Chips and Change
How Crisis Reshapes the Semiconductor Industry

Clair Brown and Greg Linden

The MIT Press
Cambridge, Massachusetts
London, England
Index

Accellera, 73
Acer, 179
Actions (firm), 186, 187
Advantest, 167
Agere, 51, 89, 90, 154
Agilent, 154, 156, 157
Alcatel, 182
Alliances, 146–48, 168, 209
Common Platform Alliance, 104, 147, 148, 168, 195
with firms from industrializing countries, 193
Taiwanese firms in, 179
Altera, 52, 150
AMD, 24
in China, 185
in Common Platform, 148
and EUV development, 100
India design center of, 88
vs. Intel, 144, 160
layoffs in, 107
process development ended in, 146
spin-off from, 5, 154, 198
American Community Survey (ACS),
engineer-earnings data from, 110, 115
Amkor, 45, 185
Analog chips, 42, 149, 158
Analog Devices, 88, 90, 149, 150
Analog vs. digital circuits, 67
Antidumping laws, Japanese sued on, 22
Antitrust laws
Japanese sued on, 22
relaxing of (US), 20
Apple Computer, 92, 162
Applications
increased number of, 67
and Intel expansion, 81
shift on, 63
Application-specific integrated circuits (ASICs), 21–22
and Toshiba design centers, 169
Applied Materials, 167
ARC International, 70, 71
ARM Ltd., 70, 71, 72, 75
ASE Group, 45, 185
ASET, 168, 196, 232n.64
Asia. See also China; India; Japan; South Korea; Taiwan
economic liberalization of, 85
government support for semiconductor industry in, 213–14
new rivals in, 165
ASICs (application-specific integrated circuits), 21–22
and Toshiba design centers, 169
ASM International, 167
ASMC, 184
ASM Lithography (ASML), 97, 167
Assembly stage of production, 10, 12, 44–45
Association for Superadvanced Electronics Technologies (ASET), 147
ATI, 89, 150, 152, 163, 179
Atmel, 89
Avago, 51, 52, 156, 157

Baldrige, Malcolm, quoted, 15
Bangalore, India, 85, 86, 88–89, 128, 172, 190, 192–93
Barrett, Craig, 211
Benchmarking, 19
foundries used in, 49
Berkeley Sloan Semiconductor Program, 13
Berkeley transistor simulation model (BSIM), 46
Brain circulation, global. See Global brain circulation
Brazil, and future, 212
BREW (binary runtime environment for wireless), 162
Britain (United Kingdom)
and consumer multimedia, 169
restructuring in, 152, 154
Broadcom, 32, 52, 86, 88, 90, 138
BSIM (Berkeley transistor simulation model), 46
Business model, needed with technology, 213
Buy-outs, private equity, 152–57, 209

Cadence Design Systems, 67, 73, 74, 91
Canon, 97, 152, 153
Career paths, for semiconductor professionals, 119–23
CDMA (code division multiple access) technology, 160, 161
CEC Huada, 186, 187
Ceva, 70
Chang, Morris, 48
Chang, Richard, 49, 182–83
Chartered Semiconductor (foundry), 48, 51, 139, 140, 147
China, 182–89, 194–95, 196–97
benefit for consumers in, 6
cooperation with US leaders in, 193
design centers in, 87

and economic crisis (2008 et seq.), 197
engineer capability in, 170, 171, 172, 173, 185
fab investment in, 56, 58
in future, 212
global integration of, 194
government support in, 37, 213–14
higher education in, 174–77
investment in, 164, 202
liberalization of chip market by, 82
loss of competitive advantage to, 207
loss of industry leadership to, 165
manufacturing in, 92
market demand for engineers in, 124
as new fear replacing Japan, 5
start-ups in, 186, 189, 191
and Taiwan, 181–82
US engineering PhDs to students from, 125
and return home for career, 128
See also International comparisons

