
“run” — 2011/9/8 — 18:05 — page 1 — #24
�

�

�

�

�

�

�

�

1 Thinking and Computation

Consider the following scenario:

A professor enters a classroom where a group of undergraduates is sitting, and
announces “There is free pizza in the hall!” Suddenly, the students stand up and
stampede toward the classroom door.

The events described here seem so ordinary that it is easy to miss how truly remark-
able they are. But step back from them for a moment and imagine that you are
studying these students as a curious scientist from another world. You observe that a
certain sound emanates from the professor and that this causes a flurry of activity in
the students. Now, as a scientist, ask yourself this: What sort of physics would explain
how acoustic energy can be transformed into kinetic energy in this way? In particu-
lar, note that a very small change in the acoustic energy (like the professor’s saying
“There is free pizza in Nepal.”) can result in no kinetic energy being produced at all,
except maybe for some puzzled head shaking.

This is the wonder of intelligent behavior, perhaps the single most complex natural
phenomenon that we are aware of. As a sheer mystery, it easily overshadows topics
like dark matter, the source of gravity, and the mechanics of cancer.

One striking aspect of intelligent behavior of this sort is that it is clearly conditioned
by knowledge: for a very wide range of activities, people make decisions about what
to do based on what they know (or believe) about the world, effortlessly and often
unconsciously. It’s certainly not the sounds themselves that cause the students to stand
up like animals that have been trained to respond to a bell. This is easy enough
to confirm. The professor could have brought in a sign with a pizza message on it
written in big letters, and the effect would have been just the same. In fact, one can
imagine a situation where the following is written on the whiteboard at the front of
the classroom:

As part of a psychology experiment, the professor will soon enter and tell you
that free food is available. This is just a test. Please remain seated.

In this case, neither the sounds nor the sign would have any effect at all. One can
try other small variations, and it will become clear that what makes the difference is
whether the students come to believe there is free pizza to be had nearby.

“run” — 2011/9/8 — 18:05 — page 2 — #25
�

�

�

�

�

�

�

�

Chapter 12

Using what we believe or know in this way is so commonplace that we only really
pay attention to it when it is not there. When we say that someone behaved unintel-
ligently, for instance, when someone uses a lit match to see if there is any gas in a
car’s gas tank, what we usually mean is not that there is something the person did
not know but rather that the person has failed to use what he or she did know. We
might say: “You weren’t thinking!” Indeed, it is thinking that is supposed to deliver
what we know to the decisions we need to make. The students head toward the door
because they think that is the way to free pizza. It is thinking, in the end, that makes
human behavior intelligent.

But what is thinking, and how does it work? What exactly goes on in people’s
heads when they think about where to go for free pizza, or about who will win the
Academy Award for Best Actor, or about whether a free market needs to be regulated?

The purpose of this book is to suggest where to look for an answer. It proposes that
thinking is a form of computation. In the same way that digital computers perform
calculations on representations of numbers, human brains perform calculations on
representations of what is known.

This chapter is an introduction to this idea. The first section reviews very briefly
the notion of thinking. The process of computation is somewhat less familiar, so more
time is spent on it, in the second section. The third section introduces the (somewhat
controversial) idea of thinking as a form of computation.

1.1 Thinking

Are brains like computers? In a word, no. It is true historically that in trying to
understand the brain, people have proposed models that seem to mirror the most
advanced technology of the time. Over the years, the brain has been described as
clockwork, a steam engine, a telephone switchboard, and (these days) a computer.
But in time, these descriptions are found to be much too simplistic to say anything
useful about what is inside our heads. There is no reason to believe that the computer
analogy will be any different in this regard.

In fact, this book has very little to say about the brain itself. Rather it focuses on
thinking. But thinking is what the brain does. How can one study the relation between
computers and thinking without studying the brain?

Here is a useful analogy. Consider the study of flight (in the days before airplanes).
One might want to understand how certain animals like birds and bats are able to fly.

“run” — 2011/9/8 — 18:05 — page 3 — #26
�

�

�

�

�

�

�

�

Thinking and Computation 3

One might also want to try to build machines that are capable of flight. There are two
ways to proceed:

study flying animals like birds, looking very carefully at their wings, their
feathers, their muscles, and then construct machines that emulate birds;

study aerodynamics—how air flows above and below an airfoil, and how this
provides lift—by using wind tunnels and varying the shapes of airfoils.

Both kinds of studies lead to insights, but of a different sort. The second strategy is the
more general one: it seeks to discover the principles of flight that apply to anything,
including birds.

It is this second strategy that is used here to study thinking. While there is a lot
to be learned by studying the brain, this book focuses on the thinking process itself to
determine general principles that will apply to brains and to anything else that needs
to think.

1.1.1 What is thinking?

What exactly is thinking? For humans, it is clearly some sort of process that occurs in
our heads over time. The easiest way to understand it is to observe it in action.

