Effortless Attention

A New Perspective in the Cognitive Science of Attention and Action

edited by Brian Bruya

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England
Index

absorption, state of, 310–311, 312–313, 325–326n35

versus flow, 312

following voluntary attention, 317

internal, 400–401, 402–403

achievement motivation, 200–201

Ackerman, Joshua, 17

action

versus activities, 237–238

adjustment of, 126–127

action planning and, 128–130

attention and performance of, 159–160

in cognitive control, 142

deliberative, 8–9

drivers of, 242–243n7

effort and, 1

facilitating perception, 340–341, 342

formality in, 237, 238–239, 240–241

intentional control of, 121–136

nonagentive, 14

operation and, 289–290

orientation of, volatility-persistence component of, 200

perception and, 340–342

syntax of, 9–12, 240–241

action-at-a-distance effect, 231

action-awareness merging, 205, 306, 312

action motivations, 342–344

action planning

action adjustment and, 128–130

neural pathways for, 126–127

perception and, 133–134

perceptual events and, 124–125

visual processing and, 128–130

action-related processing, 125–127

action representation, driving attention, 10–11

activity, 293. See also expertise, skills and syntax

versus action, 237–238

attention as act of, 302–305

complex, 290

degree of syntax of, 237–238

domain of, 10–12, 16–18, 20, 28n2, 51, 58, 65, 66, 68, 108, 209, 210, 212, 224, 227, 228, 232, 243n7, 251, 258, 345, 352 (see also contextual structure of reference)

excitation of, 306

in flow experience, 287–319

gestalt, 293–294, 295, 315

motive in, 289

object of, 289

as object of attention, 296–302

organism level of, 295

person level of, 15

polymotivated, 289

psychological theory of, 288–296, 321n11, 323–324n24

simple, 289–290

structure of, 289–290

unit of, 322n14

value-related, 324n28
Activity Experience Scale, 206
activity-level attention, 308–314
adaptation, attention in, 179–180
adaptive unconscious, 277n7
ADS. See Aperture, Draw, Syntax model of attention
affect coordination, 212, 337
agency,
ethics and, 15
intentional, 16
research on, 12–15
sense of, 13
agent
of attention, 305, 324
individual, 14
moral, 249, 265
multimodal, 16
rational, 15
social, 14
allocentric perspective, 378–379
receptive, 403–404
in stroke patients, 379–382
Analects (Confucius), 248, 275, 279n33, 279n35–n36
virtue ethics in, 268–276
anatta, 392–393
Anscombe, G. E. M., 267–268
anterior cingulate cortex (ACC)
activity of in demand-based decision making, 107
in conflict monitoring, 115–116
demand level and activity of, 109
demand monitoring by, 107–108
demand-related bodily arousal and, 111–113
lesions of in subjective feelings, 411–412
apertures, 224–227
draw
implications of, 234–241
limitations of, 241–242
diffuse attention, 225–229
Aristotle, 248, 250, 268, 306
categories of, 256–257
arousal, 220, 409
attention and, 392, 404
demand-related, 111–113
in flow experience, 206–207, 211
high level of, 354
hypnotic, 254
inhibition and, 300
joyous, 18
physiological/bodily, 111–112
valence and, 206
associations, systems of, 299–301
associative maps, 226–227
associative processing, 65–66, 67
atherosclerotic process, flow and, 213
athlete burnout syndrome, 171
attachment style
anxious-ambivalent, 38–39
avoidant, 38–39
attention. See also dorsal attention system, effortlessness; emotional attention; executive attention; flow; visual attention as act of activity, 302–305
action control and, 127–128
action representation driving, 10–11
activity approach to, 287–319
activity as object of, 296–302
anticipated cognitive demand and, 103–116
apertures of, 224–229
in autotelic activity, 305–318
awareness and, 355–357
beam-of-light metaphor for, 225–226
bottom-up versus top-down influences on, 30
cognitive draw and, 229–232
cognitive schemas in, 318
concentration characteristic of, 322–323n17
contextual structures of reference and, 227–229
coordinative and administrative functions of, 122
current theories of, 6
in daily life, 181–186
decreasing objective effort during, 7
definition of, 297
diffuse, 222
as aperture, 225–229
versus selective attention, 223–224
distributed representations and common
coding of, 123–125
divided, 242n1, 242n5
draw of, 11–12, 229–232
drivers of, 227–232
early onset, 15
effortful, 1, 135–136, 354
control of, 29–47
objectivist self and, 248–249
effortless, 19. See also effortlessness; flow
automaticity and, 186
conditions for, 186–188
in Confucian virtue ethics, 268–276
control of, 33–34
in decision making, 8
definition of, 5
direct path to, 188
in early Chinese thought, 247
enhancement of, 188
in everyday life, 179–188
indirect path to, 188
individual differences in, 412–415
interest and, 220–221
laboratory research on, 11
mechanisms of, 159–160
neurocognitive underpinnings of, 161–165
perfectionism and, 170–174
physiology of, 205–213, 210–211
quality of life and, 181–186
thalamus in, 386–387, 386–405
training, 409–420
transient hypofrontality and, 165–170
virtue ethics and, 266–268
exogenous versus endogenous control of, 30
expertise and, 17–18
external focus in movement effectiveness
and efficiency, 75–96