China Resources Semico, 187
Chip design, 40
automation and separation of, 46, 66
in China, 185–88
functional integration in, 61–62
and hardware-software co-design, 66
in India, 190–91
international comparison on (number of designers), 171, 172–73
and lithography, 101
in low-cost locations, 84–92, 94
for manufacturing, 101
miniaturization in, 9–10, 45, 64
limit of (0.032 micron), 168, 195
stages of, 64
in Taiwan, 179, 181
“Chipless” firms, 71
Circuit simulation system, SPICE, 46
Cisco Systems, 32, 92, 152, 153
“Clean room,” 40
CMOS (complementary metal-oxide semiconductor), 9, 209–10, 212
Code division multiple access (CDMA) technology, 160, 161
Common Platform Alliance, 104, 147, 148, 168, 195
Common Power Format (CPF), 74
Competitive advantage
business plan plus technology needed
for, 213
changes in, 2, 3
crisis as influencing (global), 13
for developing countries, 166
difficulty in building, 137
as fleeting, 36
in fabless sector, 52
and management of complexity,
74
from offshore investment, 94
in process knowledge, 45
recession as threatening to erode, 198
and reduction of trade barriers, 82
shifting of (global), 36, 164, 202
and software expertise, 65
strategies for
capabilities of firm, 157–59
product-level barriers, 159–61
relationships with other firms, 161–62
struggle for, 13
theories on shift of, 165–166 (see
also Large-market pull theory;
Manufacturing-pull theory)
and wafer size, 42
Competitive advantage, loss of. See
Crisis of competitive advantage lost to Japan
Competitive Semiconductor
Manufacturing (CSM) program, 19
Complementary metal-oxide
semiconductor (CMOS), 9, 209–10, 212
Computer-aided design (CAD), 67
Consolidation, and fabrication costs, 39
Consortia, 146–48
Consumer(s), 6, 203
Consumer gap, 210
Consumer markets
challenges of, 81–84
shift to, 63, 75, 77–81
Consumer price squeeze, crisis of. See
Crisis of consumer price squeeze
Cooperative efforts and strategy, 74, 75, 99–100, 104, 106, 208–209
drawbacks of, 209
Cooperative venture, 35
Cores, 69. See also Design cores
Cost reduction, through low-cost
locations, 84
Crises of semiconductor industry, 1–5
impacts of, 199–203
incremental approaches in response
to, 13
interconnections among, 199
lessons learned from, 212–14
modes of response to, 203–208
strategies in response to, 203–204
cooperation, 205, 208–209 (see
also Cooperative efforts and
strategy)
offshoring, 84–91, 204, 205, 208
(see also Outsourcing)
positioning, 205, 208
restructuring, 205, 152, 154–57, 209
“Crisis,” 2
Crisis of competitive advantage lost to Japan (first crisis), 2, 15–18, 36–37
and eighth crisis, 165
impacts of, 200
response of US, 18–22, 204, 205
reversal of fortunes, 22–27
stumbles by Japan, 27–31
Crisis of fabrication costs (second
危机), 2, 39–44, 58–59
and chip design, 61
and fabless-foundry model, 44–54
and fabrication as capital intensive,
57
and fab site selection factors, 57–58
and global shift of manufacturing,
54–58
Crisis of fabrication costs (second crisis) (cont.)
impacts of, 200
job loss in, 58
response mode to, 204–205
and unit costs vs. fixed costs of building, 41
Crisis of design costs (third crisis), 2, 61–63, 74–75
and challenges of complexity, 63–68, 74
and cooperative efforts, 74, 75
impacts of, 200
response mode to, 205–206
and reusable design cores, 68–72, 74–75
and system-level design approaches, 72–74
Crisis of consumer price squeeze (fourth crisis), 2, 77, 93–94
from corporate-to-consumer market shift, 63, 75, 77–81
and challenges of consumer markets, 81–84
and engineering abroad vs. in US, 92–93
impacts of, 200
response mode to, 205–206
designing in low-cost locations, 84–92
Crisis of limits to Moore’s Law (fifth crisis), 2, 95–96, 105–106
and evolution of optical lithography, 97–99, 105 (see also Lithography)
and fabless-foundry model, 202
hunt for postoptical solutions, 99–101
impacts of, 200
and photolithography, 96–97
response mode to, 205, 206
design of manufacturing, 101–104
and rising fabrication cost, 39
and virtual re-integration of fabless and foundry, 104–105
Crisis of talent search (sixth crisis), 2, 107–108, 134
and employer requirements, 109, 123
and foreign graduate students, 118–19, 124–29, 207
from Taiwan, 125, 125–26, 181
and high-innovation vs. high-commitment system, 122–23
impacts of, 201
and opposing sides of marketplace, 108
response mode to, 205, 206–207
and US labor market for engineers, 109–10, 123–24
age-earnings profiles by education, 115–18
career paths for semiconductor professionals, 119–23
employment and earnings in, 108, 110–15, 131, 132
and H-1B visas, 129–34
Crisis of low returns and high risk (seventh crisis), 2, 137, 162–64
and high-performing chip firms, 148–52
high-volume fabs made improbable by, 44
impacts of, 201
and price of talent, 135
R&D as factor in, 42, 144–46
alliances and consortia as response, 146–48
response mode to, 205, 207
restructuring (spin-offs and private equity buy-outs), 152–57
return on assets (ROA) measured, 138–44
and strategies for competitive advantage, 157
through capabilities of firms, 157–59
through product-level barriers, 159–61
through relationships with other firms, 161–62
Crisis of new global competition
(eighth crisis), 2, 165–66, 194–95
and engineer capabilities across
countries, 170–74
in China, 185
in India, 191–92
and higher education across coun-
tries, 174–77
impacts of, 201
industry responses to, 193–94, 198
large-market pull theory on, 169–70,
177, 196
and China, 182–89