Read the following sentence:

The trophy would not fit into the brown suitcase because it was too small.

Pause for a moment to make sure you understand it. Now answer this question: What
was too small? What does it refer to? Clearly, it refers to the suitcase, not the trophy.

Now, how did you get the right answer?
Observe that there is nothing in the sentence itself that gives away the answer. This

is easy to demonstrate. Simply replace the word small by big:

The trophy would not fit into the brown suitcase because it was too big.

What was too big? Now the answer goes the other way: it now refers to the trophy,
not the suitcase.

What this shows is that in making sense of the sentence, in particular, in determin-
ing what it refers to, you had to use what you already knew about the sizes of things,
things fitting inside other things, and so on, even if you were unaware of doing so.

This is thinking.
Thinking is bringing what you know to bear on what you are doing. This is what

you had to do to understand the sentence. The process happens in the brain, some-
times very quickly, and you may or may not be aware that it is taking place. (You may

“run” — 2011/9/8 — 18:05 — page 4 — #27
�

�

�

�

�

�

�

�

Chapter 14

not have felt the change that happened in your thinking when the word was changed
from small to big.)

Thinking is clearly a biological process, since we are biological creatures. Does this
mean that thinking is like digestion? Or like mitosis in cells? Or is it different still?

The central conjecture of this book is this:

Thinking can be usefully understood as a computational process.

Thinking has perhaps more in common with multiplication or sorting a list of
numbers than with digestion or mitosis.

This conjecture is controversial. Not all philosophers, psychologists, evolutionary
biologists, and neuroscientists are lined up to support it. Some do, some don’t, and
some struggle with the concept of thinking in the first place.

Nonetheless this is the conjecture that this book pursues.

1.2 Computation

Computer science as a field of study has two branches: hardware and software.
Hardware is the concern of engineers who study and build the physical machines
(computers) themselves. Software is the written instructions—programs—specifying
what those machines should do. And what the machines do is computation, a certain
manipulation of symbols. Birds “produce” flight, musicians “produce” music, and
computers “produce” computation according to a program.

This book focuses on computation itself as the primary subject of computer sci-
ence. What (or who) is performing the symbol manipulation is a secondary concern.
Modern electronic computers happen to provide a fast, cheap, and reliable way to do
this computation, but other devices can do it as well. (The Dutch computer scientist
Edsger Dijkstra once said that computer science is no more about the computers than
astronomy is about telescopes.)

1.2.1 Symbols and symbolic structures

In their simplest form, symbols are just characters from some alphabet, like the
following:

digits: 3, 7, V (the last one is a Roman numeral)

letters: x, R, β (the last one is a Greek letter)

operators: +, ≤ , ∩

“run” — 2011/9/8 — 18:05 — page 5 — #28
�

�

�

�

�

�

�

�

Thinking and Computation 5

They can be strung together into more complex forms:

numerals: 5874, –3.75

words: John, don’t

They can be grouped in certain ways:

mathematical expressions: 247 + 4(x – 1)3

English phrases: the woman John loved

Finally, some of these groupings can be thought of as being true or false:

mathematical inequalities: 247 + 4(x – 1)3 ≤ n!

4

English sentences: The woman John loved had brown hair.

It is symbolic structures, arrangements of symbols like those just illustrated, that are
the medium of computation.

1.2.2 What is computation?

For present purposes, computation is the process of taking symbolic structures, break-
ing them apart, comparing them, and reassembling them according to a precise recipe
called a procedure. The symbols at the start of the procedure are called the inputs. The
symbols at the end of the procedure are called the outputs. The procedure is called on
the inputs and returns the outputs. It is important to keep track of where you are and
to follow the instructions in the procedure exactly. (You may not be able to figure out
why you are doing the steps involved. No matter.)

1.2.3 Some arithmetic procedures

Imagine explaining to someone (a young child) how to do subtraction:

53
– 17

One might say something like this:

First subtract the 7 from 3. But since since 7 is bigger than 3, borrow 10 from the
5 on the left. That changes the 3 to a 13 and changes the 5 to a 4. So subtract 7
not from 3 but from 13, which gives 6. Write the 6 as the first digit of the answer
on the right, under the 7. Then subtract 1 not from 5 but from 4, which gives 3.
Write the 3 as the second digit of the answer, under the 1. So the answer is 36.

“run” — 2011/9/8 — 18:05 — page 6 — #29
�

�

�

�

�

�

�

�

Chapter 16

Figure 1.1. Adding two single-digit numbers

Procedure PROC0:

You are given two digits as input and will return two digits as output.

To do so, use this table.