eye movement programming and, 128
in flow experience, 222–223
flow proneness and, 207–208
focused, 182–186
forced, 298–299, 304
function of, 121–123
gap between description and explanation of,
287–288
grounding in action control, 121–136
intensity of, 308
intentional control framework for, 128–134
involuntary, 298–299
as key characteristic of flow experience,
306–308
limited capacity of, 122–123
meditation improving, 375–377, 417–419
mental training and, 21
models of, 221–224
multiple processing pathways of, 125–127
organization of, 298
personality approach to, 298–299
phenomena of, 322n16
physiological mechanisms of, 324n29
postvoluntary, 4, 5, 300–301, 316–318,
323n22
flow as, 314–318
persona level in, 15
psychological approach to, 219, 288–296
as psychological resource, 180
in quality of life, 181
remodeling of, 219–242
selective, 31, 221–222, 308
versus diffuse attention, 223–224
versus diffuse under flow conditions,
223–224
metaphors for, 224–226
tasks of, 144–145
self-regulation and, 6–7
sensitivity in, 230–232
shifting to activity level, 312
shifting toward externalized goals, 384–385
spatial limitations of, 122
studies of, 325n31
attention (cont.)
sustained, 31, 236
syntax and, 232–234
top-down control of, 5
training of, 401–403
triangular circuit theory of, 12
volitional/voluntary, 299, 309–310
acts of, 304–305
in flow, 318
postvoluntary attention transformed to,
316–317
transition to involuntary, 301, 305
transition to involuntary attention, 305
attention control
benefits and perils of, 51–69
in category learning, 59–62
cognitive aftereffects of, 34–38
in correlation perception, 63–64
deleeting resources, 32–34
executive attention in, 51
forms of, 31
in language learning, 62–63
interpersonal consequences of, 38–40
physiological consequences of, 42–44
in problem solving, 52–59
resources need for, 46–47
rule-based and associative processing in,
65–68
self-control undermining, 44–46
task persistence and, 40–42
undermining problem solving, 64–65
undermining subsequent self-control, 34–44
working memory and, 51–52
attention-control video task, 32–36
attention deficit/hyperactivity disorder,
attention training and, 416–417
Attention Network Test (ANT), 412–413
genetics and experience effects on,
413–414
meditation and performance on, 417
attention substitution, 239, 240
attention training, 21
in children, 415–417
attentional bias, action-induced, 131–133
attentional focus
in automaticity, 88–91
EMG activity as function of, 81–87
explanations of, 92–93
external, 76–80
external and internal determinants of, 29–30
internal, 76–80
motor system effects of, 85
movement effectiveness and, 77–78
movement efficiency and, 78–81
self-control in, 30–32
in skilled performance speed, 91–92
visual information in, 92–93
attentional processing pathways, 125–127
attentional systems, 121
dorsal and ventral, 376
in processing reality, 377–378
attentiveness
dorsal-ventral cortical systems of, 374–375
goal of, 304–305
meditative training and, 374
state of, 310
attunement, 250
Austin, James, 14, 19
automaticity
in conscious control, 251–252
in daily life, 186
versus effortful action, 410
in expertise, 209
external attentional focus in, 88–91
felt effort and, 354–357
know-how and, 250–251
in movement control, 87–88
versus objectivist reasoning model, 252–254
processes of, 144
research on, 15–17
response inhibition level in, 7–8
social, 17
in social coordination, 352–353
autonomy
in Confucian virtue ethics, 269–273
context-level support of, 198–199
ethics of, 264
autopoiesis, 19
autotelic experience, 1–4
attention within, 305–318
in decision making, 8
definition of, 5
enjoyment and, 312
in flow, 205
mechanisms of, 159–160
autotelic personality, 206
aversion learning, colocalization of, 113
awakened states, 373
awareness
attention and, 355–357
cognitive schemas and, 326n36
function of, 150–153
implicit versus deliberate cognitive control and, 141–153