and India, 189–93
and Taiwan, 177–82
manufacturing-pull theory on, 165,
166–69, 195
response mode to, 205, 207
Crolles II, 147
CSMC, 184
Customer base, shift in, 63, 75, 77–81
Dainippon Screen, 167
Datang Microelectronics, 187
Datang Telecom Technology, 37,
183
DEC, 121
Defense Science Board, US, 17
Dell, 12, 32, 139, 152, 153
Department of Commerce, US, 13
Department of Energy, US
and EUV technology, 99
Department of Labor, US, 13
Design of chips. See Chip design
Design cores, 205–206, 209
reusable, 68–72
Design for manufacturing (DFM),
102, 104, 105–106
Design productivity, challenging need
for, 63–68
Design productivity gap, 61, 67,
210
Design R&D, 168–69
Design reuse, 69–72
Developing countries
competitive advantage for, 166
and economic crisis (2008 et seq.),
197
graduate degrees for students from,
118
low-cost special products for, 94
market demand for engineers in, 124
Development alliances. See Alliances
DFM (design for manufacturing), 102,
104, 105–106
Die, 10–12, 40
Digital vs. analog circuits, 67
Digital signal processors (DSPs), 22
DiLisio, Charles, quoted, 77
 cited, 63n.5
Doering, Robert, quoted, 39
Dongbu, 48
Dot-com bust (2000 et seq.), 114, 121
Double patterning, 98
DRAM (dynamic random-access
memory), 7, 16–17, 25–26
and China, 193
and internal fabrication, 50
Japanese success in, 16, 20, 27–29,
196
large-scale facilities for, 41
and market fragmentation, 83
and Samsung, 23
and Taiwan, 178, 179, 193
TI sells operation for, 22
US firms exit from, 20
Earnings, of US engineers, 110–15
Eastern Europe, economic
liberalization of, 85
EDA. See Electronic design
automation
Education
engineers’ age-profile by, 115–18
engineers’ returns to, 118–19
of foreign students in US graduate
programs, 118–19, 124–29, 207
importance of, 198, 210
international comparison of higher
education, 174–77
“Electron beam direct-write,” 100
Electronic design automation (EDA), 12, 46, 67, 206
and foundry process data, 104
large fixed costs of, 91
and lithography, 103
sales of (international comparison), 173
and SOC, 205
and students in India or China vs. US, 175
Electronic System Level (ESL) tools, 73
Elite, 180
Elpida Memory, 25, 26, 27, 30, 107, 147, 154, 155, 183
(see also Crisis of talent search)
Encryption, export limits on technology for, 86
Engineers, 203
capabilities of across countries, 170–74
in China, 185
in design for manufacturing, 105–106
fab, 120
in India, 191–92
low-cost, 166
multinationals attract away from local firms, 193
need for, 67
and hiring of at lower cost, 69
need to retain, 198
at offshore locations, 85–86
in India, 85
for physical design, 66
in semiconductor industry vs. other industries, 111, 112–13
shortage of, 107–108
and offshore investment, 84
and opposing sides of marketplace, 108
software, 65–66, 111
and system-level design, 73, 75
in US on H-1B visas, 129–34, 134
US labor market for, 109–10
age earnings profiles by education, 115–18
career paths for semiconductor professionals, 119–23
employment and earnings, 108, 110–15
outlook in, 123–24
returns to education, 118–19
in US vs. offshore, 92
Entrepreneurship, Japanese, 33
Equipment firms, 168
ESL (Electronic System Level) tools, 73
Etron, 180
European chip companies, and global brain circulation, 134
European Union
high-commitment system in, 122
and STMicroelectronics, 37
tariff reductions by, 82
Extreme ultraviolet (EUV) lithography, 99–100, 105
Fab, 12. See also Fabrication
Fabbed (fab) firms
in China, 183–85
among high-performers, 149
R&D ratio of, 145
in ROA study, 140, 142–43
in Taiwan, 178
Fab construction, international comparison of, 171, 172
Fabless and design services, in Taiwan, 178
Fabless firms, 22, 31, 47
in China, 186–88, 196–97
and design for manufacturing, 101–104
and foundries, 179
among high-performers, 149
R&D-to-sales ratios of, 144–45
in ROA study, 140, 142–43
in Taiwan, 179–81, 196–97, 202
Fabless-foundry model, 4, 32–33, 44–54, 58, 103–104, 202, 209
and lithography, 95–96
in Taiwan, 169
virtual re-integration of, 104
Fabless Semiconductor Association (now Global Semiconductor Alliance), 32, 58
Fab-lite strategy, 50, 59
Fabrication, 10, 12, 40
change in predicted, 101
in China, 182–85
CMOS process in, 9
and “design for manufacturing,” 102
and design productivity gap, 61, 67
and India, 190, 196
and leakage problem, 68
offshoring of, 85, 204, 208
rising costs of, 202, 209
Fabrication costs, crisis of. See Crisis of fabrication costs
Fab Solutions, 35
Fairchild Semiconductor, 18, 156
Faraday Technology, 70, 71
Ferranti Semiconductors, 154
Financial crisis (2008 and after), 5, 197. See also Recession of 2008 et seq.
Firmware, 64
Foreign students, in US graduate engineering programs, 118–19, 124–29, 207
Foundries (independent contract manufacturers for microchips), 39
Chinese, 183
dedicated (pure-play) business model, 48
and design cores, 72
and fabless companies, 158
future of, 211
R&D ratio of, 145
in ROA study, 140, 142
in Taiwan, 177, 178
Foundry-fabless model. See Fabless-foundry model, 104
Freescale, 31, 86, 88, 90, 147, 149, 154, 157, 163, 166, 226n.35
Fujitsu, 16, 21, 30, 35, 154, 155
China design centers of, 90
foundry services of, 49
and SMIC, 183
spin-off chip division of, 154
Functional integration, in chip design, 61–62
Future of semiconductor industry, 209–12
Galapagos market, Japan as, 29
GDSII (Graphic Data System II) data format, 46
General Electric Company Ltd., Marconi Devices division of, 154
Gigafab, 41