0 1 2 3 4 5 6 7 8 9

0 00 01 02 03 04 05 06 07 08 09

1 01 02 03 04 05 06 07 08 09 10

2 02 03 04 05 06 07 08 09 10 11

3 03 04 05 06 07 08 09 10 11 12

4 04 05 06 07 08 09 10 11 12 13

5 05 06 07 08 09 10 11 12 13 14

6 06 07 08 09 10 11 12 13 14 15

7 07 08 09 10 11 12 13 14 15 16

8 08 09 10 11 12 13 14 15 16 17

9 09 10 11 12 13 14 15 16 17 18

To add the two digits, find the row for the first digit in the table, and find the
column for the second digit, and return as output the two digits that appear at
their intersection in the table.

These are the kinds of detailed instructions one wants in a procedure.

PROC0

Maybe the simplest job in arithmetic, the one learned before any others, is the addition
of two single-digit numbers. Figure 1.1 shows a procedure called PROC0 that gives
explicit instructions for adding two digits.

Notice that it makes use of an addition table. (Typically, young children are not
taught addition in this way, but most of us were taught multiplication using a table
like this, which we had to memorize.) One can see that if PROC0 is called on 7 and 6,
it will return 13, and if it is called on 3 and 5, it will return 08. (It will be handy for
the answer returned here to be the two digits 08 and not simply 8.)

“run” — 2011/9/8 — 18:05 — page 7 — #30
�

�

�

�

�

�

�

�

Thinking and Computation 7

Figure 1.2. Adding three single-digit numbers

Procedure PROC1:

You are given three digits as input, a, t, and b.
You will return two digits as output, c and s.

1. Call PROC0 on t and b, and let u and v be the answers returned.
(The u is the left digit returned by PROC0, and the v is the right one.)

2. Call PROC0 on a and v, and let u′ and v′ be the answers returned.
(The u′ is the left digit returned, and the v′ is the right one.)

3. If u = u′ = 0, then return with c = 0 and s = v′.
If u = u′ = 1, then return with c = 2 and s = v′.
Otherwise, return with c = 1 and s = v′.

PROC1

Now, building on this procedure, consider adding three digits. Intuitively, one should
add the first two digits and then take the sum and add the last digit to it. However one
needs to worry about the carry digits to get the answer right. The procedure PROC1
in figure 1.2 does this. It calls PROC0 twice and then decides whether the final carry
digit to return should be 0, 1, or 2.

Trace the behavior of this procedure in detail to make sure you understand how it
works. Suppose PROC1 is called with inputs 7, 4, and 5.

At the start, a = 7, t = 4, and b = 5. Determine the values of c and s to return.

1. Call PROC0 on 4 and 5, which returns 09. So u = 0 and v = 9.

2. Call PROC0 on 7 and 9, which returns 16. So u′ = 1 and v′ = 6.

3. Then u �= u′, so return with c = 1 and s = 6.

The output returned by PROC1 in this case is 16, as desired.
Here are some other examples to make sure you understand how this works:

If PROC1 is called on 3, 4, and 1, it will return 08: u and v will be 0 and 5, and
u′ and v′ will be 0 and 8, so c will be 0 and s will be 8.

If PROC1 is called on 8, 9, and 2, it will return 19: u and v will be 1 and 1, and
u′ and v′ will be 0 and 9, so c will be 1 and s will be 9.

“run” — 2011/9/8 — 18:05 — page 8 — #31
�

�

�

�

�

�

�

�

Chapter 18

Figure 1.3. Adding two multidigit numbers

Procedure PROC2:

You are given two multidigit numbers as input, each with the same number of
digits:

x1 x2 . . . xk
y1 y2 . . . yk

You will return a number with one additional digit as output:

z0 z1 z2 . . . zk

1. Start at the right-hand side of the inputs (looking at xk and yk).
Call PROC1 with a as 0, t as xk, and b as yk.
Let zk be the s returned. (Keep the c returned for the next step.)

2. Move over one step to the left (looking at xk−1 and yk−1).
Call PROC1 with a as the c from the previous step, t as xk−1, and b as yk−1.
Let zk−1 be the s returned. (Keep the c returned for the next step.)

3. Continue in this way through all the digits, from right to left, filling out in turn,
zk−2, zk−3, . . . , z3, z2, z1.

4. Let z0 be the final c returned by PROC1 (with x1 and y1).

If PROC1 is called on 8, 9, and 6, it will return 23: u and v will be 1 and 5, and
u′ and v′ will be 1 and 3, so c will be 2 and s will be 3.

Note that it is not the business of the procedure to explain why the operations are
done. It needs to make a decision about a final carry digit c. But as far as the procedure
is concerned, the only thing that matters is what the final answer should be.

