first estimate of truth x. Not bad if you did this before pushing off Elephant
Island—a good way to calibrate your instruments, or set your watch, because you really
did know where you were and when the sun was at its noontime height. But perhaps your
map of this rarely visited island did not fix its position well, or never captured its miserable
coastline accurately. You might assume a probability distribution of your initial position x.
Later in the book with nonlinear maps, you might pick a few initial conditions sprinkled
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Figure 1.2
Bayes’s rule tells you how to take sequential measurements and blend them. Two measurements, y1 and y2, and
their respective uncertainties, σy1 and σy2, are represented. The estimate of the true state, x̂, is the mean of a
probability distribution conditioned by y1 or y2, and then by y1 and y2.
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about where you think you are, to determine what the consensus seems to be when you drop
these initial guesses onto the rocky landscape of your topographical relief map.

Let’s assume that you actually know something about the uncertainty, σ , for a given
measurement, i, σi ; that’s quite a leap of faith,2 but one that is often used in applications.
Shackleton’s first measurement, y1, stinks, so as Caroline Alexander explained [Ale98], the
rest of the crew helped to steady him and hold him up and reduce his weaving back and
forth, for his second measurement, y2. Assume that y2 comes at a time very close to the
first measurement. We don’t think the boat has gone anywhere in the planet of significance
during that short period of time, so we are estimating the same position on the map. Because
two people were holding him up, the variance, the uncertainty of the second measurement,
σy2 , is smaller than the first, σy1 . What is the optimal way to combine both measures to
form an estimate, x̂, of the true position, x?

There is a very critical, if subtle, truth here: You never know the truth. The truth is the true
position x. You take measurements, y, and you use this information to estimate the truth,
x̂. It does not matter whether you are trying to estimate your position on a map, estimate
a patient’s pulse, asking what the voltage is within a neuron, or determining whether a
seizure is going to occur soon. You have no direct access to the truth; you need to optimally
estimate it given your knowledge (your model) and your data.

Shackleton’s first measurement, y1, had uncertaintyσy1 , so if this were your only measure-
ment, the conditional probability p(x|y1) of where you are, given what your measurement
is (since you typically assume that your largest probability centers on your measurement),
would lead you to pick x̂1 = y1 as shown in figure 1.2A. Then you make the second measure-
ment with its narrower uncertainty, as in figure 1.2B. If that were all you had, the conditional
probability of x given only y2 would be y2. Now we combine these measurements into a
single estimate (figure 1.2C).

There is no better intuitive explanation of this problem than that of Peter Maybeck, in his
classic text [May82], and we will follow his framework here. Let’s start with the answer
(we will justify this later in the chapter):

x̂ = σ 2
y2

σ 2
y1

+ σ 2
y2

y1 + σ 2
y1

σ 2
y1

+ σ 2
y2

y2 (1.1)

The estimated position, x̂, is an average of the two position measurements, y1 and y2,
weighted by the fraction of the variance from the other variances in equation (1.1). In other
words, if the first measurement has a relatively large variance compared with the second,
then pay attention to the second measurement more than the first (and vice versa). It also
turns out that

1

σ̂ 2
x

= 1

σ 2
y1

+ 1

σ 2
y2

(1.2)

2. Kierkegarrd’s input will not formally be required until the last chapter in this book.
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which implies that

σ̂ 2
x < σ 2

y1
and σ̂ 2

x < σ 2
y2

(1.3)

Equation (1.3) develops a fundamental philosophical point: all measurements are of
value. No matter how bad the variances σ 2

y1
and σ 2

y2
are, they always make σ̂ 2

x smaller if you
know them. If a measurement had infinite uncertainty, then equation (1.1) tells you to throw
out its measurement, and equation (1.2) tells you to set the estimated uncertainty equal to
the uncertainty of the better measurement. If there was ever no uncertainty in a measure,
you just use it and stop taking more measurements. Perhaps this all seems intuitive, but
equation (1.1) is a statement of weighted least squares, and it was Carl Gauss who originally
found that these weights y’s were optimal [Str86].

What if the uncertainties in these measures were all equal to each other? The estimate of
position would be the average of the measurements. And the uncertainty σ̂ 2

x would be half
of the individual uncertainties. This is the case of ordinary (unweighted) least squares.

Ronald Fisher pointed out that there was an inverse relationship of uncertainty to the
information content [Fis34, FC96]. If uncertainty is infinite, you have no information from
that measurement. If uncertainty goes to zero, you know everything; were such a thing
possible, you would not need Kalman filtering, or this book. Equation (1.2) tells you that
information is always useful. You are never worse off by taking a measurement—not in
this worldview, at least—as long as the measurement carries some information about what
you’re trying to estimate.