Background, 249
balance, learning
attentional focus in, 87–88
external focus in, 88–91
balance tasks, 78
ballistic thought, 233
Bargh et al. elderly stereotype study, 337–338
Bargh, John, 16, 17, 144, 250–251
Barsalou, Lawrence, 254–255, 256
baseball problem-solving task, 58–59
Baumeister, Roy, 6–7, 40, 42, 47, 251–252
Bechara, Antoine, 7–8
behavior
cascade model of, 16
temporal integration of, 9
behavior synchronization (coordination), 336–337
behavioral demand avoidance, 110–113
Beilock, Sian, 9, 17
Beilock and Carr working memory research, 53–54
Beilock and DeCaro problem solving study, 57
Being, state of, 397
beliefs, 297–298
benevolence, harmony in, 274–275
Bergman, Ingmar, on flow experience, 318
Bernieri and Rosenthal behavioral coordination research, 336
Bernstein, Nikolai Aleksandrovich, 292
Blais, Chris, 9
Blais et al. item-specific control model, 148–150
blood pressure, in flow experience, 208
bodily motion, effortless attention in, 165–170
boredom coping, 206
Borg, Gunnar, 6
Botvinick et al. number-judgment task, 108–109
brain
body-minded, 258–259
coding of representation in, 123–124
as Darwin machine, 242n3
individual differences in, 412–415
as intentional system, 12
measuring activity of, 168–169
Self-referential regions of, 382–383
structure and processing characteristics of, 122
brain hemispheres
processing streams in, 380–381
severed, 252–253
Broadbent, D. E., 122, 231, 344, 349
Bruya, Brian, 11–12, 19
Bryusov, V. Ya., 322n15
Bucke, Richard, 373
Buddha, 373
Buddhism, 19–20. See also meditation; Zen
Buddhism
Cabo et al. flow experiments, 194
Cahn, B. Rael, 19–20
Calvin, William, 233
Camerer and Hogarth demand cost metaphor, 108
capital-labor-production framework, 104
Carpenter, Edward, 393, 396
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>434</td>
<td>Cartesian errors, 252, 259</td>
</tr>
<tr>
<td></td>
<td>Casebeer, William, 266, 278n28</td>
</tr>
<tr>
<td></td>
<td>category learning</td>
</tr>
<tr>
<td></td>
<td>associative-based, 65</td>
</tr>
<tr>
<td></td>
<td>attention control in, 59–62</td>
</tr>
<tr>
<td></td>
<td>dual-process theories of, 65, 68</td>
</tr>
<tr>
<td></td>
<td>rule-based, 59–62</td>
</tr>
<tr>
<td></td>
<td>Cavell, Stanley, 250</td>
</tr>
<tr>
<td></td>
<td>central nervous system, in mental effort, 410</td>
</tr>
<tr>
<td></td>
<td>challenge (see also demand, cognitive), 115</td>
</tr>
<tr>
<td></td>
<td>artificial, 239</td>
</tr>
<tr>
<td></td>
<td>high level of, 173, 182, 191, 228n2, 236, 239</td>
</tr>
<tr>
<td></td>
<td>low level of, 235, 236, 239, 240</td>
</tr>
<tr>
<td></td>
<td>increasing/raising, 235, 240</td>
</tr>
<tr>
<td></td>
<td>perceived, 183, 307</td>
</tr>
<tr>
<td></td>
<td>resources for self-control and, 44, 47</td>
</tr>
<tr>
<td></td>
<td>in flow, 205, 208–209, 211, 235–236</td>
</tr>
<tr>
<td></td>
<td>psychological states related to, 220–221</td>
</tr>
<tr>
<td></td>
<td>Changeux, J., 17, 18</td>
</tr>
<tr>
<td></td>
<td>character traits, 280n45</td>
</tr>
<tr>
<td></td>
<td>Chartrand, Tanya, 250–251</td>
</tr>
<tr>
<td></td>
<td>children, training attention in, 415–417</td>
</tr>
<tr>
<td></td>
<td>Chinese philosophy, 247–248</td>
</tr>
<tr>
<td></td>
<td>virtue ethics in, 267–268</td>
</tr>
<tr>
<td></td>
<td>choice, versus decision making and action, 8</td>
</tr>
<tr>
<td></td>
<td>Churchland, Patricia, 278n28</td>
</tr>
<tr>
<td></td>
<td>coalescence, 323n17</td>
</tr>
<tr>
<td></td>
<td>coding, in attention, 123–125</td>
</tr>
<tr>
<td></td>
<td>cognition</td>
</tr>
<tr>
<td></td>
<td>embodied emotions in, 258–263</td>
</tr>
<tr>
<td></td>
<td>in flow state, 212</td>
</tr>
<tr>
<td></td>
<td>need for, 114–115</td>
</tr>
<tr>
<td></td>
<td>preventing overload of, 122–123, 134</td>
</tr>
<tr>
<td></td>
<td>self-control in, 34–35</td>
</tr>
<tr>
<td></td>
<td>symbolic representations in, 123–124</td>
</tr>
<tr>
<td></td>
<td>syntactic nature of, 243n8</td>
</tr>
<tr>
<td></td>
<td>cognitive aftereffects, 34–38</td>
</tr>
<tr>
<td></td>
<td>cognitive control</td>
</tr>
<tr>
<td></td>
<td>brain activity in, 278n26</td>
</tr>
<tr>
<td></td>
<td>cycle of, 142–143</td>
</tr>
<tr>
<td></td>
<td>in decision making, 9</td>
</tr>
<tr>
<td></td>
<td>definition of, 141</td>
</tr>
<tr>
<td></td>
<td>formula for, 144–145</td>
</tr>
<tr>
<td></td>
<td>gut reactions and, 263–266</td>
</tr>
<tr>
<td></td>
<td>implicit versus deliberate, 141–153</td>
</tr>
<tr>
<td></td>
<td>top-down, 142–143</td>
</tr>
<tr>
<td></td>
<td>cognitive-control ethics model, 247–248</td>
</tr>
<tr>
<td></td>
<td>cognitive demand</td>
</tr>
<tr>
<td></td>
<td>anticipated cognitive demand</td>
</tr>
<tr>
<td></td>
<td>in attention and behavioral choice, 103–116</td>
</tr>
<tr>
<td></td>
<td>mechanisms for, 110–112</td>
</tr>
<tr>
<td></td>
<td>costliness of, 104, 108–109</td>
</tr>
<tr>
<td></td>
<td>levels of in information processing, 103</td>
</tr>
<tr>
<td></td>
<td>cognitive draw, 229–232</td>
</tr>
<tr>
<td></td>
<td>cognitive resources</td>
</tr>
<tr>
<td></td>
<td>in language learning, 62</td>
</tr>
<tr>
<td></td>
<td>in probability matching, 63–64</td>
</tr>
<tr>
<td></td>
<td>cognitive schemas, 325n31</td>
</tr>
<tr>
<td></td>
<td>in activity gestalt, 315–316</td>
</tr>
<tr>
<td></td>
<td>awareness and, 326n36</td>
</tr>
<tr>
<td></td>
<td>in flow, 318</td>
</tr>
<tr>
<td></td>
<td>cognitive science ethics, 247–276</td>
</tr>
<tr>
<td></td>
<td>cognitive synchronization, 337–338</td>
</tr>
<tr>
<td></td>
<td>vicarious self-control in, 349–351</td>
</tr>
<tr>
<td></td>
<td>Coleman, Linda, 257</td>
</tr>
<tr>
<td></td>
<td>communication</td>
</tr>
<tr>
<td></td>
<td>psychological synchronization in, 343</td>
</tr>
<tr>
<td></td>
<td>social coordination in, 346</td>
</tr>
<tr>
<td></td>
<td>competition, Darwinian, 242n3</td>
</tr>
<tr>
<td></td>
<td>competitive anxiety, 171–172, 173</td>
</tr>
<tr>
<td></td>
<td>complementary behavior, 336–337</td>
</tr>
<tr>
<td></td>
<td>complexity, in activity syntax, 236–237</td>
</tr>
<tr>
<td></td>
<td>COMT gene, 414</td>
</tr>
<tr>
<td></td>
<td>concentration, 297</td>
</tr>
<tr>
<td></td>
<td>in attention, 322–323n17</td>
</tr>
<tr>
<td></td>
<td>effortless, 187, 306</td>
</tr>
<tr>
<td></td>
<td>in expertise, 209</td>
</tr>
<tr>
<td></td>
<td>in flow, 205</td>
</tr>
<tr>
<td></td>
<td>prolonged effortless, 306–307</td>
</tr>
<tr>
<td></td>
<td>quality of life and, 182–186</td>
</tr>
<tr>
<td></td>
<td>conflict</td>
</tr>
<tr>
<td></td>
<td>in absence of awareness, 153</td>
</tr>
<tr>
<td></td>
<td>monitoring</td>
</tr>
</tbody>
</table>
computations of, 107
in demand-based decision making, 115–116
hypothesis of, 146, 148
conformity, 342–343
Confucianism
spontaneity, harmony, and ease in, 273–276
virtue ethics and, 268–276
Confucius, 248, 279n33–n41
consciousness
constituents of, 290–291
function of, 150–153
limits of, 122–123
transient hypofrontality in altered states of, 165–170
constrained action hypothesis, 76–77
mechanisms underlying, 92–95
constraints, and syntax, 232
contextual judgment, 249–250, 251
contextual structure of reference (CSRs), 227–229. See also activity, domain of
analyzing the game CSR, 228
attention and, 227–228, 229
ascendancy CSR, 227–228
cheering CSR, 228
competition of, 227
complexity of, 236–237
curiosity CSR, 227
defense fight or flight CSRs, 227, 228
dilation and contraction of, 227
kinds of, 227
meditation, 239–240
meditation CSRs, 239–241
romance CSR, 227, 228
salience and, 229–230
socializing with elders CSR, 228–229
sustenance CSRs, 228, 242n6
syntax and, 233–234
continuous positive emotional tone, 311–312
control
deliberate, 144
effortful, individual differences in, 412
modulation of, 105–107
sense of
in flow, 205
potential, 306, 312–313
sequential adjustment effects on, 106
convergence zones, 252, 254–255
Conway, A. R., dichotic listening study of, 52, 57
Conway, John, 243n7
Cooper, Lynn, 255
cooperative courtship, 348–349
correlation perception, 63–64
cortical systems. See also prefrontal cortex
dorsal-ventral, 374–376
limbic nuclei targets in, 389–391
Cosmides, L., 180
Craighero et al. manual action planning study, 129–130
creative expression, flow in, 191–192, 198
culture
in health and flow proneness, 212–213
personality and, 294–295
in virtue ethics, 266–267, 269
Damasio, Antonio, 7–8, 8, 251, 252, 255, 258–261, 277n9
dancing, psychological synchronization in, 342–343
Darwinian competition, 242n3
The Dating Game, 349
de Manzano, Örjan, 18
deactivations, 384–385
of psychic Self, 392–393, 394–395
deafferented somatic Self, 400–401, 402–403
death thoughts
 suppressing, 35, 36
 undermining attention control, 45–46
DeCaro, Marci, 9, 53, 57, 61–62
decision making, 7–8
 attentional processing pathways in,
 125–127
demand-based, 103–104
 modulating control in, 105–107
nonrational heuristics and biases in,
 258–262
objectivist model of, 252–254
prefrontal cortex damage affecting, 259–260
 reasoning in, 247–249
recurrent connectionist network model of,
 9–10
research on, 8–9
response conflict and effort in, 8–9
 suboptimal, 278n21
theories of, 8
Dehaene, Stanislaus, 7, 8, 17, 18
delayed retention tests, 77–78
demand, cognitive. See also challenge
 avoidance of, 107–108
 behavioral, 110–113
 costliness of high demand in, 108–109
 conflict monitoring and, 115
 competition of, 226
 versus effort, 1–2
 high levels of
 costliness of, 108–109
 pursuit of, 114–115
 subjective effort and performance in,
 115–116
 demand, economic, 231
Dennett, Daniel, 278n27
deonontology
 advantages of, 278–279n30
 virtue ethics and, 265–268
determinism, free will and, 152
Dewey, John, 12, 16, 326n37
dichotic listening, 52, 57
Dietrich, Arne, 8, 18
Dijksterhuis and Bargh perception-action link
 research, 342
directedness, 297
disgust-based attitudes, 254
 dispositional representations, 259
distractions
 minimizing, 199–200
 as obstacle to flow, 235–236
divided attention, 31
Dobrynin, Nikolai Fyodorovich, 1, 4, 6, 13,
 322–323n17, 323n19, 323n20
 activity model of, 296–305
 attention theory of, 288
domain. See activity, domain of
dopamine
 in executive network, 413–414
 receptors for in emotions and limbic system,
 404
Doris, John, 280n45
Dornashev, Yuri, 15, 322n16
dorsal attention system, 374–375, 376
 kensho and, 392–393
 in processing reality, 377–378
 in stroke patient, 380–382
draw of attention. See attention
DRD4 gene, 414
drives, 297
 in personality, 298
dual-process theories, 65, 68
 epiphenomenalism and, 150–152
dual-task methodology, 64
Dukas, Reuven, 17
Dutch door metaphor, 393, 395
duty, acting out of, 274–275
dynamic systems theory, 13
 in social coordination, 339–340
ease, 273–276
Edelman, Gerald, 242n3, 278n19
Edwards, Kari, 263
effort. See also attention, effortful; control,
 effortful; effortfulness
 versus attention, 222–223
attentional, neuronal model of, 5
versus automatic action, 410
category of, 409–412
in decision making, 8–9
in deliberative problem solving, 9
versus demand, 1–2
discounting, 109
felt, 8
reduction of in flow experience, 354–357
in social coordination, 351–358
in intensity of focus, 222–223
justification of, 114
kinds distinguished in literature, 5
monitoring versus controlling, 411
objective, 1, 5, 411–412
correlated with subjective, 6
decreasing during attention, 7
versus subjective, 411–412
physical, 5, 81–87
physical and psychological measures of, 409–411
positive reinforcers of, 114–115
reactive versus regulatory aspects of, 411
subjective, 1, 5, 6
versus objective, 411–412
volitional, 299–300
effort-related aversion, 115–116
effortlessness, 3. See also attention, effortful
definition of, 5
effortlessness, 3, 16. See also attention, effortless; automaticity; flow
action syntax and, 10
agency and, 13–14
of attentional processes, 135–136
as autotelic experience, 1–4
domain specific, 11
experimental induction of, 191–202
in expertise, 19–20
focused attention and, 18
movement efficiency and, 81
paradox of, 28n2, 159, 164, 186
phenomenon of, 6
in social coordination, 354–357
egocentric perspective, 378–379
in stroke patients, 379–382
“elderly” mental representation, 337–338
electromyographic (EMG) activity
as function of attentional focus, 81–87
internal versus external focus in, 81–82
emotion inhibition task, 37
emotional attention, 299
operations of, 304
emotional contagion, 337
emotional memory, 251
emotional stability, 212
emotional synchronization, 344–346
emotions
attention control and regulation of, 46
cognitive-evaluative view of, 261–262
convergence of in social coordination, 344
embodied, 258–263, 341
in flow proneness, 206–207
in focus of attention, 29–30
in moral reasoning, 263–266
emptiness, sense of, 404
energetics, 324n29
energy expenditure
in mental effort, 87–91
in physical effort, 81–87
time and, 91–92
Engeser and Rheinberg studies
of flow, 200–201
of task instrumentality, 197
enjoyment, 306, 325n34
acute and continuous, 306
in flow, 206–207, 311–312
intense, 312–313
intrinsic, 206
versus pleasure, 235
enlightenment, 373–374
environment
in focus of attention, 29–30
imbibing of, 312
epiphenomenalism, 150–152
ethics
agency and, 15
ethics (cont.)
cognitive-control models of, 247–248
in decision making, 261–262
emotions and, 261–262
empirically responsible, 247–276
spontaneity, harmony, and ease in, 273–276
strong evaluations and, 261–263
virtue, 266–268
Confucian, 268–276
etiquette. See syntax
evaluations
response-dependent, conventional, and moral, 262–263
weak versus strong, 261–263
executive attention
in category learning, 59–60
in children, 416–417
and effortful control, 412
function of, 51
meditation improving, 417–419
neuromodulators in, 413–414
executive control network, 9
in decision making, 8
testing of, 413
experience, in effortless attention, 413–414
Experience Sampling Method (ESM) study, 181–185
Expertise. See also activity, skills, and syntax
in attentional control, 67–68
effortless attention/flow and, 164–165, 208–209
intelligence and, 212
mental training and, 19–21
research on, 17–18
explicit system, 18
external stimuli, 29–30
eye movements, programming of, 128
Fagioli et al. reaching movement study, 131–132
feedback, immediate, 306
in flow, 187, 197–198, 205
feelings synchronization, 337
figure-tracing puzzle, 41
flanker task, 105, 145
flexibility, in Confucian virtue ethics, 269–273
flow. See also attention, effortless;
automaticity; effortlessness
versus absorption, 312
activity-level approach to, 287–319, 308–314
actor stage of, 419–420
attention as key characteristic of, 306–308
attention versus effort in, 222–223
autonomy support in, 198–199
balancing challenge and skill in, 193–196
complexities of, 355–356
correlates of, 209–210
effortless attention training and, 409
experimental induction of, 191–202
expertise and, 208–209
flow proneness and, 205–206
gap between description and explanation of, 287–288
implicit information-processing system in, 160–165
meditation and, 419–420
minimizing distractions in, 199–200
motivation and, 234–235
neurocognitive mechanisms of, 159–165
obstacles to, 235–237
in open-ended activity, 239
perfectionism and, 170–172, 173–174
person-level moderators of, 200–201
person-level variables in, 192
personal taste in, 314–315
phenomenology of, 186–187
physiology of, 18, 210–211
positive and negative, 315–316
as postvoluntary attention, 314–318
psychophysiology of, 212–213
quality of life and, 181
research literature on, 191–192
research on, 319
selective versus diffuse attention under, 223–224
in social coordination, 354–357
task instrumentality in, 197
task structure in, 197–198
flow channel, 220
flow proneness
attention and, 207–208
correlates of, 210
emotion and, 206–207
flow state and, 205–206
Flow Short Scale questionnaire, 194
Flow State Scale, 196
focus, 17–18
in expertise, 209
intensity of, 222–223
force production, external focus in, 86–87
formality, 237, 240–241, 243n10
versus syntax, 237–239
free will, versus determinism, 152
Freeman, Walter, 12, 13, 14
Freudenheim et al. swimming speed study, 92
functional connectivity, 385
functional gestalt, 296
functional imaging, nitric oxide in,
397–398
functional needs, 289
functional physiological systems, 291–292,
302–303
Fuster, Joaquín, 9