PROC2

Now, building on the procedure PROC1, consider instructions for adding two multi-
digit numbers. In this case, you know that you have to go from right to left, keeping
track of the carry digits along the way. A procedure PROC2 for doing this is shown
in figure 1.3. Trace the behavior of this procedure when the inputs are 747 and 281

(so that k = 3):

1. Starting at the right side, call PROC1 with a = 0, t = 7, and b = 1.
It will return c = 0 and s = 8. So z3 will be 8.

“run” — 2011/9/8 — 18:05 — page 9 — #32
�

�

�

�

�

�

�

�

Thinking and Computation 9

Figure 1.4. Adding any list of numbers

Procedure PROC3:

You are given a list of numbers n1, n2,
You will return a single number sum as output.

1. Let sum start off being the single digit 0.

2. Start with the first number n1 and sum. Make sure they both have the same
number of digits by inserting 0 symbols on the left as needed. Then call PROC2
on these two numbers, and let the new value of sum be the number it returns.

3. Do the same thing with n2 and the current value of sum, to produce the next
value for sum.

4. Continue in this way with the rest of the numbers, n3, n4,

5. Return as output the final value of sum.

2. Call PROC1 with a = 0 (the c from the previous step), t = 4, and b = 8.
It will return c = 1 and s = 2. So z2 will be 2.

3. Call PROC1 with a = 1 (the c from the previous step), t = 7, and b = 2.
It will return c = 1 and s = 0. So z1 will be 0.

4. Finally, z0 will be 1 (the last c returned).

So the answer returned by PROC2 on 747 and 281 will be the four digits 1028. And
sure enough, 1028 is the sum of 747 and 281. Again observe that the procedure does
not explain itself. Nowhere does it say that each digit stands for a power of ten (units,
tens, hundreds, thousands, and so on) with the unit digits on the right. However,
even if you do not know what the symbols are supposed to mean or why you are
doing the operations, if you follow the directions in PROC2 exactly, keeping track of
where you are at each step, you will add the two numbers correctly.

PROC3

Now consider a general addition procedure that will add any list of numbers, each
with any number of digits. The procedure for this is in figure 1.4. It is easy to see that
it does the right thing, repeatedly adding two numbers using PROC2 and keeping a
running total. (PROC3 is not explicit about how to pad the shorter numbers with 0

symbols on the left. Imagine there is a PROC4 that does that.)

“run” — 2011/9/8 — 18:05 — page 10 — #33
�

�

�

�

�

�

�

�

Chapter 110

Going from here

Given a procedure that can do addition, it is not too hard to imagine doing subtraction
the same way. Given those two, one can define procedures that do multiplication and
division. Building on these, one can have a procedure to tell whether a number is
prime. One can use pairs of numbers to represent fractions (rational numbers) and
do arithmetic on them. One can arrange rational numbers into matrices and have
procedures that operate on them to solve systems of equations. One can use systems
of equations to model complex physical systems and have procedures that perform
numerical simulations of these systems.

And on it goes.
So starting with simple symbolic operations (such as table lookup, putting together

and taking apart sequences of symbols, comparing them, and so on), one can assem-
ble the operations into ever larger procedures and develop an extremely wide range
of behaviors as computational processes. This is what computer science is about.

1.2.4 The lesson

The key observation on these arithmetic procedures is this:

To produce meaningful answers, you do not have to understand what the symbols
stand for or why the manipulations are correct.

Although one can certainly understand the procedures as doing arithmetic, one does
not need this understanding to actually carry out the procedures.

Here is a simple thought experiment to support this claim. Imagine replacing the
symbols 0 through 9 everywhere by new symbols that do not look at all like digits, for
example, a heart shape for 0, a star for 1, an anchor shape for 2, and so on. Now give
the procedures PROC0–PROC3, including the table for PROC0 with the new symbols,
to a friend without saying what these new symbols mean or what the procedures are
supposed to be doing. By following PROC2, the friend should still be able to do
addition: take as input two sequences of new symbols representing numbers, and
return as output the sequence of new symbols that represents their sum.

So symbols can be processed purely mechanically and still end up producing the
right results. This might be called the trick of computation:

Computers can perform a wide variety of impressive activities precisely because
those activities can be described as a type of symbol processing that can be carried
out purely mechanically.

“run” — 2011/9/8 — 18:05 — page 11 — #34
�

�

�

�

�

�

�

�

Thinking and Computation 11

This “trick” has turned out to be one of the major inventions of the twentieth cen-
tury, allowing devices that perform computation to permeate almost all areas of our
modern lives. And note: It has nothing to do with electronics or physics.

1.3 Thinking as computation

One might still ask, though, just what does computation have to do with ordinary
thinking? Recall the central conjecture of this book:

Thinking can be usefully understood as a computational process.

What does this conjecture amount to?

Not that the brain is something like an electronic computer (which it is in some
ways perhaps, but in most ways is not).

The process of thinking can be usefully understood as a form of symbol processing
that can be carried out purely mechanically without having to know what the
symbols stand for.

Why is this so controversial? Perhaps the idea that some types of thinking are com-
putational is not so surprising. Consider activities like doing a homework problem
in algebra, or filling out an income tax form, or estimating a grocery bill as you are
shopping. These all involve thinking and are clearly computational.