Global brain circulation, 6, 35–36, 134, 195, 202–203
and foreign students in US, 129
as opportunity and threat, 203
as response to talent crisis, 206–207
and Taiwan, 181
Global competition, 82
Global dynamism, in semiconductor industry, 6
GlobalFoundries, 146
Globalization, 13
Global Semiconductor Alliance (GSA) database, 52, 53, 186
Global shift of manufacturing, 54–58
Google, 34
Government support for semiconductor industry, 1, 5, 37, 214
in Asia, 213–14
China, 37, 213–14
Japan, 15–16, 35, 37, 202, 212, 213–14
South Korea, 23, 202
Taiwan, 202, 213–214
and complexities of semiconductor industry, 13
in European Union, 37
and future, 212
and global competition, 3
Government support for semiconductor industry (cont.)
for new entrants, 166
for US semiconductor industry, 19–20, 37
and EUV technology, 99–100
and SEMATECH, 20
and X-ray lithography, 99
Grace, 184
Green energy technologies, 214
GSM standard, 162
Haier, 182
Hejian, 184
Hewlett-Packard, 51, 152, 153, 154, 156, 180
High-commitment system, 122
High-Definition Multimedia Interface (HDMI), 160–61
High-innovation system, US resource management system as, 122
“High-k dielectric gates,” 68
High-performing chip firms, 148–52
High-tech workers, 6
and value chain, 12
Himax, 180
HiSilicon, 186, 187
Hitachi, 16, 18, 25, 30, 34, 147, 154–55, 155, 161
Home market sales, and Japan, 38
Home substitution index, 29–30, 38
of Japan, 30
H-1B visas, 129–34, 134
Huahong IC, 187
HuaHong-NEC, 48, 184, 185, 186
Huawei, 182
Human resource management, high-innovation vs. high-commitment system of, 122
Hutcheson, Dan, quoted, 95 cited, 168
Hynix Semiconductor (formerly Hyundai Semiconductor), 24, 25, 26, 177
and buyout, 156
DRAM fab of, 41
as spin-off, 155
with STMicroelectronics, 185
Hynix-ST memory fab, 193
Hyundai, 155
IBM
and chip manufacturing, 152
and Common Platform Alliance, 104, 147, 148, 211
downsizing programs of, 121
and DRAM, 22
foundry consortium led by, 104
foundry services of, 48, 49
as high-performer, 153
and H-1B visas, 132, 133
Indian design centers of, 88
and Intel, 21, 160
Japan demands technology transfer from, 16
layoffs in, 107
in ROA study, 139, 140
as SEMATECH member, 148
and statistical design, 103
and technology gap (Japan), 20
and X-ray lithography, 99
IBM, Japan, 147
IEEE (Institute of Electrical and Electronic Engineers), 13, 129
Imagination Technologies, 70, 71
IMEC (Interuniversities Microelectronic Center), 147, 168
Immersion lithography. See Lithography
Immigration policies, US, 129, 198
Independent contract manufacturers (foundries) for microchips, 39
Independent spin-out model, 35
Independent start-up model, 33–34
India, 189–93, 194–95, 196
Bangalore, 85, 86, 88–89, 128, 172, 190, 192–93
benefit for consumers in, 6
cooperation with US leaders in, 193
design centers in, 86–87, 88–89, 92
design subsidiaries in, 194
design teams in, 85
and economic crisis (2008 et seq.), 197
engineer capabilities in, 170, 171, 172, 173, 191–92
engineers’ low pay in, 118–19
fab location unsuccessful in, 169
in future, 212
global integration of, 194
higher education in, 174–77
H-1B visa users from, 130
investment in, 202
loss of competitive advantage and industry leadership to, 165, 207
market demand for engineers in, 124
as new fear replacing Japan, 5
US engineering PhDs to students from, 125
and return home for career, 128
See also International comparisons
Infineon, 24, 31, 147, 148, 154, 155, 163, 183
and Qimonda, 25, 154
Infosys, 130
Institute of Electrical and Electronic Engineers (IEEE), 13, 129
Integrated firms, 44, 45, 104
in Europe, 58
vs. fabless rivals, 95–96, 195
def fab of, 42, 59
R&D-to-sales ratios of, 144
in Taiwan, 178
as vertically integrated, 47, 51, 154
in Japan, 28
Intel, 18, 20, 22, 81, 143–44
in ASET, 147
“atom” processes from, 194
and brand awareness, 159
in China, 185
de facto standard controlled by, 160
and EUV technology, 99–100
“flash memory” fab of, 41
and 450-mm. wafer fabs, 42
general-purpose chips from, 82
among high-performers, 149, 150
and H-1B visas, 130, 132, 133
in IMEC, 147
Indian design centers of, 86, 88
internal fabrication in, 50
layoffs in, 107
and market for personal computer chips, 204
and microprocessors, 7, 21
and Moore, 9
processor-centric strategies of, 25, 31
and process variability, 102–103
as quasi-monopoly, 21
R&D investment of, 163, 195
R&D ratio of, 144, 145
R&D-to-sales ratio of, 146
repositioning led by, 36
revenue and market share of, 24
in ROA study, 138, 139, 140
sales by region for, 24
as SEMATECH member, 148
and Silicon Valley, 85
and solutions for power leakage, 68
stock buybacks of, 146
Intellectual property
and Chinese environment, 185–86
and Chinese government’s support of firms, 189
competitive advantage through, 159
and designing at low-cost locations, 84, 93
in China, 87
international comparison on strength of, 172
SMIC (China) sued over, 183
software as, 21
and vertical integration, 47
International comparisons
in engineer capabilities, 170–74
in fabless revenue, 53
in higher education, 174–77
by region
capital spending by semiconductor companies, 28
EDA industry revenues, 173
fabrication capacity, 55, 56, 57
International Sematech Manufacturing Initiative (ISMI), 148
International Solid-State Circuits Conference (ISSCC), 176–77
Internet, and evolution of semiconductor markets, 77, 80–81
Intersil, 154, 156
Interuniversities Microelectronics Center (IMEC), 147, 168
IP blocks, 69
Ito, Satoru, quoted, 137
Ittiam, 191