GABA
excitation of, 398
inhibition of, 391–392, 394–395, 397
Gailliot attention control study, 42–45, 47
Gaissmaier et al. correlation perception study,
63–64
Galperin, Pyotr Yakovlevich, 322n16
Game of Life, 243n7
Garrity, Pat, 191
Gatkevich, D.I., 4
Gazzaniga, M., 253
genetic factors, in effortless attention,
413–414
gestalt, 293–294, 295
cognitive schema in, 315–316
functional, 296
Gibbs, Raymond, 257
Gigerenzer, Gerd, 258, 278n20
Gippenreiter, Yuliya Borisovna, 322n16
glucose
in attention control, 7, 42–44, 47
in mental effort, 410
in self-control, 47
in self-regulation, 7
goal-directed activity, 12
goal orientation, 171–172
goal setting processes, 312–313
goal states
active, 342–344
shifting to motive, 304–305
goals
action optimization and, 234
clear, 306, 312–313
in flow, 197–198, 205
contagious, 350
coordination of, 338
defining action, 290
driving activities, 242–243n7
in effortless attention, 187
effortless selection of, 135–136
externalized, attention shifting toward,
384–385
motives shifting to, 325–326n35
shifting to motive, 312
social coordination in achieving, 345–346
syntax and, 233
Golden Rule, negative, 271
golf swing, learning, 78
good person criterion, 267
Goodness, virtue of, 269, 270, 278n22
Govorun and Payne attention control study,
35–36, 45
Graduate Record Exam (GRE) Reading
Comprehension subtest, 34
grasping action
 planning, 129–130
 size information in, 135
Gratton effect, 145–146, 147–150
Green, C., 152
Greene, Joshua, 263, 264–265, 278n26
gut reactions, 263–266
Guthrie, E.R., 75, 78