The problem is that so much of our thinking seems to have very little to do with
calculations or anything even remotely numerical. You can think about anything you
want, not just numbers. Consider this example:

I know my keys are in my coat pocket or on the fridge.
That’s where I always leave them.

I felt in my coat pocket, and there’s nothing there.

So my keys must be on the fridge, and that’s where I should look.

This is an example of thinking that appears to have nothing to do with numbers. But
it is about something: keys, coat pocket, refrigerator. In fact, thinking always seems to
be about something. Computation, on the other hand, seems to be about nothing: it is
the process of manipulating symbols in a mechanical way without taking into account
what the symbols stand for. So there is certainly a conceptual gap between the two
that needs to be bridged. Fortunately, the bulk of the groundwork was already done
by Leibniz.

“run” — 2011/9/8 — 18:05 — page 12 — #35
�

�

�

�

�

�

�

�

Chapter 112

1.3.1 Leibniz and his idea

The idea that thinking can be seen as a kind of computation is one of the rare ideas in
Western culture that does not go back to the ancient Greeks. The first person to take
this idea seriously was the German philosopher Gottfried Leibniz (1646–1716).

Leibniz was an amazing thinker. Among many other ideas and discoveries, he
invented the calculus at the same time as Isaac Newton did. While Newton was inter-
ested in problems in physics and chemistry, Leibniz was more interested in symbols
and symbol manipulation. He only started doing mathematics seriously later in life.
But intrigued by how symbols standing for variables and constants could be shuf-
fled around to solve equations in algebra, he wondered whether there were symbolic
solutions to problems involving tangents and areas. And the infinitesimal calculus
(derivatives and integrals) came out of this.

When it came to arithmetic, Leibniz observed that it was sufficient to manipulate
symbols on a piece of paper according to certain rules to be able to draw conclusions
about otherwise abstract numbers. A number (like fourteen, say) might be a com-
pletely abstract notion, but the symbols used to represent it (like the symbols 14 or
XIV or 1110) are much more tangible: we can write them down, look at them, move
them around. We can determine if a certain relation holds among these numbers (for
example, determining whether a number is the sum of two others) just by manipu-
lating the symbols. (The symbols 1110 represent the number fourteen in the binary
number system invented by Leibniz that is used by digital computers.)

His idea then was this: Ideas, that is, the objects of ordinary thought, are like num-
bers. It will be sufficient to manipulate symbols standing for them according to certain
rules. The ideas may be abstract, but the symbols are concrete. One will be able to go
from one idea to the next just by doing symbolic manipulation.

In other words, he drew the following analogy:

The rules of arithmetic allow us to deal with abstract numbers in terms of con-
crete symbols. The manipulation of those symbols mirrors the relations among
the numbers being represented.

The rules of logic allow us to deal with abstract ideas in terms of concrete sym-
bols. The manipulation of those symbols mirrors the relations among the ideas
being represented.

What a truly remarkable idea! It says that although the objects of human thought are
formless and abstract, we can still deal with them concretely as a kind of arithmetic,
by representing them symbolically and operating on the symbols.

“run” — 2011/9/8 — 18:05 — page 13 — #36
�

�

�

�

�

�

�

�

Thinking and Computation 13

In the case of arithmetic, we already know what numbers are and what symbols we
should use to represent them. We have all been trained to do this symbolic processing
starting at a very early age, without a second thought.

But what about ideas? What symbols should stand for them?

1.3.2 Propositions vs. sentences

A proposition, as the word is used in the philosophical literature, is an idea that can
be expressed by a declarative sentence of English (or other language). So one can
think of the sentence as a symbolic representation of the proposition. Consider these
examples:

My keys are in my coat pocket.

Dinosaurs were warm-blooded.

The stock market composite index will rise to twice its current value within

the next three years.

Hate literature should not be tolerated, even if that impinges on free speech.

These are all English sentences. The first one uses seven words of English, for exam-
ple. But apart from being English sentences, they each express an idea, an idea that
can be expressed in other languages with other sentences. So we have the sentence, on
the one hand (like the first one with seven words), and the proposition it expresses, on
the other (like the idea that my keys are located somewhere).

What can be said about the propositions themselves? They are abstract entities, like
numbers, but they have some special properties:

Propositions are considered to hold or to not hold. A sentence is true if the
proposition it expresses holds, and false if that proposition does not hold.

This does not mean that there will be no controversy about whether the propo-
sition holds. It just means that it makes sense to ask if it holds (or if the
corresponding sentence is true). A number is a very different sort of abstract
object; we do not ask if a number holds in this sense.

Propositions are considered to be related to people in certain ways: people may
or may not believe them, fear them, regret them, wish for them, worry about
them, and so on. These various relationships between people and propositions
are what philosophers call propositional attitudes.