So far, we have made these measurements all at the same time, when more measurements
always makes certainty better. We will shortly propagate that state through time, and then
time will start to pull certainty apart.

Let’s return to equation (1.1). Let’s recognize that y1 came before y2, and say that y1 is
the information we have prior to y2—our a priori knowledge. We will use the following
trick, adding two terms that sum to zero, to eliminate the coefficient that multiplies the prior
repeatedly in this book

x̂2 = σ 2
y2

σ 2
y1

+ σ 2
y2

y1 +
{

σ 2
y1

σ 2
y1

+ σ 2
y2

y1

}
+ σ 2

y1

σ 2
y1

+ σ 2
y2

y2 −
{

σ 2
y1

σ 2
y1

+ σ 2
y2

y1

}
(1.4a)

= y1 + σ 2
y1

σ 2
y1

+ σ 2
y2

(y2 − y1) (1.4b)

= x̂1 + σ 2
y1

σ 2
y1

+ σ 2
y2

(y2 − x̂1) (1.4c)

x̂2 = x̂1 +K(y2 − x̂1) (1.4d)
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where

K = σ 2
y1

σ 2
y1

+ σ 2
y2

= σ 2
x̂1

σ 2
x̂1

+ σ 2
y2

(1.5)

In (1.4b) the weighting is now applied to the difference y2 − y1. We assume in (1.4c) that
when all you had was y1, this was your best estimate of state x̂1. The weighting in (1.4d) is
assigned the variable K , and in calculating K we can replace the a priori uncertainties σ 2

y1

with σ 2
x̂1

as in equation (1.5).
K will shortly become Kalman’s gain function [Kal60]. Kalman’s gain, in this static

case, is the ratio of the previous uncertainty to the total uncertainty. This ratio will tell
you whether to weigh your model strongly using what you calculated a priori, or pay more
attention to your new measurement, y2. If σ 2

y1
(or σ 2

x̂1
) is small compared with the new

uncertainty, ignore the new measure and “fly” the model. If your new measure is much
more precise than the old one, you might want to forget your previous calculation and look
out the window.

In prediction-corrector systems, you make a prediction, x̂1, and then correct it based on
new measurements. The new prediction, x̂2, for linear systems with Gaussian errors, is the
mean, the median, the mode, the maximum likelihood estimator, the weighted least squares
error, the best linear unbiased estimator. All of this drops out of the simple formulation in
equations (1.4).
K has been a guiding principle in water, air, and space navigation for over half a century.

Let’s take a look at how K relates to propagating the uncertainty.
From (1.2) we write

1

σ 2
x̂2

= 1

σ 2
y1

+ 1

σ 2
y2

= σ 2
y1

+ σ 2
y2

σ 2
y1
σ 2
y2

(1.6)

so that

σ 2
x̂2

= σ 2
y1
σ 2
y2

σ 2
y1

+ σ 2
y2

(1.7)

We’ll use our adding zero trick from equation (1.4a) again

σ 2
x̂2

= σ 2
y1
σ 2
y2

σ 2
y1

+ σ 2
y2

−
{
σ 2
y1
σ 2
y1

σ 2
y1

+ σ 2
y2

}
+

{
σ 2
y1
σ 2
y1

σ 2
y1

+ σ 2
y2

}
(1.8)

which resolves to

σ 2
x̂2

= σ 2
y1

−Kσ 2
y1

(1.9)
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or

σ 2
x̂2

= σ 2
x̂1

−Kσ 2
x̂1

(1.10)

What happens to uncertainty when you make a second measurement? Uncertainty always
goes down with a new measurement. You knew that from before, but in this framework, the
Kalman gain tells you how to do a weighted average of not just position—it also lets you do
a weighted adjustment of your ongoing knowledge of uncertainty. It’s not obvious or trivial.

Now add dynamics. In the simplest case, the boat, after measurement y2, moves. In
Shackleton’s case, the wind probably blows with a very nice constant mean velocity, v, say
50 miles per hour all day and all night long, but there are some random fluctuations, q,
which we will add to our constant velocity

dx

dt
= velocity + noise = v+ q, q = N(0, σ 2

q ) (1.11)

where N(0, σ 2
q ) indicates that q is drawn from a normal (Gaussian) distribution, with

mean = 0 and variance = σ 2
q .