habitual attention, 299
habituation, 233–234
Haidt, Jonathan, 254, 262–263, 264, 277n7
Hamilton, Jean, 307
Harman, Gilbert, 280n45
Harmat, László, 18
harmony, 273–276
health, psychophysiology of flow and, 212–213
heart rate
 synchronization of, 338
 variability of in flow, 208, 211
hedonism, limits of, 308
Heinz, Steven, 324n30
heroic mind, 316
high reason model, 247, 248, 264
Hillis et al. stroke patient studies, 379
Hommel, Bernhard, 4, 11, 16, 124, 128, 130, 131, 133, 135
human nature, roots of, 294–295
Hume, David, 261–262, 276
Hurley, Susan, 12
hypofrontality, transient, 165–170
hypothesis testing
 cognitive resources in, 63–64
 working memory in, 61–62

I-Me-Mine, 382–383
 distorted priorities of, 392–393
 egocentric constructs of, 387
ideal moral agents, 248–249
idealized cognitive models, 257–258
ideational needs, 289
ideomotor action, 340
imaginative extension, 257–258
immersion, 297, 312
implicit control, 143–147
incongruent trial, 146
inefficient behavior, 144
information flow
 economic demand and, 231
 projectile view of, 230
 sensitivity and, 232
information-integration category learning, 61
dual-process theories in, 68
information potential, 231
information-processing system
 biologically predetermined, 179–180
cognitive demand levels in, 103
explicit, 161, 162–163
 inhibition of, 164–165
flexibility-efficiency trade-off in, 162–163
implicit, 161–165
insight-wisdom
 balanced with selflessness, 385–386
 thalamus in, 386–387
 total selflessness and, 392–393
instruction wording, performance and learning effects of, 92–95
Integrative Body-Mind Training (IBMT), 417–419
intelligence
 attention training and, 416
 in flow state, 210, 212
intentional action model, 12
intentional control framework, 128–134
theoretical implications of, 134–136
intentional selection control, 121–136
interactional synchrony, 336
interest
 effortlessness and, 220–221
 lack of, 236–237
 as motivation, 234–235
Interests, 297
 beliefs and, 297–298
 in personality, 298
interference effect, 145–146
internalization, 291–292
interpersonal style
unlikable/maladaptive, 38–39
item-specific control, 147–150

James, William, 5, 166, 180, 232, 236, 316, 373, 396
Jeannerod, Marc, 13, 15, 16, 20
Jesus, meditative approach of, 373
Johnson, Mark, 257–258, 277n2, 277n9, 278n22
Johnson, Samuel, 182
Johnston, William, 324n30
judgment
brain hemispheres in, 253
dual-process theories of, 65
emotional, 261–262
moral, 262–263
normative, 278n22
jump performance, attentional focus in, 86
justification, rational and emotional, 262–263

Kabat-Zinn, John, 20
Kahneman, Daniel, 4, 5, 15, 160, 180, 261, 278n21, 324n30, 409–410
Kant, Immanuel, 250, 274–275, 278–279n30
Kareeve et al. correlation perception study, 63
Kawakami et al. elderly stereotype study, 337–338
Kay, Paul, 257
Keller and Bless flow induction study,
 194–195
kensho, 380–381
closing, 397
deactivations in, 394–395
dorsal deactivations and, 392–393
triggers for, 385–386, 387
Kersten and Earles language learning study, 62
know-how, importance of, 249–252
knowledge
explicit versus tacit, 250–252
moral, 257–258
Koriat et al. effort studies, 411
Kubey, R., 191
Kunst-Wilson, W., 277n5