Propositions are related to each other in certain ways: a proposition might imply,
or provide evidence for, or contradict another proposition.

“run” — 2011/9/8 — 18:05 — page 14 — #37
�

�

�

�

�

�

�

�

Chapter 114

Uninterpreted sentences

A first clue that one might be able to understand thinking as computation is to look at
a sentence of English as a purely symbolic structure made up of a sequence of words.
Consider this, for example:

The snark was a boojum.

This is a line from the poem The Hunting of the Snark, by Lewis Carroll, that was
intended to be nonsense. (What is this snark? What is a boojum?) Observe that if one
assumes that the sentence is true, even without knowing what the words snark and
boojum mean, one can answer certain questions:

What kind of thing was the snark?
(It was a boojum.)

Is it true that the snark was either a beejum or a boojum?
(Yes, because it was a boojum.)

If no boojum is ever a beejum, was the snark a beejum?
(No, it could not have been.)

What is an example of something that was a boojum?
(The snark, of course.)

The point is that one can provide appropriate answers to these questions without
having to know what the two symbols mean. This is the first step toward linking thinking
and computation. Some simple rules of logic make it possible to extract answers
directly from the sentence itself (viewed as a symbolic structure) without having to
determine first what the symbols snark and boojum stand for.

Now consider the following three examples:

1. My keys are in my coat pocket or on the fridge.

Nothing is in my coat pocket.

So: My keys are on the fridge.

2. Henry is in the basement or in the garden.

Nobody is in the basement.

So: Henry is in the garden.

3. Jill is married to George or Jack.

Nobody is married to George.

So: Jill is married to Jack.

“run” — 2011/9/8 — 18:05 — page 15 — #38
�

�

�

�

�

�

�

�

Thinking and Computation 15

Observe that in all these cases the thinking is the same. The pieces are put together
in exactly the same way, even though the sentences are about quite different things.
There could just as easily be a fourth example:

4. The frumble is frimble or framble.

Nothing is frimble.

So: The frumble is framble.

Again, one does not need to know what frimble means to get the correct conclusion.
It does not really matter whether the subject is keys, Henry, Jill, or the frumble. What
does matter is the form of the sentences in terms of the other connecting words, and
the conclusion based on that form. For example, it would be wrong in the last case to
conclude that the frumble was frimble.

Logical entailment

Telling us what to conclude in such examples is the job of logic. A collection of
sentences S1, S2, . . . , Sn logically entails another sentence S if the truth of S is implicit
in the truth of the Si sentences. In other words, no matter what certain terms (like
boojum, garden, framble) in the Si sentences really mean, if they are all true, then the
S sentence is also true. So, in determining if a collection of sentences logically entails
another, it is not necessary to know what the terms in those sentences mean. (Certain
keywords in sentences, such as and, do have specific functions.)

So, for example, the sentence

The snark was a boojum.

logically entails

Something was a boojum.

Similarly, the sentences

My keys are in my coat pocket or on the fridge.

Nothing is in my coat pocket.

logically entail

My keys are on the fridge.

The fact that these symbols can be used in an uninterpreted way is what allows the
connection with computation.

“run” — 2011/9/8 — 18:05 — page 16 — #39
�

�

�

�

�

�

�

�

Chapter 116

Is thinking logic?

So in the end, is thinking just logic? For anyone who has studied logic, this is not a
very plausible notion.

Suppose somebody at a party says,

George is a bachelor.

Here are some of the sentences that this logically entails:

Somebody is a bachelor.

George is either a bachelor or a pig farmer.

Not everyone is not a bachelor.

It is not the case that both George and Henry are not bachelors.

Sure enough, these sentences will all be true if the given sentence is; that is what
logical entailment does. But they are so very, very boring!

If you found out at a party that George was a bachelor, it is almost guaranteed that
we would not spend time going through logical entailments like these. You might
think about George (whom you might already know) or about what it means to be
a bachelor. Thinking seems to be so much richer than just dry logical entailments
because thinking seems to depend on what the words in a sentence mean.

In fact, the view that thinking is logic may seem so far off the mark that instead of
asking what is wrong with it, one might be tempted to ask what is right with it.

1.3.3 Using what is known: The web of belief

To get a glimmer of what could be right with it, one has to go back to the idea
of thinking: bringing knowledge to bear on an activity. In reaching the conclusions
about George the bachelor, no other knowledge was used. The search for logical
entailments is not from that one sentence alone but rather from that sentence together
with everything else that is already known.

Figure 1.5 shows some of the relevant facts that may be known about George the
bachelor. In this collection of sentences, the terms George, bachelor, man, and so on,
appear in many places, linking the sentences together in the same way that the term
frimble did in the sentences of the earlier example.