Japan
China design centers opened by, 87
consolidation in, 211
in crisis of competitive advantage, 15–18, 36–37
and horizontal and vertical cooperation, 16, 20
response of US, 18–22
reversal of fortunes, 22–27
stumbles of, 27–31
and domestic market, 28–30, 33, 196
personal computers in, 28
early fabless start-up support from, 47
EDA industry revenue for, 173
engineer capabilities in, 170, 171, 172, 173
and engineer graduate training, 125
in EUV technology, 100
fab capacity reduction in, 54
fabless companies scarce in, 33
in future, 211
and global brain circulation, 134
government support for, 15–16, 35, 37, 202, 212, 213–14
high-commitment system in, 122
higher education in, 174–77
and home market sales, 38
India and China as replacing, 5
investment commitments in, 164
and joint research, 147
layoffs in, 121
and leadership crisis, 204
lifetime employment in, 35–36, 121
vs. new Asian competitors, 195
restructuring in, 155
and start-ups, 32–36, 191
and 300-mm fabs, 56
See also International comparisons
KLA-Tencor, 167
Korea. See South Korea

Labor market for engineers, US, 109–10, 123–24
age-earnings profiles by education, 115–18
career paths for semiconductor professionals, 119–23
employment and earnings in, 108, 110–15, 131, 132
and H-1B visas, 129–34, 134
LAM Research, 167
Large-market pull theory, 165, 169–70, 177, 196
and China, 182–89
and India, 189–93
and Taiwan, 177–82
Lifetime employment in Japan, 35–36, 121
in US semiconductor industry, 121
Linear Technology, 149, 150, 158, 163
Linewidth, 10
and complexity of design, 61, 64, 65
and cost of fabs, 12, 42
and number of memory cells per chip size, 16
and process variation, 103
shrinking of, 67, 96, 98, 209–10
and limit for CMOS processes, 210
Lithography, 39, 40, 96–97, 105
computational, 98
and design, 101
extreme ultraviolet (EUV), 99–100, 105
immersion, 100, 105
nano-print, 100
optical, 97–99, 105
and Ultratech, 222n.3
X-ray, 99
Low-cost locations, designing in, 84
Low-power design, 68, 74
LSI Logic, 21, 50, 52, 89, 90
Lucent, 51, 154, 182
Lyman, Kevin, quoted, 107