Integrate this equation to make your next position prediction. We integrate the position,
velocity, and uncertainty from time t = t2 to t = t3

t3∫
t2

dx =
t3∫
t2

vdt +
t3∫
t2

qdt (1.12)

which gives

x3 − x2 = v(t3 − t2)+ σ 2
q (t3 − t2) (1.13)

The integration of position and velocity gives the trivial results x3 − x2 and v(t3 − t2).
The integration of the random q is extremely nontrivial: σ 2

q (t3 − t2). Intuitively, you can
sense why this is true. If you integrate a Brownian noise process, that is integrate values
drawn from a Gaussian distribution throughout a time interval, the result happens to be the
variance times that time interval. This is known in physics as a Langevin equation (a particle
diffusing with the wind also blowing), and in economics it is related to the Black-Scholes
equation (a way to price options). Klebaner’s textbook [Kle05] is an excellent resource to
seek further understanding of such stochastic integrals.

In the previous case, from t1 to t2, there was no mean velocity, and if we had waited a
given amount of time, the boat’s position would diffuse on the map from random gusts. The
uncertainty in position increases uniformly with time for the case of static estimation.

We will need to introduce some new notation to clarify two very different time scales
that will be referred to throughout this book. There is a slow time scale that represents the
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natural system’s dynamics over an interval, say t2 to t3, or the analogous time computed
from the predictive model such as equation (1.12). In contrast, there is the much faster time
scale that represents the state of a system just before you make a new measurement, x̂−

3 ,
and the advance in your knowledge just after you take in a new measurement, x̂+

3 . Indeed,
even the computation required to absorb this new piece of data, as when you use equation
(1.4d), is faster than model propagation as with the integration in equation (1.12). And
in our boat example, the boat has not gone any appreciable distance just as you make a
measurement—but you have learned something afterwards.

So we take our best estimated position at time t2, x̂2, and the estimated uncertainty, σ̂ 2
q ,

and propagate both forward with equation (1.13). You now have a best predicted position,
x̂−

3 . There is the additive integrative uncertainty, σ 2
q (t3 − t2), which if we permitted too

long a time interval, would generate planetary scale uncertainty. So we don’t want to take
measurements too far apart.

Now take y3, the next measure. Shackleton could complete only four measurements
during the journey [Ale98]. What is the new position and uncertainty?

If the uncertainty of the new measurement is too high, the Kalman gain goes to zero,
and by equation (1.4d), you ignore y3. If the uncertainty is very small, then just use y3 and
ignore the model. Kalman filtering gives you a prescription for what data to use and what
data to ignore based on the uncertainties of either of your measurements or the underlying
process. But we have considerable ground yet to cover before discussing the Kalman filter
in detail.

If we focus on the mean from the example in equation (1.13) (the mean of σ 2
q is zero),

the mean propagates as

x̂−
3 = x̂+

2 + v (t3 − t2) (1.14)

and the variance as

σ 2
x̂−

3
= σ 2

x̂+
2

+ σ 2
q (t3 − t2) (1.15)

all before the measurement at t = t3 is taken.
Now make measurement y3 with variance σ 2

y3
. To assimilate this new measurement,

we write

x̂+
3 = x̂−

3 +K3(y3 − x̂−
3 ) (1.16)

where we now index K acknowledging our new time scale as

K3 =
σ 2
x̂−

3

σ 2
x̂−

3
+ σ 2

y3

(1.17)
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Figure 1.3
The minor planet Ceres—the largest asteroid. Image from Hubble Space Telescope.

and

σ 2
x̂+

3
= σ 2

x̂−
3

−K3σ
2
x̂−

3
(1.18)

Note carefully the subtleties of how increasing or decreasing σ 2
y3

or σ 2
x̂−

3
affects K3, and

the implications of σ 2
y3

� σ 2
x̂−

3
, or σ 2

x̂−
3

� σ 2
y3

.

1.3 Least Squares

But since all our measurements and observations are nothing more than approximations to the truth,
the same must be true of all calculations resting on them, and the highest aim of all computations
made concerning concrete phenomena must be to approximate, as nearly as practicable, to the truth.
—Carl Frederic Gauss, 1809

At the end of the eighteenth century, astronomers had sighted the minor planet Ceres (now
relegated to largest asteroid status, figure 1.3). In his 1809 book [Gau09] on tracking
asteroids and comets,3 Gauss detailed that he had been using his least squares method since
1795 (when he was 18), much to the distress of his contemporary Legendre [Sor70]. Gauss
worked out how to solve least squares and weighted least squares solutions to deal with
the measurement of celestial objects. His was the only technique that seemed capable of

3. Henry Davis’s very readable translation [GD57] of Gauss’s 1809 book, Theory of the Motion of Heavenly
Bodies, is now readily available through the Google book project on the Internet, and well worth examining.
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completing the elliptical orbit and estimating where Ceres was going to be after it transited
behind the sun for a period of weeks, using only the incomplete measurements of previous
sightings before the transit [TW99].