LaBerge, David, 12, 13
Lakoff, G., 277n9, 278n22
Langacker, Ronald, 255, 277n9
Langer, Ellen, 19
language
attunement and, 250
learning
attention control in, 62–63
dual-process theories in, 68
holistic, 65
limited cognitive resources in, 62
psychological synchronization in, 343–344
Lavrova, N.V., 4
learned industriousness theory, 114–115
learning, attention in, 16
least mental effort, law of, 108
LeDoux, Joseph, 251, 253
Lektorsky, Vladislav Aleksandrovich, 321n12
Leontiev, Aleksei Nikolaevich, 301–318, 320–326nn
activity theory of, 288–296
Lewthwaite, Rebecca, 7, 164
limbic nuclei, cortical targets of, 389–391
Loewenstein, George, 261
Logan and Gordon executive control study,
 131–132
Maddox category learning study, 62
Makalatiya, Aleksandra Guramovna, 317
Mannell and Bradley task structure study,
 197, 198–199
Marchant et al. force production study, 82, 86–87
Markman et al. category learning study,
 61–62
Massimini and Carli flow channel model, 220
math problem solving, 55–56
Mauss, Iris, 144
maximizing strategy, 64
McGuire, Joseph, 8–9, 108, 112
meanings, in consciousness, 290–291
meditation, 19, 159, 165, 166, 170, 181, 188, 211, 239, 240, 241, 303, 325, 374, 401, 404, 405, 411, 412. See also Zen Buddhism
breath, 239–240
categories of, 375–377
concentrative, 375–377, 400
Eastern, 19–20
flow and, 419–420
in improving attention, 417–419
mindful, 188
neurological studies of, 19–20
PET scan during, 398–399
receptive, 377
PET scan during, 398–399
techniques of, 403
meditative training
in attentiveness, 374
Meier, Brian, 11
Mencius, 247–248, 274–275, 279n34
Mencius-Mohist debates, 267–268
mental effort, 5
energy expenditure in, 87–91
glucose metabolism in, 410
mental training, 19–21
meridian effect, 127–128
metacognitive processes, 164–165
metamental training, 20
metaphors, 257–258
in moral reasoning, 258
Metzinger, Thomas, 12
Metzler, Jacqueline, 255
Milner and Goodale action-planning study, 127
mimicry, 336
in action motivation, 343–344
mind-body dualism, 152
mindfulness, 188, 240
effortless, 419–420
Moller, Arlen, 11, 195–196
momentum, in flow, 236
monkey mind, 181
“moonlight” phase, 397
moral behavior
music and, 279–280n42
spontaneity, harmony, and ease in, 273–276
moral education, 257–258
moral evaluations, 262–263
moral reasoning
affective states in, 278n28
gut reactions in, 263–266
motivational forces, 30
motivations
action, 289, 342–344
in action optimization, 234–235
in attentional effort, 5
in flow, 200–201, 309
hierarchy of, 292, 295
leading, 292
sense-forming, 291
shifting to goals, 325–326n35
stimulating, 292
structuring function of, 321n12, 326n38
struggle of, 316
taste-forming, 314–315
taste-forming versus sense-forming, 316
motor skills, learning, 75–96
movement
control of
automaticity in, 87–88
smoothness and fluidity of, 91
social-cognitive variables in, 94–95
economy of, 81
effectiveness of, 77–78
efficiency of
attentional focus and, 78–81
external focus in, 85–86
internal versus external focus in, 81–82
external attention focus in effectiveness and efficiency of, 75–96
reaching, saccades and, 130–131
Mozi, 279–280n42
music
in emotional transformation, 274
moral value of, 279–280n42
performance of health and flow in, 213
physiological factors in, 211
Müsseler et al. manual action planning studies, 128–130

Nakamura, Jeanne, 11, 191, 324n28
Narcissistic Personality Inventory, 39–40
native substance, 269
nature, meditation on, 403
needs
beliefs and, 297–298
insatiable, 289
objectified, 289, 320n6
in personality, 298
physiological, satisfaction of, 322n15
primary, 289
primary and secondary, 297
satisfaction of, 322n15
social, satisfaction of, 322n15
spiritual, 297
Neitzsche, F., 253
Nemeroff, Carol, 254
NEO Personality Inventory-Revised, 210
neural cost-benefit analysis, 108–109
neural pathways, action-related versus perception-related, 125–127
neuromodulators, 413–414
neurons, electrochemical activity of, 12
Newport language learning study, 62
Nichols, Shaun, 263
Nisbett, Richard, 253–254
nitric oxide, in functional imaging, 397–398
non-I state, 392–393
norepinephrine receptors, 404
Norman, Donald, 324n26
novice skills, in attentional control, 67–68
number-judgment task, 108–109
Nussbaum, Martha, 257–258, 261–262
object-centered perspective, 378–379
object matching, reaction times in, 255
objectivist model, 248–249
moral gut reactions and, 263–266
prototype categories in, 256–257
oneness
subcategories of, 396
thalamus in, 393–397
triggering sense of, 404
“onion-peeling” principle, 165
open-ended activity, 239
operations
action and, 289–290
of emotional attention, 304
primary and secondary, 290, 311
optimal experience studies, 181
organic needs, 289
organism, 294–295
OSPAN task, 36–38
emotion regulation and, 46
working memory in, 53
other-referential perspective, 377–379
defect in, 381–382
other-referential/self-referential function equilibrium, 385–386
outcome measures, 77–78
oxygen consumption, in physical effort, 81