Magna Chip Semiconductor, 48, 155, 156
Malaysia, 58, 194
Manufacturing, global shift of, 54–58. See also Fabrication
Manufacturing-pull theory, 165, 166–69, 195
Market(s), shifting of from corporate to consumer, 63, 75, 77–81. See also Crisis of consumer price squeeze
Market fragmentation, 82–83
Marvell, 52, 89
Matsushita (renamed Panasonic), 34, 139, 147, 148, 161
Maxim Integrated Products, 86, 89, 149, 150, 158
Mead, Carver, 47
Media Tek, 52, 180
MegaChips, 33, 34
Megafabs, 41
future of, 211
Megafactories, 56
Memory, semiconductors for, 7
Mentor Graphics, 67, 71, 73, 91
Metal-oxide–semiconductor (MOS) process, 46
Microchips, 1. See also Semiconductor industry
Microchip Technology, 150
Micron Technology, 22, 25, 26, 27, 50, 88, 148
Microprocessors, 7
Microsoft, in ROA study, 139, 140, 142
MIPS Technologies, 70, 71
Mitel, 154
Mitsubishi Electric, 25, 30, 154–55, 155, 179

Moore, Gordon, 9, 47, 97
Moore’s Law, 3, 9–10, 13, 61, 95, 105
and advances in lithography technology, 40
end of, 5
failure of cooperation vs. limits of physics, 106
and future, 210
and manufacturing capability, 67
and R&D expenses, 146
and technological advances, 80
Moore’s Law, limits of. See Crisis of limits to Moore’s Law
MOS (metal-oxide–semiconductor) process, 46
Moschip, 191
Mosel-Vitelic, 179
Mostek, 18, 62
Motorola, 4, 18, 22
China design center of, 87
China fab of, 87
and Chinese government, 184–85
and chip manufacturing, 152
in EUV project, 100
Freescale from, 147, 154, 166, 226n.35 (see also Freescale)
and H-1B visas, 132, 133
Indian design center of, 86
layoffs of, 121
and ON Semiconductor, 156
in ROA study, 139, 140
Six Sigma quality program of, 19
and SMIC, 49
and Solomon Systech, 186
Multichip module, 62–63
Multinational companies
in China, 184–85
and Chinese or Indian engineering graduates, 175, 189
and global brain circulation, 134
for India, 128
in India, 190–91
vs. local rivals for engineers, 193
Mu Solutions, 34
Nanoelectronics Research Initiative (NRI), 210
Nano-imprint. See Lithography
Nanotechnologies, 210
Nanya Technology, 25, 26, 44, 179
National Semiconductor, 18, 88, 107, 149
strategic missteps of, 213
NEC, 17, 18, 21, 30, 31, 90, 139, 148, 154, 155
and Chinese government, 184–85
Elpida from, 25
Chinese joint ventures with, 172, 182, 185
Network effects, 160
Nikon, 97, 167
Nokia, 139, 152, 153, 159, 180
Nova Tek, 180
Novellus Systems, 167
Nvidia, 32, 52, 88, 138, 162
NXP, 24, 69, 87, 90, 154, 155, 157, 166
Obama administration, technology sector supported by, 211
Offshoring strategy, 84–91, 204, 205, 208 (see also Outsourcing)
Oki, 179
“One Laptop Per Child” notebook, 94
ON Semiconductor, 156
Open Core Protocol International Partnership, 72
Open SystemC Initiative (OSCI), 73
Optical lithography. See Lithography, optical
Optical proximity correction (OPC), 98
Outsourcing of fabrication and assembly and test, 44–45
international, 84–91
to India (venture capitalists’ insistence), 91
of manufacturing, 50–51
of physical design, 84
Packaging firms
in China, 185
in Taiwan, 178
Panasonic. See Matsushita
Personal computer (PC) market, 79–80. See also Crisis of consumer price squeeze
Phase shifting, 98
Philips Semiconductors, 4, 18, 31, 90, 153
and chip manufacturing, 152
and HDMI, 161
and NXP, 154, 155, 157, 166 (see also NXP)
ROA of, 140
in SEMATECH, 148
and Taiwan, 178
Phison, 1880
Photolithography. See Lithography
“Platforms,” application-specific, 83
Play Station 3 game console, 81
Plaza Accord (1985), 19–20
Plessey (UK chip firm), 154
Portal-Player, 91, 162
Positioning strategy, 205, 208
Powerchip Semiconductor, 25, 26, 44, 179
Power leakage, 67–68, 95
Prestowitz, Clyde, 20
Printed circuit board (PCB), vs. single chip, 62
Private equity, and 2008 credit meltdown, 163
Private equity buyouts, 152–57, 209. See also Venture capital investments
Process R&D, 167–68, 196
Process variability, 102–103
Product cycles, shortening of (consumer market), 81–82
ProMOS, 25, 26, 179
Pure-play foundry model, 48
Qualcomm, 52, 104
and CDMA, 160, 161–62
as high-performer, 150
India design center of, 88
in ROA study, 138
and standards, 163
Qimonda, 25, 26, 154. See also
Infineon