Gauss, by 1809, had laid down most of the foundations for later measurement theory,
Kalman filtering, and this book. His insights included conceptualizing that one needed at
least an approximate knowledge of the dynamics of a system in order to assimilate data, and
that errors in measurements required measuring more than the minimum number of obser-
vations needed in order to solve the equations in your possession (i.e., your problem should
be overdetermined) [Sor70]. He realized that one needed to minimize the errors between
what you predicted and what you observed—what will later be called the innovations in
modern control theory. And he invented and understood the far-reaching properties of least
squares:

[T]he most probable system of values of the unknown quantities . . . in which the sum of the squares
of the differences between the observed and computed values of the functions is a minimum. . . . This
principle, which promises to be of most frequent use in all applications of the mathematics to natural
philosophy, must, everywhere, be considered an axiom with the same propriety as the arithmetical
mean of several overserved values of the same quantity is adopted as the most probable value. [GD57]

Let’s introduce the matrix formalism of Gauss’s least squares. Throughout this book, we
wish to solve the basic problem

Ax = y (1.19)

where y is our observation and, if y is a vector, then A is a matrix.4 We need matrices
because we assume that all of our natural (and neural) systems have more than one variable
that describes their states x, and that there will be more than one variable measured in any
observation y. Even in this world of multielectrode arrays, one still might record from, for
instance, a single deep brain microelectrode, but you would always consider that univariate
y to be a condensation of a multivariable (multiple neuron) state. The matrixA tells us how
to remix x, that is form a linear combination of the actual underlying variables that make
up the vector or matrix x, in order to form the measurement y. We always assume that the
true state x of any system, neural or otherwise, is hidden from our direct observation. Our
task is to find the best (most probable) estimate of x given observations y, and we call this
best estimate x̂.

As a simple example, let’s assume that y is measured twice, with values 1 and 3, and that
x is one-dimensional with a coefficient a = 1 at each measurement time, then5

4. We will use capital letters to indicate matrices in the text.

5. If you are unfamiliar with matrix mathematics and linear algebra, I would strongly recommend putting this
book down and spending a few weeks with one of Gilbert Strang’s introductory linear algebra textbooks [Str06].
These are well suited for self-instruction for the neuroscientist or physician who did not realize that such skills
would be needed later in life. Note, also, that MIT has made the video recordings of Professor Strang’s course on
this subject openly available on the MIT Open Courseware Web site.



12 1 Introduction

[
1
1

]
x =

[
1
3

]
(1.20)

You do this every day in a laboratory or clinic—make up for imprecision by repeating
measurements. Such systems are termed overdetermined. But if the measurements differ,
and the system is assumed to remain the same, none of the individual measurements is
correct. Some overdetermined systems are famous examples of great science; Millikan
reported measuring the electron charge on his oil drop 58 times on 60 consecutive days—
the result was fundamental and permanent [McG71].6 We define the vector of errors,
r , as

error = r = Ax− y =
[
x− 1
x− 3

]
(1.21)

The length of a vector is indicated by the norm ‖·‖, and following the suggestion of Gauss,
we wish to minimize the square of the norm of r

‖r‖2 = r2
1 + r2

2 + . . . = [Ax− y]T [Ax− y] (1.22)

where [·]T indicates matrix transpose of rows and columns. The square of the norm is found
by taking the inner product of the transpose of the error vector with itself. To minimize it,
take the derivative and set it equal to zero

d

dx

[
(x− 1)2 + (x− 3)2

] = 2(x− 1)+ 2(x− 3) = 0 (1.23)

which tells you that the best estimate of x is x̂ = 2. In matrix notation, this would be

d

dx

[
xT AT Ax− yT Ax− xT AT y+ yT y] = 0 (1.24)

Taking derivatives of each term with respect to x yields7

2ATAx− 2AT y = 0 (1.25)

so we reduce to one equation with one unknown

6. Some considerable controversy has arisen in recent years over these measurement reports. See [Goo00], for
instance.

7. The derivative of the quadratic form xT AT Ax is a bit confusing at first sight. For vectors that are functions of
x, u(x) and v(x), the derivative with respect to x of uT v is

d

dx

[
uT v

] =
[
du

dx

]T
v+

[
dv

dx

]T
u

So writeAx = u = v, and express xT AT Ax as (Ax)T (Ax) ≡ uT v, and the derivative is seen to readily be 2AT Ax.
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ATAx = AT y (1.26)