It is sometimes helpful to visualize the sentences as forming a kind of network, with
nodes for each of the terms and links between them according to the sentences in
which they appear. The network might look something like the one in figure 1.6. We
may not know who George is, for example, but we can see that the node for George
is connected to the node for Mary by way of the node for son. We may not know what

“run” — 2011/9/8 — 18:05 — page 17 — #40
�

�

�

�

�

�

�

�

Thinking and Computation 17

Figure 1.5. Some beliefs about George the bachelor

George was born in Boston, collects stamps.

George is the only son of Mary and Fred.

A son of someone is a child who is male.

A man is an adult male person.

A bachelor is a man who has never been married.

A (traditional) marriage is a contract between a man and a woman that is enacted by a

wedding and dissolved by a divorce. While the contract is in effect, the man (called the

husband) and the woman (called the wife) are said to be married.

A wedding is a ceremony where . . . bride . . . groom . . . bouquet . . .

and so on.

son is supposed to mean, but its node is connected to the nodes for child and male.
Similarly, the male node is connected in a different way to the node for man. The
node for bachelor is connected in a complex way to the node for marriage and from
there, presumably, to wedding and bride. Although we may not know what any of
these terms mean in isolation, the various sorts of links given by the sentences in the
network provide a rich set of interdependencies among them.

A network like this is sometimes called a web of belief to emphasize that the sen-
tences do not stand alone but link to many others by virtue of the terms they use. The
job of logical entailment is to crawl over this web looking for connections among the
nodes, sensitive to the different types of links along the way. In figure 1.6 there is a
certain path from George to male, for example, that can lead to the conclusion that
George is male. If the fact that George is a bachelor is added to the web, a new set of
pathways opens, including some connections from George to marriage that were not
there before.

The logical entailments for the new sentence together with everything previously
known gives some additional answers:

George has never been the groom at a wedding.

Mary has an unmarried son born in Boston.

No woman is the wife of any of Fred’s children.

These are much more like the ordinary thoughts that people would think when learn-
ing that George was a bachelor. They are not exactly poignant, of course, but if some

“run” — 2011/9/8 — 18:05 — page 18 — #41
�

�

�

�

�

�

�

�

Chapter 118

Figure 1.6. Some beliefs as a network

� was � in � ,

George born Boston Fred

� is the only � of � and �

son Mary child

A � of someone is a � who is �

adult male

A � is an � � �

man person

A � is a � who has never been �

bachelor marriage contract married

A � is a � said to be �

�� ��

�� ��

�
��

�
�

�� ��

��

�
�

�� ��

�
�

�� �
�

�� ��

additional facts were added about how parents hope their children end up happily
married, one could go in that direction. (Or one might want to include facts about
what a bachelor lifestyle is like and get additional entailments about George that
would fit into a party setting.)

Observe that to get this richer set of conclusions, one does not need to know in
advance what the symbols George and bachelor mean. What is needed, however, is a
much richer collection of sentences over which to apply the rules of logic.

Knowledge bases

At this point, we have to be prepared to make a gigantic leap of the imagination:

Imagine that we can draw conclusions from millions of such facts.

In other words, to make a plausible connection between thinking and computing,
we have to imagine that we are considering the logical entailments of a potentially

“run” — 2011/9/8 — 18:05 — page 19 — #42
�

�

�

�

�

�

�

�

Thinking and Computation 19

enormous collection of sentences, an entire web of belief. Such a collection is called a
knowledge base (KB). The collection shown in figure 1.5 is just a very small sample.

So yes, there is a connection between thinking and logic, but it is misleading to
think of it as Logic, the subject studied in philosophy. The way Logic is normally
taught, one starts with a small set of premises and concentrates on ensuring that the
conclusions from them are always correct:

Socrates is a man.
All men are mortal.

Therefore, Socrates is mortal.

Thinking is very different. It starts with an enormous collection of premises (maybe
millions of them) about a very wide array of subjects. There will be facts in the knowl-
edge base about George and marriage, but also about barber shops, ferris wheels,
Academy Awards, hate literature, and so on. The question then is, what are the
logical entailments of all those sentences?

This leads to two hypotheses:

Much of the subjective feeling of richness experienced in thinking might be
explained as simple mechanical and logical operations, but applied to a very
rich collection of sentences.

To build computer systems with a number of desirable properties (versatile,
flexible, extendible, easily maintained, and so on), one must

– represent much of what the system needs to know as symbolic sentences of
some sort, called its knowledge base;

– perform processing over the knowledge base using the rules of logic to
obtain new conclusions;

– have the system act based on the conclusions it can derive.

Systems built this way are called knowledge-based systems.

The big picture

In summary, thinking means bringing what one knows to bear on what one is doing.
But how does this work? How do concrete, physical entities like people engage with
something formless and abstract like knowledge? What is proposed in this chapter
(via Leibniz) is that people engage with symbolic representations of that knowledge. In
other words, knowledge is represented symbolically as a collection of sentences in a
knowledge base, and then entailments of those sentences are computed as needed.