Rakuten, 34
Ralink, 169
Rambus, 70, 71, 83
RCA, 178
R&D
in chip companies’ home regions, 92
and competitive-advantage
leadership, 198
government support needed for, 211
and manufacturing-pull theory, 166–69
and need for earnings, 138, 144
and alliances or consortia, 146–48
rise in R&D expenses, 144–146
and stock buybacks, 146
new entrants helped by, 166
in ratio to sales, 42
by semiconductor and electronics
producers, 32
types of
design, 168–69
process, 167–68, 196
weakened commitment to, 164
Real estate bubble, in Japan, 27
Realtek, 180
RealVision, 33
Recession of 2008 et seq., 4, 144,
163, 197–98, 211
and China, 189
Reference design, 65–66
Renesas Technology, 24, 25, 30, 31,
90, 107, 148, 155, 163
Restructuring strategy, 152, 154–57,
209
Return on assets (ROA), for chip
industry, 138–44
Reusable design cores, 68–72, 74–75
Rising costs of design, crisis of. See
Crisis of design costs
Rising costs of fabrication, crisis of.
See Crisis of fabrication costs
Rohm, 32
Russia, and future, 212
Russian government, 197

Samsung Electronics, 22–23, 24, 25,
166, 177, 197
in ASET, 147
in China, 185
in Common Platform group, 147
and DRAM, 26
foundry services of, 49
and 450-mm wafer fabs, 42
in IMEC, 147
internal fabrication in, 50
megafabs at lower cost built by, 163
sales by region for, 31
start-up technology acquired by, 53
and Thine Electronics, 35
US investment by, 54
SanDisk, 51, 52, 88, 150, 152
Sanyo, 87, 90
Sasken, 190, 191
Scalise, George, quoted, 165
Scandinavian countries, and wireless
network technology, 169
SELETE, 196, 232n.64
SEMATECH, 20, 148, 196, 232n.64
“Semiconductor,” 7
Semiconductor industry, 1, 3, 6–9,
214
and consumers, 6 (see also at
Consumer)
crises of, 1–5, 13, 199–209 (see also
at Crisis)
employees in, 110 (see also Crisis of
talent search; Engineers)
future of, 209–12
and global brain circulation, 134 (see
also Global brain circulation)
global dynamism in, 6
government(s) support of, 3, 5, 37,
214 (see also Government support
for semiconductor industry)
and labor market mobility, 6
learning curve in, 197
and Moore’s Law, 3, 5, 9–10, 13,
95, 105, 210 (see also Moore’s
Law)
Semiconductor Industry (cont.)
software of increasing importance in, 65–66
strategy cycles of, 5–6
value chain in, 10–11
Semiconductor Industry Association
(SIA), 13, 19
on engineering workforce, 92
International Technology Roadmap
for Semiconductors of, 67
Semiconductor Manufacturing
International Corporation (SMIC),
49, 182–83
Semiconductor Research Corporation,
198, 210
SGS Microelectronica, 152
Shanghai BCD, 184
Shanghai Belling, 184
Shougang-NEC, 184, 185
Siemens, 25, 154, 155, 179
Silan, 187
Silicon, 7
raised demand for, 10
“strained,” 68
Silicon Image, 70, 71, 160, 161
“Silicon on insulator,” 68
Silicon Integrated Systems (SiS), 51,
180
Silicon Integration Initiative (Si2), 74
Silicon Valley, 85
foreign companies in, 169
job hoppers in, 120
Silicon Valley Group (SVG), 97
Silicon Valley model, 34, 202
Silicon wafers. See Wafers, silicon
Simulation Program with Integrated
Circuit Emphasis (SPICE), 46
Singapore, 58, 194
SiS (Silicon Integrated Systems), 51,
180
Si2 (Silicon Integration Initiative), 74
Six Sigma quality program, 19
Smart cards, 186
SMIC, 48, 141, 184, 185
Software, increasing importance of,
65–66, 111
Solectron, 32
Solomon Systech, 186, 1887
Sony, 12, 30, 34, 139, 161, 180
Sony PlayStation 3 game console, 81
South Korea, 25, 27, 177
fab investment in, 54, 55–56
government support in, 23, 202
higher education in, 174–77
investment commitments in, 164
and leadership crisis, 204
and Qualcomm, 161
spread of chip industry to, 6
US engineering PhDs to students
from, 126
See also International comparisons
Spansion, 154
SPICE (Simulation Program with
Integrated Circuit Emphasis), 46
SPIRIT (Structure for Packaging,
Integrating, and Re-using IP within
Tool flows), 72
Spreadtrum, 186, 187
Standards
cellular, 161–62
from China’s government, 188–89
competitive advantage through, 159–
60, 161
as cooperation efforts, 75, 204, 209
and design cores, 72
for design-fabrication interface, 46
difficulties in, 209
and ESL, 73
and fragmentation, 83
and Intel, 160
and low-power design, 74
in ROA improvement, 163
Start-ups
and design cores, 72
“fabless” firms among, 47, 51, 53–
54
foreign, 169
in China, 186, 189, 191
in India, 191
and Japan, 191
Taiwan, 26–27, 177–82, 194–95, 196–97
chip manufacturing in, 168–69
cooperation with US leaders in, 193
engineer capability in, 170, 171
fab investment in, 54, 58