Using our example from equation (1.20), we get

[1 1]

[
1
1

]
x = [1 1]

[
1
3

]
(1.27)

where 2x = 4, and we find our best estimate, x̂ = 2, as we already knew. So in matrix
formalism, the solution to least squares for such problems is

x̂ = (AT A)−1AT y (1.28)

Our discussion above was for the case where each measurement had equal uncertainty.
Now let’s introduce weighted least squares, where we assume, as in our Shackleton story,
that the measurements have different uncertainties.

Strang [Str86], provides an excellent discussion of weighted least squares, and how they
lead to the Kalman filter, and we will follow that discussion closely here. The weights will
be indicated by matrix W , so that

WAx = Wy (1.29)

and using our example from equation (1.20)[
σ11 0
0 σ22

] [
1
1

]
x =

[
σ11 0
0 σ22

] [
1
3

]
(1.30)

The σ ’s are standard deviations. Our weighted error vector is now

error = Wr = WAx−Wy (1.31)

and we need to minimize

‖Wr‖2 = σ 2
11r

2
1 + σ 2

22r
2
2 + . . . (1.32)

which leads to

ATWTWAx = ATWTWy (1.33)

The best estimator, x̂, is

x̂ = (ATWTWA)−1ATWTWy (1.34)

Equation (1.34) is unpleasant, but using our previous example, we write

[1 1]

[
σ11 0
0 σ22

] [
σ11 0
0 σ22

] [
1
1

]
x = [1 1]

[
σ11 0
0 σ22

] [
σ11 0
0 σ22

] [
1
3

]
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which yields

(σ 2
11 + σ 2

22)x = (σ 2
11 · 1 + σ 2

22 · 3)

so our best estimate, x̂, is

x̂ = (σ 2
11 · 1 + σ 2

22 · 3)/(σ 2
11 + σ 2

22) (1.35)

If the weightings are all equal, we can set all the σii’s to 1, and W = I , the identity matrix
with all 1’s on the diagonal and zeros elsewhere. This would bring us back to ordinary least
squares. Otherwise,

x̂ = σ 2
11

(σ 2
11 + σ 2

22)
y1 + σ 2

22

(σ 2
11 + σ 2

22)
y2 (1.36)

which explains the form of our first lifeboat-inspired example8 in equation (1.1).

1.4 Expectation and Covariance

We need to develop a few more essential concepts. The central limit theorem states9 that
the sum of many random processes gives a Gaussian probability distribution p(x),

p(x) = 1√
2πσ 2

exp
[−x2/2σ 2

]
(1.37)

where we define that the total probability must equal 1

∫ ∞

−∞
p(x)dx = 1 (1.38)

The expectation of x, the mean μx of what you would expect after a large (infinite) number
of samples, is defined as

E[x] =
∑
x

xp(x) = μx (1.39)

for discrete, and

8. Note that the indices used in W , σij , are used to label the rows i and columns j in the matrix, and are not the
indices of the weightings from equation (1.1), where σ11 was σy2 .

9. The proof of the central limit theorem is not at all trivial [KF70], but most readers will be content if it is just
stated as done here.
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E[x] =
∫ ∞

−∞
xp(x)dx (1.40)

for continuous processes. For our Gaussian probability distribution with zero mean

E[x] = 0 (1.41)

Variance is the expectation of the squared deviation from the mean (for discrete)

var[x] = E[(x−E[x])2] =
∑
x

(x−μx)2p(x) ≡ σ 2
x (1.42)

The variance for the continuous Gaussian distribution is

E[x2] =
∫ ∞

−∞
x2p(x)dx (1.43)

The covariance10 is the expectation of the squared deviation from the mean for multiple
variables

cov[x, y] = E[(x−μx)(y−μy)] =
∑
x

∑
y

(x−μx)(y−μy)p(x, y) (1.44)

where p(x, y) is the joint probability distribution of x and y. If x and y are vectors, then
covariance is the expectation of the outer product

cov[x, y] = E[(x−μx)(y−μy)T ] (1.45)

So for an error vector

r =
⎡
⎢⎣
r1

r2
...