Pac-Man game
challenge-skill balance in playing, 193–194
task instrumentality in, 197
parasympathetic activation
in flow, 208, 211
flow and, 213
parietal function
dorsal and ventral processing in, 376–378
ego- and allocentric pathways in, 378–382
pattern-recognition pathways, 380
Pavlov, Ivan Petrovich, 325n31
peak experiences, 373–374
pedalo riding performance, 91–92
Penfield homunculus, 324n27
perception
action planning and, 124–125, 133–134
actions facilitating, 341, 342
perception (cont.)
genesis and function of, 325n33
as human activity, 325n32
perception-action cycle, 340–342
momentum in, 236
syntax and, 234
perception-related processing, 125–127
perceptual dimensions
priming of, 130–132
selective use of, 134–135
perceptual symbols, 254–256
perfection, effortless, 274–276
perfectionism, 18, 170–174
negative, 171–172, 174
positive, 170–172, 173–174
performance monitoring, 5
in cognitive control, 142–143
person-level factors, in flow, 200–201
personal sense, 320n8
in consciousness, 290–291
personal significance, 297–298
personal taste, 314–315
personality
activity and, 15, 294–295
attention organization and, 298–299
in exact sense, 295
expanded concept of, 293
in flow proneness, 210
intercompeting tendencies in, 300
levels of, 294–295
motive hierarchy in, 295
organization of, 298
second birth of, 292
span of, 292
taste-forming motive in, 314–315
PET scan, during receptive meditation, 398–399
Petukhov, Valery Viktorovich, 294–295, 296
phenomenological subtraction, 165–166
phenomenology, 321
of attention, 288
of flow, 161, 186
in effortful versus effortless attention, 182
in normal versus altered consciousness, 165–169
systematic, 179
phi complex, 342
physical activity
energy expenditure during, 81–87
neural activation during, 168–169
physical sensations, 29–30
physiological measures, in flow state, 209–210
physiological processes
attention control and, 42–44
coordination of, 338
in flow state, 210–212
Plaut, D. C., 242–243n7
pleasure, versus enjoyment, 235, 325n34
Polanyi, Michael, 250
Polich, John, 19–20
Posner, Michael, 21, 296, 410
prajna (insight-wisdom), 373
precoordination, 341
prefrontal cortex
in cognitive control, 141–142
decision making center of, 259–260
hypoactivity of, 165–170
susceptibility to change, 165
principal function, 295–296
Prinz perception-action research, 340–341
probability matching, 63–64
problem solving
attention control in, 52–59
cognitive resources undermining, 64–65
deliberative, 9
dual-process theories in, 65–68
processing-filtering, selective, 15
Profile of Mood States (POMS), 417–418
projectile view of information flow. See information flow
proportion effects, 145, 146
deliberate control hypothesis and, 147, 148–150
prototype categories, 256–257
psychic capacity, 180
psychic energy, 180, 324n29
psychic Self
 blocking association functions of, 392–393
deactivations of, 394–395
exteroceptive and interoceptive environments in, 382–383
psychological matching, 342–343
psychological states
 in attention, 219–220
 challenge-skill balance and, 220–221
psychology
 of attention, 180, 288–296
 in flow proneness, 206–207
psychophysiological factors, in flow,
 212–213
pulvinar, 388–389, 390
Putnam, Hilary, 249–250

quality of life, attention and, 181
quasi-motives, 291

racially biased response, attention control and, 35–36, 45
rapport building, 345–346
 vicarious self-control in, 349–351
rational justifications, 254
rationality, bounded, 258, 277n17, 278n21
Raven’s Standard Progressive Matrices, 417
Raven’s Standard Progressive Matrices Plus, 210
readiness potential, 151–152
Reading Span (RSPAN) task, working memory in, 53
reasoning, 247–248
 in decision making, 261–262
deontological, 265–266
 in virtue ethics, 267–268
emotions and, 251–252
judgment, 65
Kantian, 278–279n30
objectivist model of, 252–254
recognition heuristic, 258
reference, contextual structures of, 11–12
reflective self-consciousness, loss of, 199
Relationship Closeness Induction Task (RCIT), 39
relationships, social coordination enhancing, 345–346
religious beliefs, gut reactions in, 263
Remote Associates Task (RAT), 58–59
representational systems
 distributed, 123–125
 shared, 341
research, challenges and gaps in, 6, 8
response
 conflict
 in decision making, 8–9
 sensitivity to in monitoring demand, 106–107
execution of, 233
inhibition of, 7–8
 attention control and, 45–46
selection of in cognitive control, 142
steps of, 233–234
response representations, 124
responsiveness, 16, 230, 232
Rheinberg and Vollmeyer flow experiments, 193–194
Ribot, Henri, 180, 323n22
Richeson and Shelton attention control study, 45
Ricks et al. problem solving task, 58–59
ritual behavior, flexibility in, 272–273
Roboguard game, flow in playing, 193–194
Romanov, Valerly Yakovlevich, 322n16
romantic relationship, social coordination in, 346, 348–349
Rosche, Eleanor, 256
Rothbart, Mary, S, 21
Rozin, Paul, 254
Rueda, M. R., 21
 conceptualizing, 67
Rumelhart, David, 324n26
Ryle, Gilbert, 250
saccades, reaching movements and, 130–131
salience, 229, 230
Sanders attention theory, 160
Sarter, M. W., 5
satori (awakened state), 373
triggers for, 385–386
Schall, J. D., 8
Schmeichel, Brandon, 6–7
attention control studies of, 34–37
emotion regulation study of, 46
Schooler, Jonathan, 251–252
schoolwork experience, attention and quality of, 184–186
Schubotz and von Cramon oddball task study, 131–132
Schücker et al. movement efficiency study, 87
Searle, John, 249
selection, intentional control of, 121–136
self. See also psychic Self
deafferented somatic, 400–403
decentered, 252–254
versus unitary, 252–254
objectivist, 248–249
thalamus and, 14–15
self-actualization, need for, 295
self-awareness, dropping away of, 13, 14–15, 19
self-centered perspective, 381, 383, 388
self-consciousness, loss of, 306
in flow, 205
self-control, 5–6
in attention focus, 30–32
benefits of, 31
definition of, 30–31
resources need for, 46–47
testing of, 32
undermining subsequent attention control, 44–46
vicarious, 349–351
self-cultivation
Confucian, 269
music as metaphor for, 274
self-determination theory, 198–199
self-directing capacity, 179–180
self-focus
in movement efficiency, 78–81
in self-regulatory processes, 94–95
self-forgetfulness, 306
selfhood, transient, 12
self-invoking trigger, 93–94
selfless insight-wisdom, 373–374
parietal pathways of, 380–381
thalamus in, 386–387, 386–405
selflessness
balanced with insight-wisdom, 385–386
in insight-wisdom, 392–393
spectrum of, 400
total state of, 385
self-modification, 309
self-other dichotomy, 377–378
self-othering personal memory bank, 383
Self-plus-other, 383
self-referential networks, 377–379, 382–383
deactivation of, 392–393
equilibrium with other-referential functions, 385–386
reciprocal activations and deactivations in, 384–385
self-regulation, 5–6
and effortful control, 412
limited resources for, 350–351, 353
meditation improving, 417–418
in movement efficiency, 78–81
resources of, 6–7
self-focus in, 94–95
self-representation, 13
Selten, Reinhard, 258, 278n20
sensitivity, 230–232
sensitivity-responsiveness, 16
sensitization mechanism, 11–12
sensorimotor system
damaged, 255
imaginative extension of, 257–258
perceptual symbols and, 254–256
sensory fabric, 290–291
sequential actions
in decision making, 9–10
neural timing mechanisms in, 10
sequential adjustment effects, 106
Shepard, Robert, 255
Shun (sage-king), 275
Siddhartha, 373
Siegel effortless mindfulness, 419
Sigman, Mariano, 7, 8
significance principle, 297–298
Silvia, Paul, 220–221
Simmons, W. Kyle, 256–257
Simon, Herbert, 277n17
Simon task, 144–145
proportion effects in, 145
ski-simulator task, 77–78
skiing. See syntax
skilled performance
attentional focus in, 78–81
instruction wording differences in, 92–95
speed of, 91–92
skills. See also activity, expertise, and syntax
psychological states related to, 220–221
task instrumentality and, 197
Slingerland, Edward, 15, 19
Sloan Study of Youth and Social Development, 182
smoothness, in social coordination, 353
social agent, 14
social behavior
agency and, 13
automaticity of, 16
complexity of, 14
social cognition
dual-process theories in, 65
in movement control, 94–95
social coordination, 335
automatic, 336–358
benefits of, 344–347
co-opting, 345–346
emerging research on, 347–351
felt effort in, 351–358
flow in, 354–357
hallmarks of, 336–338
routes to, 338–339
active motivation, 342–344
direct perception-action link, 340–342
dynamical, 339–340
sex-specific, 348–349
social individual, 294–295
social intuition, 263
social motivations, 15
social norms
disinhibition of, 165
utilitarianism and, 267
social psychology
in marketing, 280n45
virtue ethics and, 280n45
somatic markers, 258–259, 260–261
of demand anticipation, 111–112
reasoning-biasing, 261–262
somato-motor mapping, 259
specific activities, 289
Spivey, M., 255–256
spontaneity, 273–276
sports performance
explicit and implicit information processing in, 163–165
flow in, 159
focus in learning skills for, 77–78, 79–80
perfectionism in, 170–172
stabilometer task, 77–78, 87–88
stimulus representations, 124
Stoicism, 261–262
Stoll, Oliver, 18, 172
strivings, in personality, 298
stroke patients, ego- and allocentric pathways in, 379–382
Stroop color-naming task, 33–34, 35–36, 39, 41–42
awareness in, 153
cingulate lesions effect in, 411–412
to manipulate cognitive demand, 105–106
proportion effects in, 145
racial bias and performance of, 45
selective attention in, 144–145
Stroop effect, 146
item-specific control and, 148–150
size of, 151, 152
structures of reference, 226–229
 contextual, 227–229
stylistized activity, 239
subapertures, 242n2
subcortex, inhibitory functions of, 391–392
subjective effort
 demand and, 115–116
 versus objective effort, 411–412
suchness, impression of, 387
Suzuki, D. T., 373
Sweetser, E., 257–258
swimming speed, attentional focus in, 92
symbols
 as basic units of cognition, 123–124
 rule-governed combinations of, 248
sympathetic activation, in flow state, 211
syntactic activity, 237–239
syntax. See also activity, expertise, and skills
 action optimization and, 234–241
 attention and, 232–234
 in cognition, 243n8
 complexity in, 236–237
 degree of, 237–238
 draw of attention and, 11–12
 etiquette and, 232
 hierarchy of goals in, 10
 linguistic, 9
 as set of constraints, 232
 skiing and, 232
systematic phenomenology, 179–188