“run” — 2011/9/8 — 18:05 — page 20 — #43
�

�

�

�

�

�

�

�

Chapter 120

(Actually, there are good reasons to deviate somewhat from strict logical entailment
for this. See chapter 3.)

So computation over a knowledge base is the direction pursued in this book, although
it deals with only tiny knowledge bases. The next chapter studies a procedure that
performs this computation for knowledge bases of a certain restricted form.

Want to read more?

This chapter introduced the connection between thinking and computation, an idea
that is the subject matter of the rest of this book.

The starting point for this connection is the work of the philosopher Gottfried Leib-
niz. A good introduction to his thinking can be found in [59]. (His own work is
scattered in the thousands of letters he wrote.) There is not much in terms of details,
however, as Leibniz did not have the benefit of the modern notions of symbolic logic
or computation. These came along in the 1930s, and it took until the 1950s, when John
McCarthy, one of the founders of the field of artificial intelligence (AI) [11], became
the first person to propose the approach followed in this book, representing what is
known as a collection of sentences and computing their logical entailments [47].

An excellent place to begin to explore what psychologists have to say about human
thinking is a book by Pinker [9] that is aimed at a broad audience. However, the
whole topic of human thinking remains highly controversial, and even Pinker has his
detractors [3]. Many find the notion of symbolic computation too limiting because
it downplays the effect of the rest of the body on the thinking process [2]. Among
the computationalists, many prefer symbolic structures other than sentences that can
represent knowledge in a more concrete way [5]. There are also researchers who feel
that a lot of thinking needs to be more pictorial or diagrammatic in nature [6].

The general notion of computation used here arose directly out of work on logic
in the 1930s. This account of computation is due to Alan Turing, widely considered
to be the father of computer science (John von Neumann is often called the father of
electronic computers). In 1936, Turing proposed a formal definition of what is here
called a procedure in terms of a very simple imaginary device: a Turing machine [12].
With this definition, one could now ask questions like whether it was even possible to
compute a certain result. Turing was the first to prove that there was a universal Turing
machine that could compute what any other one could, and remarkably enough, that
some results could not be computed by any Turing machine.

“run” — 2011/9/8 — 18:05 — page 21 — #44
�

�

�

�

�

�

�

�

Thinking and Computation 21

Turing’s carefully worked definition has withstood the test of time. Although dif-
ferent models of computation have been proposed (including a strikingly different
one by Alonzo Church), they have all been shown to be equivalent to Turing’s. Every
computer built so far has been a special case of a Turing machine and subject to the
restrictions proved by Turing. The claim that this will be true of any physical computer
to be built is called the Church-Turing thesis [8].

Regarding thinking as computation, there is a superb though somewhat advanced
philosophical book on this subject by Pylyshyn [10]. Much of the argument presented
here about how actions are conditioned by what is known derives from this insightful
book. (In the terminology he uses, those actions are said to be cognitively penetrable.)

Outside of philosophy, there is a subarea of AI called knowledge representation and
reasoning that starts with the work of McCarthy and is concerned with the issue of
representing knowledge in symbolic form and devising computational procedures to
reason with it effectively. A graduate-level textbook on this area of research is by
Brachman and Levesque [1]. The state of the art in this research area is reviewed in a
(quite advanced) technical handbook [4].

Finally, although this book concentrates on small knowledge bases, the CYC project
[7] is an example of a project whose goal is to build a large knowledge base along the
lines discussed here.

Exercise

Consider the procedure PROCX in figure 1.7. It assumes there are other procedures
elsewhere that will do some arithmetic (subtraction, multiplication, and less-than
comparisons). It also assumes that one can concatenate strings of digits: x ˆy means
the string consisting of the digits in x followed by those in y. It works by repeatedly
setting new values to u, v, bot, top, and side as the digits of the input are worked
through in pairs from left to right.

Figure out what the procedure PROCX is doing. Hint: Trace its behavior when the
input is 137641.

“run” — 2011/9/8 — 18:05 — page 22 — #45
�

�

�

�

�

�

�

�

Chapter 122

Figure 1.7. A mystery procedure

Procedure PROCX:

You are given a sequence of digits x as input.
You will return a sequence of digits as output.

1. Group the digits in x into pairs starting from the right. (If x has an odd number
of digits, the leftmost group will only have a single digit in it.)

2. Start with u, v, bot, top, and side all having an initial value of 0.

3. Then, working your way from left to right on the groups in x,
repeat the following:

a. Set bot to (bot − u) ˆ (the next group from x).

b. Set side to 2× top.

c. Set v to the largest single digit such that v × (side ˆv) ≤ bot.

d. Set u to v × (side ˆv).

e. Set top to top ˆv.

4. The answer to return is the final value of top.