⎤
⎥⎦ (1.46)

the covariance matrix is

E[rrT ] = R (1.47)

Gauss showed [Str86] that the inverse of the measurement covariance matrix, R−1, gives
the best linear unbiased estimator for the least squares solution, so we replace WTW in
equation (1.34) with R−1

10. A superb introduction to covariance and multivariable statistics in general can be found in Bernhard Flury’s
textbook [Flu97].
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x̂ = (AT R−1A)−1ATR−1y (1.48)

There are now two sets of errors to keep track of for the rest of the book. R is the mea-
surement error covariance matrix, the measurement errors being Ax− y. The other set of
errors that concern us are the errors in the estimation of x, which are x− x̂. We define P as
the covariance in the errors in the estimation of x

P = E[(x− x̂)(x− x̂)T ] (1.49)

Once we know the result in equation (1.48), it follows that the best estimate of P is

P = (AT R−1A)−1 (1.50)

The proof is nontrivial, and the least unpleasant description of it is in Strang (p. 144 in
[Str86]).

If one refers back to figure 1.2c, R describes the errors in measurements y, and P
describes the errors in the estimate of x̂.

Let’s assume that you take several measurements of a neuron firing rate. Assume for now
that the uncertainty in measurements, σ 2, are all the same and independent from each other.
Then the covariance matrix is just the set of individual variances

R =
(
σ 2 0
0 σ 2

)
(1.51)

and the inverse of a diagonal matrix is just the reciprocal of the diagonal values

R−1 =
(

1/σ 2 0
0 1/σ 2

)
(1.52)

Then from P = (AT R−1A)−1,

P−1 = [
1 1

] (1/σ 2 0
0 1/σ 2

)[
1
1

]
(1.53)

which is just

P = σ 2

2
(1.54)

and for n measurements

P = σ 2

n
(1.55)

P decreases with every measurement. It does not matter how uncertain the measurements
are—all measurements tell you something about the truth x.
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1.5 Recursive Least Squares

Solving for x̂ or P using equation (1.48) or (1.50) gets more complex as the number of
measurements and the size of matricesA andR enlarge. But each new measurement changes
the covariances R and P only incrementally. If the errors⎡
⎢⎣
r1

r2
...

⎤
⎥⎦ (1.56)

are independent, then for two measurements at t0 and t1 (again, following [Str86])

R =

[
R0

R1

]
(1.57)

and

P−1 = [
AT0 AT1

] [R−1
0

R−1
1

] [
A0

A1

]
(1.58)

Multiply this out and you get

P−1 = AT0 R
−1
0 A0 +AT1 R−1

1 A1 (1.59)

which is the key to making a recursive formula. Using equation (1.50) we can write

P−1
1 = P−1

0 +AT1 R−1
1 A1 (1.60)

and this holds for any sequential estimations.
Substituting equation (1.50) in (1.48)

x̂1 = P1A
TR−1y (1.61)

which, for our simple two-measurement example, yields

x̂1 = P1
[
AT0 AT1

] [R−1
0

R−1
1

] [
y0

y1

]
(1.62)

which multiplied out gives

x̂1 = P1
[
P−1

0 A−1
0 y0 +AT1 R−1

1 y1
]

(1.63)

Substituting x0 for A−1
0 y0
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x̂1 = P1
[
P−1

0 x0 +AT1 R−1
1 y1

]
(1.64)

and finally substituting P−1
0 with equation (1.60)

x̂1 = P1
[
P−1

1 x0 −AT1 R−1
1 A1x0 +AT1 R−1

1 y1
]

(1.65)

gives

x̂1 = x0 +K1(y1 −A1x0) (1.66)

with

K1 = P1A
T
1 R

−1
1 (1.67)

Equations (1.66) and (1.67) are the beginning steps of recursive least squares. Note sev-
eral things. If y1 = A1x0, then x̂1 = x0. If y1 = A1x0 + e, where e is the unexpected part
of y1, the innovation, then x̂1 = x0 +K1(e), where K1(e) is the correction to the pre-
vious x0.

The fundamental equations of recursive least squares are therefore

P−1
i = P−1

i−1 +ATi R−1
i Ai

Ki = PiA
T
i R

−1
i

x̂i = x̂i−1 +Ki(yi −Aix̂i−1)

(1.68)

Let’s measure the firing rate of a neuron in spikes per minute by counting spikes within
a 10-second window.11 You get one, two, and four spikes, with calculated y0 = 6, y1 = 12,
and y2 = 24 spikes per minute. We assume A = 1. Then

ATAx̂ = AT y

[
1 1 1

]⎡⎣1
1
1

⎤
⎦ x̂ = [

1 1 1
]⎡⎣ 6

12
24

⎤
⎦

3x̂ = 42

x̂ = 14 spikes per minute

(1.69)

and

11. Strang [Str86] shows a similar example for estimating heart rate.
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P−1 = [
AT0 AT1 AT2

]⎡⎣R−1

R−1

R−1

⎤
⎦

⎡
⎣A0

A1

A2

⎤
⎦

P−1 = [
1 1 1

]⎡⎣1/σ 2

1/σ 2

1/σ 2

⎤
⎦

⎡
⎣1

1
1

⎤
⎦

P = σ 2

3

(1.70)

The best estimate of this static problem (we assume that this pacemaker neuron always has
the same rate) is 14 spikes per minute.