Talmy, Leonard, 255
Tang, Yiyuan, 21
Tart, Charles, 166
task instruction, external versus internal foci in, 77–78, 79–80
task instrumentality, in flow induction, 197
task performance
 attention and performance of, 159–160
 attention control and persistence in, 40–42
 flow in, 173
 goals and, 290
 perfectionism in, 170–172, 173–174
task structure
 autonomy and, 198–199
 in flow, 197–198
Taylor, Charles, 262
team sports, psychological synchronization in, 342–343
temperament, individual differences in, 412
terror management theory, 35
Tetris computer game, flow in playing, 194–196
thalamus
 deafferented somatic self and, 400–401
 in effortless attention and selfless
 insight-wisdom, 386–405
 inhibitory functions of, 391–392
 nitric oxide effects on, 397–398
 normal, 390–391
 sense of self and, 14–15
Theorell, Töres, 18
thought
 image-based, 254–256
 synchronization of, 337
time
 altered sense of, 306
 energy expenditure and, 91–92
 transformation of in flow, 205
Timeliness (shīi), 273
Titchener, E. B., 323n22
Tooby, J., 180
top-down control, 142–143
 in flow, 208–209
 in Stroop performance, 149
transient hypofrontality theory (THT), 164–170
Treisman, Anne, 4, 15
triggering stimulus, 385–386
Tversky, Amos, 261, 278n21
Ullén, Fredrik, 18, 19
unitary subject, in objectivist reasoning model, 252–254
unity experience, thalamus in, 393–397
unselfconscious behavior, 274–275
Index

up-definition, 294
utilitarianism
 judgment in, 278n26
 reasoning in, 265–266
 versus traditional virtue models, 267–268
valence-arousal dimension, 206–207
Vallacher et al. social coordination study, 340
value memory, 278n19
Van Norden, B., 277n1
Vance et al. energy expenditure study, 82
ventral attention system, 374–375, 376
 in processing reality, 377–378
 in stroke patient, 380–382
vicarious depletion, 350–351
video games
 challenge-skill balance in playing, 11
 flow in playing, 193–196
vigilance, 221–222
 intensity of, 222
virtue ethics, 278n29
 advantages of, 278–279n30
 Confucian, 268–276
 effortless attention and, 266–268
 human character traits and, 280n45
 multiple cultural models of, 276
visual attention
 action planning and, 127–128
 eye movement programming in, 128
 manual action planning and, 128–130
 selective, 123
visual search tasks, 133–134
vital activity, 289
Vohs and Faber attention control study, 38–40
volatility-persistence factor, 200
von Ehrenfels, Christian, 296
von Hippel, William, 263

Waldron and Ashby category learning study, 60
Wall, Robert, 11
Wallace, B. Alan, 19–20
Wallace and Baumeister attention-control
 study, 40–42
Webb and Sheeran attention-control study, 41–42
Wertheimer, Max, 296
Westernization, affective reactions and, 264
will, 5–6
Wilson, Timothy, 251–252, 253–254, 277n6,
 277n8
Winawer, J. N., 277n12
Wolford et al. dual-task study, 64
working memory
 in attention control, 68–69
 in category learning tasks, 60–61
 as central processing unit, 122
 in cognitive control, 142
 in complex hypothesis testing, 61–62
 function of, 51–52
 individual differences in, 52–53
 in language learning, 62–63
 in problem solving, 52–59
wu wei (effortless action/perfection), 268–276,
 274–276
Wulf, Gabriele, 7, 76, 82, 164
Wulf and Dufek jump performance study, 86
Wulf et al. automaticity studies, 87–91
Wykowska et al. visual search study, 133–134

Xunzi, 279n34
Zachry et al. energy expenditure study, 82–85
Zajonc, Robert, 251, 277n5
Zen Buddhism
 awakening kensho in, 392–393
 enlightenment experience in, 14–15
 meditation in, 188
 allocentric approach in, 403–404
 selflessness in, 373–374
Zhu Xi, 275
Zimbardo, Philip, 254
Zinchenko, Vladimir Petrovich, 321n11,
 321n12