fabless companies in, 33
fabless-systems interactions in, 188
foundries in, 39
vulnerability of, 59
in future, 211–12
higher education in, 174–77
government support in, 37, 202, 213–14
integrated producers in, 44
investment commitments in, 164
loss of competitive advantage and industry leadership to, 165, 207
and PhD students in engineering, 125–26, 181
spread of chip industry to, 6, 25
and TI “LoCosto” chip, 194
wafer fabrication in, 204
See also International comparisons
Taiwan Semiconductor Manufacturing Corporation. See TSMC
Tariffs on chips, 82
Tata, 190, 191
TCL, 182
Technological change, and crises, 213
Technology, and business model, 213
Technology transfers
in China, 182, 193
from fabless start-ups, 53
Japanese demand for, 16
Testing firms, in Taiwan, 178
Texas Instruments (TI), 16, 17, 18
with Acer, 179
application-specific platforms of, 163
and cell phone chips, 25–26
“LoCosto” integrated chip, 194
and DRAM, 22
among high-performers, 149, 150
Texas Instruments (TI) (cont.)
in IMEC, 147
Indian design operations of, 86–87, 88
internal process development ceased
in, 4, 50, 146, 168
layoffs in, 107
and new fabs, 56–57
and Nokia, 159
and nonstandard processes, 50
processor-centric strategies of, 31
vs. Qualcomm, 104
R&D-to-sales ratio of, 146
revenue and market share of, 24
in ROA study, 138
sales by region for, 31
as SEMATECH member, 148
and SMIC, 183
stock buybacks of, 146
winning strategies of, 213
Thine Electronics, 33, 35
Thomson (French firm), 152, 161
Tokyo Electron, 167
Toshiba, 17, 18
ASIC design centers in US of, 169
in China, 90, 185
in Common Platform group, 148
and flash chips, 25
“flash memory” fab of, 41
and HDMI, 161
revenue and market share of, 24
sales by region for, 31
SanDisk in partnership with, 51, 151
and SMIC, 183
Sony in venture with, 30
and Winbond, 179
Tower (foundry), 140
TransChip, 53
Transistors, 9–10
cost of, 96
electron-microscope photographs of, 7
increased density of, 61–62, 65
and power leakage, 68
Trends, in consumer markets, 81
TSMC (Taiwan Semiconductor Manufacturing Corporation), 48–49, 104–105, 184, 219n.36
government support of, 202
among high-performers, 149, 150
in ISMI, 148
R&D of, 195
in ROA study, 139, 140
and SMIC, 183
and solutions for power leakage, 68
and Texas Instruments process
development, 50, 168
TVs, digital, 82–83
Ultratech, 222n.3
Umax, 179
UMC, 48, 50, 51, 140, 148, 151, 168, 179
Unified Power Format (UPF), 74
United Kingdom. See Britain
United States
capital spending by semiconductor
companies in, 28
critical elements in success of com-
panies in, 213–14
engineer capabilities in, 170, 171, 172, 173
fab capacity in, 55, 56, 57, 169
fab capacity foreign ownership in,
54–55
fab capacity reduction in, 54
fabless revenue in, 53
financial crisis and recession in (2008
et seq.), 4, 144, 163, 197–98, 211
and global drain circulation, 198 (see
also Global brain circulation)
government support for semiconduc-
tor industry in, 19–20, 37
and EUV technology, 99–100
and SEMATECH, 20
and X-ray lithography, 99
higher education in, 174–77 (see also
Education)
and Japanese competition, 15, 17–18, 25, 36
start-ups in (vs. Japan), 32
talent crisis in, 107–109, 134–35
and foreign graduate students, 118–19, 124–29
and H-1B visa engineers, 129–34
and labor market for engineers, 109–24
threat to competitive advantage for, 198
See also Crises of semiconductor industry
United States labor market for engineers. See Crisis of talent search
US Memories, 20
UTAC, 45

Value creation, vs. value capture, 163
Vanguard, 48
Van Houten, Frans, 157
Venture capital investment. See also at Private equity
in Japan vs. US, 33
and offshoring, 91
VIA, 180
Vimicro, 186, 187
Virage Logic, 70, 71
Virtual Component Exchange, 72
Virtual Socket Interface Alliance (VSIA), 72
Visas, H-1B, 129–34, 134
VLSI Technology, 21

Wafers, silicon, 10, 11, 40–41
and China, 183, 184
and fabrication costs, 42, 57
in lithography, 40
photolithography (optical lithography), 96–97
and optical lithography alternatives, 99, 100
and power leakage defenses, 68
by process generation, 43, 205
size of, 40–41, 56, 205
and Taiwan, 202
and yield, 17
WAPI, 188
Wawrzyniak, Rich, quoted, 61

Winbond, 179
Wipro, 130, 190, 191
Wireless networking, 83
in Scandinavian countries, 169
Workers, high-tech, 6, 12. See also Crisis of talent search; Engineers
World Trade Organization (WTO), 37
Information Technology Agreement of (1997), 82
X-Fab, 48
Xilinx, 52, 89, 150, 152, 179
Zilog, 156