Now let’s estimate this firing rate recursively:

P−1
0 = AT0 R

−1A0 = [1][1/σ 2][1] = 1/σ 2

P−1
1 = P−1

0 +AT1 R−1A1 = 1/σ 2 + 1/σ 2 = 2/σ 2

P−1
2 = P−1

1 +AT2 R−1A2 = 3/σ 2

(1.71)

with

Kn = PnA
T
n R

−1
n = σ 2

n
[1] 1

σ 2
= 1

n

x̂1 = x̂0 +Kn(y1 − x̂0) = 6 + 1

2
(12 − 6) = 9

x̂2 = 9 + 1

3
(24 − 9) = 14

(1.72)

Note that in the recursive formulation that you throw away all of the history with each
step—there is no need to store steadily increasing amounts of data with such recursion.
Three measurements are not so bad to calculate. But later, we will have data sets with many
thousands of sequential samples, and if you could find a computer with enough memory to
solve equation (1.69), it would not be able to keep up with tracking a process in real time.
Equations (1.71) and (1.72) never get more complex than what you see.

1.6 It’s a Bayesian World

If our data were y, and our true underlying states x, then one could describe probability
distributions of y independent of x, p(y), and distributions of x independent of y, p(x).
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But if x and y are related, from knowledge of p(x), we could refine the distribution of
y given p(x), the conditional distribution p(y|x). But we already have y—this book is
about estimating the underlying truth x, and often about estimating the most likely x, the
mean of x, from the data observed. The conditional distribution p(x|y) is the posterior or
a posteriori distribution of x given data y, and p(x|y) is our primary concern.

In taking conditional expectations, one takes a slice of a joint probability distribution,
p(x, y), and since all probability distributions must add to one as in (1.38), we need to
normalize things. The rule for this comes from Bayes’s rule [Flu97]

p(y|x) = p(x, y)

p(x)
(1.73)

So instead of integrating over p(x) as in (1.40), the conditional expectation E[x|y] is

E[x|y] =
∑
x

xp(x|y) =
∑
x

x
p(x, y)

p(y)
= μx|y (1.74)

and with similar structure for the continuous version. Multiply two (independent) Gaussian
probability distributions as in equation (1.37) to get the joint Gaussian distribution

p(x, y) = 1√
2πσ 2

x σ
2
y

exp
[−x2/2σ 2

x − y2/2σ 2
y

]
(1.75)

and the conditional distribution p(y|x) is constructed as [Flu97]

p(y|x) = 1√
2πσ 2

y|x
exp

[−(y−μy|x)2/2σ 2
y|x

]
(1.76)

So let’s assume that the truth is normally distributed with a mean of μx and variance σ 2
x ,

and that the observations y are normally distributed with a mean of μy|x and variance σ 2
y|x .

Then, following [WB07],

p(y|x) = 1√
2πσ 2

y|x
exp

[−(y1 −μy|x)2/2σ 2
y|x

] · 1√
2πσ 2

y|x
exp

[−(y2 −μy|x)2/2σ 2
y|x

]
(1.77)

which is proportional to

exp − [
(y1 −μy|x)2/2σ 2

y|x + (y2 −μy|x)2/2σ 2
y|x

]
(1.78)

To simplify this a bit, we can assume that the real position x is known, and the y’s are
distributed about the true position x, which serves as the y mean. Bayes’s rule tells you that
p(x|y) is proportional to p(y|x)p(x), so we multiply (1.78) by p(x) to get
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exp − [
(y1 − x)2/2σ 2

y|x + (y2 − x)2/2σ 2
y|x + (x−μx)2/2σ 2

x

]
(1.79)

which, because the sum of y2 terms can be factored out (they are the variance of y plus the
mean of y, all constants), simplifies to

exp −
[
x2

(
2

σ 2
y|x

+ 1

σ 2
x

)
− 2x

(
y1 + y2

σ 2
y|x

+ μx

σ 2
x

)]
(1.80)

and after completing the square,12 this new Gaussian distribution has a mean of

E[x|y] ≡ x̂ = σ 2
x

2σ 2
x + σ 2

y|x
(y1 + y2)+

σ 2
y|x

2σ 2
x + σ 2

y|x
μx (1.83)

or for n measurements, letting ȳ = 1
n

n∑
i=1
yi ,

E[x|y] ≡ x̂ = nσ 2
x

nσ 2
x + σ 2

y|x
ȳ+ σ 2

y|x
nσ 2

x + σ 2
y|x
μx (1.84)

Notice that these fractions, weighting the means of the distributions by the fraction of the
other distribution’s variance, is the reason why such weighting was used in equation (1.1)
at the start of this chapter. It was based on Bayes’s rule.

Note some important subtleties of equation (1.84). If the uncertainty in the model, σ 2
x ,

grows large, you can ignore the model—it’s a bad map. If the number of measurements, yi ,
becomes large, the data overwhelms your prior information, μx and σ 2

x , and you can again
throw out the model. If σ 2

x → 0, ignore the measurements. Last, note that if we rewrite
equation (1.84) as

x̂ = μx + nσ 2
x

nσ 2
x + σ 2

y|x
(ȳ−μx) (1.85)

12. If ax2 + bx = 0, then

x2 + b

a
x+

(
b

2a

)2

=
(
b

2a

)2

=
(
x+ b

2a

)2

(1.81)

where

b

2a
= − σ 2

x σ
2
y|x

nσ 2
x + σ 2

y|x

[
y1 + y2

σ 2
y|x

+ μx

σ 2
x

]
(1.82)

for n measurements.
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and let

K = nσ 2
x

nσ 2
x + σ 2

y|x
(1.86)

we have the more general form of equation (1.4d).13

Kalman filtering is a subset of Bayesian analysis. But Kalman added dynamics to this
static data assimilation framework. And that’s the subject of the next chapter.

Exercises

1.1. The inverse of a matrix can be calculated in several ways [Str06]. One approach is to
use the determinant of a matrix and calculate a set of matrix cofactors, where

(A−1)ij = Cji

det(A)

and the cofactors, Cij, are

Cji = (−1)i+jMij

where, for a 2 × 2 matrix,[
a11 a12

a21 a22

]

the M’s are matrix minors,14 which for this 2 × 2 case are

M11 = a22,M22 = a11,M12 = a12,M21 = a21

and the determinant is a11a22 − a12a21. The inverse is

1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

Suppose you are recording from two neurons, and measure their firing rates as y1 = 20,
and y2 = 30. Given a linear system of equations

Ax = y

13. Unresolved in this chapter, or history in general, is just how Shackleton and Worsley actually found South
Georgia Island. Armed with the techniques discussed in this book, you have a better chance. Armed with the
technology of the turn of the twentieth century, their feat stands as a remarkable human achievement.

14. A matrix minor is the determinant after deleting the row and column containing aij .
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where

A =
[

1 1
1 2

]

solve by hand the best least squares solution for

x̂ = (AT A)−1AT y (1.87)

1.2. Using the same A and y from Exercise (1.1), solve the least squares solution to
(1.87) using a computer.15 Note that, although you can solve this in Matlab-Octave as
xhat = inv(A'*A)*A'*y, that a set of more numerically stable algorithms is accessed using
the notation xhat = (A'*A)\A'*y. If the inverse of (A'*A) does not exist, the pseudoinverse
can be tried as xhat = pinv(A'*A)*A'*y.

1.3. Another computer exercise. Assume the measured firing rates of a neuron are

y =

⎡
⎢⎢⎣

3
5
4
8

⎤
⎥⎥⎦

spikes per second. If, as in equation (1.69), we assume that

A =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

solve for x̂ using

x̂ = (AT A)−1AT y

Assuming that

R =

⎡
⎢⎢⎣
σ 2

σ 2

σ 2

σ 2

⎤
⎥⎥⎦

15. Throughout this text, I will sketch out algorithms compatible with Matlab and Octave. Although Matlab is a
commonly used language for scientific computing, it is expensive. Octave is an open source equivalent, and I will
strive to ensure that any algorithmic examples are code compatible between these languages.
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calculate P from

P = (AT R−1A)−1

Now repeat the calculation using the fundamental equations (1.68) of recursive least
squares

P−1
i = P−1

i−1 +ATi R−1
i Ai

Ki = PiA
T
i R

−1
i

x̂i = x̂i−1 +Ki(yi −Aix̂i−1)


